VR 3D·CG FEM CAD Cloud UC-1 series UC-win series Suite series

基礎の設計・3D配筋 (部分係数法・H29道示対応) Ver.8

Operation Guidance 操作ガイダンス

本書のご使用にあたって

操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を 説明したものです。

ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2024 FORUM8 Co.,Ltd. All rights reserved.

目次

5	第1章 製品概要
5	1 プログラム概要
6	2 適用範囲
11	3 機能及び特長
15	4 適用基準および参考文献
16	5 バージョン及び改良点
17	6 フローチャート
18	第2章 操作ガイダンス
18	1 モデルを作成する
18	1-1 初期入力
19	1-2 基礎選択
19	1-3 地層
21	1-4 計算条件
24	1-5 杭配置
25	1-6 材料
26	1-7 杭体データ
27	1-8 予備計算・結果確認
28	1-9 フーチング形状
29	1-10 基準値
29	1-11 作用力
31	1-12 杭体
32	1-13 フーチング設計
34	1-14 偶発作用-基本条件
36	1-15 偶発作用-杭本体
37	1-16 偶発作用-地盤データ
38	1-17 計算・結果確認
42	2 計算書作成
43	3 図面作成
43	3-1 基本条件
44	3-2 形状
45	3-3 かぶり
46	34 鉄筋
48	3-5 図面生成・確認、鉄筋生成
48	3-6 鉄筋情報
50	3-7 鉄筋一覧
51	4 設計調書
52	5 データ保存

53 第3章 Q&A

第1章 製品概要

1 プログラム概要

「本プログラムは、基礎の設計計算を支援するプログラムで、主として「道路橋示方書・同解説日本道路協会」 に準拠しています。 なお、単位系はSI単位系のみを対象としております。

永続作用支配状況及び変動作用支配状況における各基礎形式の安定計算項目

	変位の制限の照査			耐荷性能の照査		
基礎形式	鉛直荷重	水平荷重	転倒モーメント	鉛直荷重	水平荷重	転倒モーメント
直接基礎	0	0	0	0	0	0
杭基礎	0	0	-	0	0	-
ケーソン基礎	0	0	-	0	0	-
鋼管矢板基礎	0	0	-	0	0	-
地中連続壁基礎	0	0	-	0	0	-

内光 F用 (レイハルZ地展到) をち思り るひ計 仏心にのけるひ計 モノル及び 限介が	禺発作用 (レベル2地震動)を考慮する設計状況におけ	る設計モデル及び限界状態
---	---------------	---------------	--------------

基礎形式	解析モデル	降伏及びその目安	塑性率の制限値	変位の制限
直接基礎	-	-	-	-
杭基礎	・杭頭がフーチングで剛結 されたラーメン構造 ・杭の軸方向及び軸直角方 向の抵抗特性はバイリニア ・杭体のM-φ関係はバイリ ニア	・全ての杭で杭体が塑性化 する ・一列の杭の杭頭反力が 押込み支持力の上限値に達 する	橋脚基礎の場合: 一般的な場合は4 斜杭を用いた場合は3 場所打ち杭の軸方向鉄筋 にSD390又はSD490を用 いた場合は2 橋台基礎の計容塑性率から 1減じた値	橋脚基礎において塑性化 を考慮する場合には、基 礎天端において、回転角 0.02rad程度を目安としてよ い。
ケーソン基礎	・基礎本体のΜ- <i>φ</i> 関係は 線形 (塑性化を考慮する場合は トリリニア型)	 ・基礎本体が塑性化する ・基礎前面地盤の60%が 塑性化する ・基礎底面の60%が浮上る 	橋脚基礎の場合は道示11 章による。 橋台基礎の場合は3。	上と同じ
鋼管矢板基礎	・6種類の地盤抵抗要素バ イリニア	 ・1/4の鋼管矢板が塑性化 する。 ・1/4の鋼管矢板の先端地 盤反力が極限支持力に達 する。 ・鋼管矢板の先端地盤反 力が極限支持力に達したものと浮上りを生じたものの 合計が60%に達する。 	橋脚基礎の場合は4、 橋台基礎の場合は3。	上と同じ
地中連続壁基礎	・6種類の地盤抵抗要素バ イリニア	・上部構造の慣性力作用位 置での水平変位が急増し始 める	橋脚基礎の場合は道示11 章による。 橋台基礎の場合は3。	上と同じ

項目		Lite	Standard	Advanced
	杭基礎	0	0	0
	直接基礎	0	0	0
計質	液状化判定	0	0	0
計昇	ケーソン基礎	-	0	0
	鋼管矢板基礎	-	0	0
	地中連続壁基礎	—	0	0
CAD	杭基礎	0	0	0
	直接基礎	-	-	0
その他	ESエクスポート (杭基礎)	-	-	0

本プログラムでは、3種類のライセンスがあり、ライセンス(Web認証)により使用可能な機能に相違があります。

使用するライセンスは、メニューの「ヘルプ」ー「バージョン情報」から開く画面で指定します。

2 適用範囲

杭基礎

本プログラムは、橋梁下部工基礎・水門基礎・その他の一般土木構造物などにご利用いただけますが、以下の条件を満たしていることが必要です。

前重分担 ①鉛直荷重は杭のみで支持する。 ②水平荷重は杭のみで支持することを原則とするが、杭とフーチング根入れ部分で分担することができる。 2)計算上の仮定 ①杭基礎は、2次元構造物または2.5次元構造物とする。 ③フーチングは剛体とし、杭群の図心を中心として回転する。 ③杭および地盤抵抗は、次のように取り扱う。 ・永続作用支配状況、変動作用支配状況 地盤抵抗:線形弾性体 ・偶発作用(レベル2地震時) 地盤抵抗:バイリニア型弾塑性 杭本体:弾塑性(バイリニアまたはトリリニア型) 3)適合形状 ①フーチング平面形状は、長方形であること。

②フーチング上面に配置される柱形状は、長方形・円形・小判形のいずれかであること。 ③複数の柱を配置する場合、同一軸(X軸)に配置されていること。

制限事項は次のとおりです。

項目		制限事項		備考
工法	打込み杭、 中掘り(最終打撃) 場所打ち杭 プレボーリング 中掘り(セメントミルク 鋼管ソイルセメント杭 場所打ち工法 回転杭工法 ハイスペックマイクロバ) ペイル工法		
	杭種	最小径(m)	最大径(m)	
杭種及び杭径	鋼管杭 鋼管ソイルセメント杭 回転杭 PHC杭 SC杭 SC+PHC杭 場所打ち杭	0.1 0.1 0.3 0.2 0.2 0.2	9.99 9.99 5.00 5.00 5.00 9.99	
荷重ケース数	Y方向 (橋軸方向):60 X方向 (直角方向):60	ケース ケース		
フーチング・柱の形状	フーチング寸法:Y方向 :X方向 柱形状:長方形 (a,bma :円形 (amax= :小判 (a,bmax :長方形 (a,bm 柱本数:3本	Lmax=100 (m) Bmax=100 (m) ax=100m) 100m) =100m) ax=100m)	・フーチングと柱の平面形状が同じ 大きさまで入力・計算が可能 ・柱が2本以上ある場合は、平面形 状でY座標の座標値が同じである 事が条件	
杭体の断面変化数	最小:1断面、最大:5断	面		
杭頭条件:剛結のみ				
机頭・机先端条件	杭先端条件:固定、ヒン	/ジ、自由、バネ		
杭列数の最大	Y方向(橋軸方向):10 X方向(直角方向):10	0 0		
杭長及び地層数	杭長:100 (m) 地層数の最大:50層			
杭種類数	異なる杭タイプは100タ	マイプまで。	杭の条件 (杭径,厚さ,杭長,斜角,先 端バネ,地層) が等しい杭は同一タ イプとする。	

7 M× 19.11地路 設計 \bigcirc 00 1 0 0 0 0 Υ 方 0 0º 0 C ń \bigcirc 00 \bigcirc Y方向:橋軸方向 ◆ × 方向

×方向:橋軸直角方向

本プログラムにおける作用力の向き、座標および方向は下図のとおりです。反力の向きは作用力の向きと逆向きとなります。

鋼管矢板基礎

項目	制限	事項	Į	備考
基礎本体の解析方法	弾性床上の有限長梁およ考慮した仮想井筒梁とし角を計算します。	よび} _ て、	継手のせん断ずれを 断面力、変位、傾斜	Bv:基礎幅 Le:基礎の根入れ長 L:鋼管矢板の長さ Bv > 30.0m または、 L/Bv ≤ 1.0 または、 $\beta \cdot Le \leq 1.0$ となる場合には 継手のせん断ずれを考慮した仮想 井筒ばりによる解析により計算を 行うのがよいとされています。(*1) 仮想井筒ばりによる計算では、基 礎を構成する鋼管矢板1本ごとに荷 重を載荷することはできません。
	外周鋼管矢板	≦	5断面	仮締切り部を含む
鋼管矢板および 鋼管杭の断面変化	隔壁鋼管矢板	≦	3断面	
	中打ち単独杭	≦	3断面	
地層データ	地層数	≦	50層	
設計荷重	荷重ケース数	≦	60ケース	各方向ごと
仮始切りの計算	施エステップ数	≦	20	
以神 97 99 F 昇	支保工段数	≦	10	
	基礎幅	≦	200.0m	
基礎の形状寸法	鋼管矢板長	≦	100.0m	
	鋼管本体径	\	300.0mm 2500.0mm	
地震時保有水平耐力法照查	鋼管矢板および 中打ち単独杭の全列数	≦	100	各方向ごと

(*1)せん断ずれを考慮した仮想井筒ばりによる解析について、文献「土木研究所資料第1175号 矢板式基礎の設計(その1) 昭和52年2月建設省土木研究所」を参照しています。

本プログラムにおける作用力の向き、座標及び方向は下図のとおりです。

ケーソン基礎

ケーソン形状寸法	ケーソン幅	0.100m \sim 99.999m
	ケーソン長	0.100m \sim 99.999m
	側壁厚	0.100m \sim 9.999m
部材寸法	隔壁厚	0.100m \sim 9.999m
	頂版厚	0.100m \sim 9.999m
荷重ケース数	最大60	方向ごと
配筋段数	$1 \sim 3$	

本プログラムでの作用力の向き、座標系は次のとおりです。

地中連壁基礎

12/14-+注	基礎幅(X)	0.100m \sim 99.999m
7547 7 22	基礎幅(Y)	0.100m \sim 99.999m
	側壁厚	0.100m \sim 9.999m
部材寸法	頂版厚	0.100m \sim 9.999m
	側壁高	0.100 m \sim 99.999m
荷重ケース数	最大60	方向ごと
配筋段数	1~3	

本プログラムでの作用力の向き、座標系は次のとおりです。

直接基礎

- ・基礎の寸法
 - 基礎の寸法は、0.5m×0.5m~100.0m×100.0mとします。
- ・荷重ケース

荷重ケースは、最大60ケースとします。

・底版レベル2地震時照査 橋脚のみを対象とします。連続フーチング(2,3柱式橋脚)の照査を可能です。 橋台に対する照査には対応していません。

液状化の判定

- ・検討位置
 検討位置は、最大10ヶ所までとします。
 ・液状化の判定を行う層数
- 液状化の検討を行うための層数は、最大50層とします。
- N値の測定点数
 N値の測定点位置は、最大60ヶ所までとします。
- ・地盤種別を算定用の層数
- 地盤種別を算定するために必要な土質データの層数は、最大50層とします。

3 機能及び特長

(1)機能表

項目		Lite	Standard	Advanced
計算	杭基礎	0	0	0
	直接基礎	0	0	0
	液状化判定	0	0	0
	ケーソン基礎	—	0	0
	鋼管矢板基礎	_	0	0
	地中連続壁基礎	—	0	0
CAD	杭基礎	0	0	0
	直接基礎	_	_	0
その他	ESエクスポート (杭基礎)	_	_	0

(2)操作性

設計手順に沿った処理モードボタンを左から右に並べ(入力→計算書作成)、データ入力,計算および結果確認を行うモー ドでは、原則として上から下へ順に処理を進めるようにしています。 また、各項目左にマークを示して、処理状況が一目で分かるようにしています。

🚫 :選択できないことを示しています。

🤹 :選択できることを示しています。入力項目では未入力、計算項目では未計算を示しています。

:選択可です。入力項目では入力済み、計算項目では計算済みを示しています。
 データ変更に伴い、影響項目は未入力、未計算に状態を変更しています。

№: :選択可です。計算済みで計算結果がOUTであることを示しています。

4面図表示によるデータの視覚的な確認、図をまじえたわかりやすい結果表示、既製杭の断面諸数値などを予め設定した [基準値]など、わかりやすく容易な操作方法となっています。

(3)計算機能及び特長

杭基礎

「道路橋示方書・同解説 IV下部構造編, V耐震設計編(社)日本道路協会」に規定されている事項に準拠した杭基礎の設 計計算を支援します。

サポートしている計算範囲は以下のとおりです。

・安定計算において、2次元構造物として三元連立方程式を解く解析機能の他に2.5次元解析機能を有しています。 「2.5次元解析」とは

橋軸方向をY軸方向、橋軸直角方向をX軸方向、鉛直方向をZ軸方向とすると3次元の場合は一般に各軸方向の変位と力お よび各軸回りの回転変位と回転力が定義されます。この場合、変位と力はそれぞれ6つ定義されることになりますが、本プロ グラムではZ軸回りの回転変位と回転力(フーチングを上から見てねじ込むような変位と力)を考えていません。したがって、 考えている変位と力はそれぞれ5つになります。自由度が5つあるので便宜上「2.5次元解析」と称しています。

3次元ではありませんので、X軸方向、Y軸方向ごとに杭頭の水平、回転変位は全杭同一となります。

2次元解析の場合、X軸方向とZ軸方向(またはY軸方向とZ軸方向)の変位と力およびY軸(またはX軸)回りの回転変位 と回転力に着目して自由度が3つあるとして計算しています。

・鋼管杭、PHC杭、SC杭、場所打ち杭、鋼管ソイルセメント杭、SC杭+PHC杭、回転杭を用意しています。

・地層数は最大50層まで設定することが可能です。

・杭軸方向の断面変化を取扱うことができます。鋼管杭のとき、各断面の杭径を変えることができます。

・レベル2地震時照査は、橋脚,橋台(逆T式橋台/重力式橋台)の検討に対応しており、液状化が生じないケース,液状化が生じるケース,流動化が生じるケースいずれにも対応しています。

また、橋脚基部に生じる作用力(単柱橋脚時),またはフーチング下面中心の作用力(橋脚)を直接指定して照査することができます。

・橋脚および逆T式橋台のフーチング照査およびレベル2地震時照査に対応しています。連続フーチング (2,3柱式橋脚)の場合も照査することが可能です。

・負の周面摩擦力に対する検討を行うことができます。

・杭頭接合部の計算を行うことができます。

・EQ無し、EQ有りおよび固有周期算定用の地盤ばね定数を算出することができます。

- ・フーチング根入れ部の水平抵抗を考慮した杭基礎の計算が可能です。
- ・斜杭を考慮することができます。

・杭突出部に流水圧、動水圧、慣性力の水平荷重を考慮することができます(永続・変動作用)。

また、杭体に作用する任意荷重(水平方向の分布荷重,集中荷重)を考慮することができます(レベル2地震時含む)

・フーチング上の任意荷重を考慮することができます。

・軸力変動による偶発作用(レベル2地震時照査)に対応しています。

・フーチング形状、柱下端作用力からフーチング下面中心作用力を計算することができます(永続・変動作用)

・杭列数は、最大100列まで設定することができます。

・弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(形状,材料,作用力等)を読み込むことができます。

・弊社「フーチングの設計計算」との連動用XMLファイルのエクスポートに対応。

鋼管矢板基礎

「道路橋示方書・同解説 IV下部構造編, V耐震設計編(社)日本道路協会」に規定されている道路橋の井筒型鋼管矢板 基礎の設計計算を支援します。

構造形式	井筒型鋼管矢板基礎		
施工方式	仮締切り兼用方式		
	円形		
平面形状	小判形		
	矩形		
	打込み工法		
鋼管矢板の施工工法	中堀り工法	最終打撃方式	
		セメントミルク噴出攪拌方式	

ケーソン基礎

「道路橋示方書・同解説 IV下部構造編, V耐震設計編(社)日本道路協会」に準拠したケーソン基礎の設計計算を支援し ます。サポートしている計算範囲は以下のとおりです。

施工法		止水壁ケーソン方式				
		ピアケーソン方式				
	オープンケーソン	止水壁方式				
	本中彩西	オープン				
	元夫咧叫	ニューマチック				
	円形	隔壁数 ≦ 1(2方向)				
平面形状	小判形	隔壁数 ≦ 5 (1方向)				
	矩形	隔壁数 ≦ 5(2方向)				

	項目	永続変動作用	偶発作用
	地盤反力係数	0	0
F 1 1 1	許容支持力度	0	-
	大和日 大和日次和日 地盤反力係数 ○ 許容支持力度 ○ 地盤反力度の上限値 ○ 作用力集計 ○ 基礎本体剛性 ○ 断面力,地盤反力度および変位 ○ 防面力,地盤反力度および変位 ○ 開整大平方向 ○ 側壁公直方向 ○ 開整 ○ 頂版 ○ 月取 ○ 月前 ○ 日本 ○ 月前 ○ 日本 ○ 日本 ○ 日本 ○	0	
安定計算	作用力集計	0	0
	基礎本体剛性	0	0
	断面力, 地盤反力度および変位	0	0
	応答塑性率照査	-	0
	側壁水平方向	0	0
	側壁鉛直方向	0	0
	隔壁	0	-
	頂版	0	0
	中国語の学校教会の学校教会の学校教会の学校教会の学校教会学校教会学校教会学校教会学校教会学校教会学校教会学校教会学校教会学校教会	0	0
如廿斗笛	頂版と側壁連結部	0	0
即州計昇	パラペット	0	-
	作業室天井スラブ	0	0
	刃口	0	-
	吊桁	0	-
	2次応力	0	-
	底版(オープンケーソン)	0	-
沈下計算		C)
基礎バネ	固有周期算出に用いる地盤バネ定 数	C)

橋脚基礎のレベル2地震時照査において、柱基部に生じる作用力を直接指定して照査することができます。

弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(水の単位重量,形状,作用力,設計水平震度等)を読み込む ことができます。

地中連壁基礎

「道路橋示方書・同解説 IV下部構造編, V耐震設計編(社)日本道路協会」に準拠した地中連続壁基礎の設計計算を支援 します。サポートしている計算範囲は以下のとおりです。

平面形状	矩形	壁隔数 ≦ 5(2方	5向)	
	項目	永続変動作用	偶発作用	
	地盤反力係数	0	0	
	許容支持力度	0	-	
	地盤反力度の上限値	0	0	
安定計算	作用力集計	0	0	
	基礎本体剛性	0	0	
	断面力, 地盤反力度および変位	0	0	
	応答塑性率照査	-	0	
	側壁水平方向	0	0	
ぶ 材計 笛	側壁鉛直方向	0	0	
마까미 开	頂版	0	0	
	頂版と側壁連結部	0	-	
基礎バネ	固有周期算出に用いる地盤バネ定数	()	

橋脚基礎のレベル2地震時照査において、柱基部に生じる作用力を直接指定して照査することができます。 弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(水の単位重量,形状,作用力,設計水平震度等)を読み込む ことができます。

直接基礎

「道路橋示方書・同解説 IV下部構造編(社)日本道路協会」(以下、道示IVと略します)に準拠して、直接基礎の支持力計 算を行います。

水平地盤の基礎

- ■荷重の偏心傾斜を考慮した鉛直支持力算出
- ・荷重の方向が1方向(道示IV)
- ■安定計算 滑動, 転倒, 地盤反力度の照査 (道示IV)
- ■基礎底面形状の指定(長方形/帯状/円形/小判形)
- ■橋脚フーチングの永続作用/変動作用および偶発作用

■固有周期算定に用いる地盤ばね定数の算出

液状化の判定

「道路橋示方書・同解説V. 耐震設計編(社)日本道路協会」に準拠して、液状化の判定を行います。

■液状化の判定

■土質定数の低減係数の計算

■流動化が生じる場合の流動力の計算

(4) 計算書作成

設計条件、計算結果を図表混じりでプリンタに出力します。計算結果は、計算書として利用できる書式でプリンタに出力します。このとき、必要な部分だけを出力できるように出力項目が細分化されています。

4 適用基準および参考文献

適用基準

道路橋示方書 |共通編 平成29年11月 日本道路協会 道路橋示方書 IIIコンクリート橋・コンクリート部材編 平成29年11月 日本道路協会 道路橋示方書 IV下部構造編 平成29年11月 日本道路協会 道路橋示方書 V耐震設計編 平成29年11月 日本道路協会 杭基礎設計便覧 令和2年9月 日本道路協会 鋼管矢板基礎設計施工便覧 令和5年2月 日本道路協会

参考文献

道路橋の耐震設計に関する資料 平成9年3月日本道路協会 平成29年道路橋示方書に基づく道路橋の設計計算例平成30年6月公益社団法人日本道路協会 場所打ちコンクリート杭の鉄筋かご無溶接工法 設計・施工に関するガイドライン日本基礎建設協会 先端建設技術・技術審査証明報告書 ハイスペックマイクロパイル工法 2020年9月

ハイスペックマイクロパイル工法の詳細については、下記にお問い合わせください。

 【正】日本基礎技術株式会社 技術本部 Tel:03-5365-2500
 【副】株式会社大林組 技術研究所 Tel:04-2495-1015

5 バージョン及び改良点

【最新版】(Ver.8.0.0) 2024.8 (Suite版 Ver.7.0.0相当)

■要望対応

(1)杭基礎:偶発作用の作用力直接指定において、地震動タイプごとに異なる鉛直力を指定できるようにしました。

また、方向毎に直接指定を行った場合、方向毎に異なる鉛直反力での検討に対応しました。

(2)杭基礎:偶発作用の断面変化位置における杭体塑性化チェック機能を追加しました。

(3)杭基礎:傾斜地盤を考慮した杭長自動設定機能を追加しました。

(4)杭基礎:偶発作用時の荷重変位曲線ステップ数を指定できるようにしました。

(5)杭基礎: 偶発作用時のせん断力耐力照査(杭基礎全体)を拡張しました。

(6)杭基礎:橋台杭基礎連動(竪壁保耐)時の偶発作用浮力WF',UP,Wsの初期値を改善しました。

(7)杭基礎:杭の断面変化位置の出力ケースの荷重ケース情報を保存するように改善しました。

(8)杭基礎:場所打ち杭で杭頭接合部画面を確定する場合、杭体主鉄筋と杭頭補強鉄筋をチェックするように改善しました。

(9)杭基礎:偶発作用時の基礎の塑性化スイッチの表示方法を改善しました。

(10)杭基礎:「計算条件」-「設計条件」-「群杭」 画面を設け、群杭関連入力を整理・表示するようにしました。

(11)杭基礎,直接基礎:フーチング主鉄筋の詳細配置の入力制限を緩和しました。

(12)杭基礎: 偶発作用 計算条件②のk2hまで考慮するスイッチの初期値の取り扱いを変更しました。

(13)杭基礎、鋼管矢板基礎、ケーソン基礎、地中連壁基礎:レベル2地震動の低減係数DEが全層1.0の時でも、液状化無視・ 考慮の同時計算ができるように改善しました。

(14)杭基礎:基礎杭計算結果一覧表にマイクロパイル杭の材質情報等を追加しました。

(15)杭基礎:設計条件の計算書表記(PHC杭のスパイラル鉄筋を考慮するか否か情報)を改善しました。

(16)杭基礎:X方向連続フーチング張出部のL2底版断面照査において、X方向のテーパーを考慮した断面高でMydの算出す るようにしました。

(17)杭基礎: PHC杭の杭頭カットオフ照査の計算書に、杭体内補強筋の情報を出力するように改善しました。

(18)直接基礎:基礎ばねの計算値kv及びksを小数点以下2桁保持するように拡張しました。

(19)設計調書:フォントサイズのデフォルトを調整しました。

(20)設計調書:各方向毎に危険となるケースごとの表示、出力時の方向を選択できるように改善しました。

(21)杭基礎:薄層支持層の自動計算において、杭先端~固化部長先端(根固部長先端)を考慮できるように改善しました。

(22)杭基礎,直接基礎:フーチングの最小鉄筋量照査の記号MuをMucに変更しました。

■不具合対応

(1) 杭基礎:千鳥配置の場合にPHC杭のカットオフ照査が行われない不具合を修正しました。

(2)ケーソン基礎: 頂版支持部の所要鉄筋量計算に用いる σsa ミスを修正しました。

(3)ケーソン基礎: 頂版と側壁連結部の照査において、Myの値が正しく算出されない不具合を修正しました。

(4)杭基礎:薄層支持杭の先端支持力度qd'が軸方向ばね定数kv算定時のRup等に反映されない不具合を修正しました。

(5)設計調書:直接基礎のフーチング配筋を配置入力とした場合の鉄筋情報ミスと最小鉄筋量の照査が常に空白で出力される不具合を修正しました。

(6)杭基礎:「杭本体」-「補強鉄筋鉄筋」 画面の鉄筋量表示ミスのケースがあり、これを修正しました。

6 フローチャート

17

第2章 操作ガイダンス

1 モデルを作成する

サンプルデータ「Pile_1.PFJ」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

基準値

コンクリート材質,鉄筋材質,荷重ケース等の共通データ、および各基礎の諸数値を設定します。本画面のデータは、基礎形式を変更しても引き継がれ、同じデータを用いることができます。

※計算書等に用いている各方向の名称は、「基準値」--「荷重 ケース」画面の方向名称で変更可能

(Q0-1参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q0-1

3D属性

メイン画面左下の3D図領域で右クリック「属性」より表示/非 表示が選択できます。 フローティング:単独ウインドウ表示 3D図領域:左下3D図領域内のみの表示

操作ガイダンスムービー

Youtubeへ操作手順を掲載しております。 基礎の設計・3D配筋 (部分係数法・H29道示対応) Ver.5操作 ガイダンスムービー(12:45) https://www.youtube.com/watch?v=-Zp4xvpF7Og

1-1 初期入力

1-2 基礎選択

1-3 地層

	- 947.64	36CH1	
a asor	760	4000 A 300 (350)	
비료 비료 비료 비료 비료 비료 비료 비료 ロート ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			
Control (149,248) Control (149,248	30 899602		

___ 左メニューから「地層」をダブルクリックします。

地層線「地層線」タブの値をそれぞれ下記のように入力しま す。

地層線

<地層数:3>を入力し、 層厚を下表のように入力します。

層厚(m)
10.500
8.000
2.000

— <適用>ボタンを押します。

⁻ ボーリングXMLデータインポートも可能です。

※「設計地盤面」タブの水位の入力で、設計上この水位を考慮 しないようにする場合 (Q1-2-11参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-2-11

土質データ①

層No	土質	平均N值	α・Eo EQ無し (kN∕㎡)	α・Eo EQ有り (kN∕㎡)	γt (kN∕m)	γsat (kN∕mٌ)
1	2	4.0	12800	25600	16.00	16.80
2	1	15.0	42000	84000	18.00	18.80
3	3	50.0	140000	280000	20.00	20.80

土質データ②

層No	f (kN∕m²)	fn (kN∕mႆ)	c (kN∕m²)	Φ (度)	νD	Vsi (m∕́s)	ED (kN∕mႆ)
1	60.0	60.0	60.0	0.00	0.50	158.74	78989
2	75.0	75.0	0.0	32.00	0.50	197.30	137278
3	120.0	120.0	0.0	36.00	0.50	294.72	340349

地層データ											×
中間点U(2)間層(m)	地層線 N	信 土質一	覧 計算条件	滚状化	低減得	8					
始点U 0.0 全幅 0.0	土質デー	90 土質デ	-90 (±W			· · ·					
sse ho loo loo						※杭基坦·新	增管矢板基础	10)33	_		
	層 No	支持層	先端地盤 N值	ord 0.N/m?	- 6.7	94 1/m²)	弹性 指定				
	1	0	0.0	0		0					
0	2	0	0.0	0		0					
-6	8	1	50.0	8100		0					
-10											
-15											
-20 2											
-25	CT (TO IN THE	0.192h		144 V T T	1022 Z. +1	1-01-0-2.40					
-30	1900-Cas	01140 -5			11/2/97/1	019-048					T I I
-35	支持	EQ#I (kN/m	2) EQ 2) (LN	相) /m²) (γt kN/m⊅)	(k.N/m²)	$(\!$	(m)	(k.N/m²)	(22) (22)	(jt.N/m²)
	1	1	10	100	15.00	15.00	0.0	1.00	0.0	0.00	D
-40	T stands / A										
-45	 第 1 1	重量γsat	○ 水中重:	£γ'							
-sa.	最大周囲	摩擦力推定力	rite								
Max 縮小 STD 拡大 Auto Icm 18cm 1m 即除	(● N/Ē	○ 粘着力	le Cmin/,	N値, 粘着	力c)	₩ N<82	te値から推測		N<5の砂質:	ElはN値か	ら推定
qd : 0 ~ 989999	ボーリン	ジ文換用デー	タインボート			1	6633	-	witz	🗙 REW	? \#7"B

土質データ③

層No	支持層	先端地盤 N値	q d (kN∕mႆ)	qu (kN∕mႆ)	弾性指定
1	0	0.0	0	0	
2	0	0.0	0	0	
3	1	50.0	8000	0	

1-4 計算条件

· · · · · · · · · · · · · · · · · · ·	対応) Vesili,Advanced頃) (抗動理) (更新)	- D X	
7代5日 亜単銀白 計算実行の オブジョ	010 AR78		
	Am Instants Connect Internet normality		
	947.64	36(4)	計笛冬性
• 12.17	平義18	植物直角为向(35向)	可并未正
0 II ((84			―― ナマニュー わら「計算タ 供」 ち グブル クリックレホナ
		GR XR(Y5R)	左アーユーから「計算余件」 をダ ブルクリックしま 9。
			──「基本条件」タブを下記に従って選択します。
			一 · · · · · · · · · · · · · · · · · · ·
			/ / / / / / / / / / / / / / / / / / /
			▶ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
			│ <対免構造物・極期>
	1		
			<杭基礎設計便覧の適用基準:令和2年9月>にチェック

: 算条件			×
基本条件 <u>設計条件 入力条件</u>			
基本条件			
照查対象	● 新設		
対象構造物	○ 橋脚	○ 逆T式橋台 ○ 重力式橋台	
杭基礎設計便覧の適用基準	▼ 令和2年9月		
永続/変動作用			
安定計算の計算方法	○ 2)欠元解析	○ 2.5次元解析	
液状化の影響	▶ 無視	□ 考虑	
作用力の指定方法	@ 入力	○ 自動計算	
杭頭接合部の計算	○ する	 しない 区 コンクリート照査を省略する 	
フーチング前面水平抵抗	○ 考慮	☞ 無規	
フーチング照査	() する		
偶発作用			=
安定計算	○ する	C しない	
フーチング前面水平抵抗	○ 考慮	☞ 無視	
フーチング照査	 (주장) 	C Utali	
特殊設計			
■ 斜面の傾斜を考慮した地盤は	ねの低減を行う		
構合設計時の計算条件/土匠の作 計算方向 C V方向 C Xd	用方向 すう 荷重の向	5 €† C⊥ C← €→	
		タイトル、コンントの設定 🖌 確定 🗶 取消 🤶 ペルブ ()	Э

土質データ③

「土質データ③」タブに切り替え、下表に従って値を入力します。

最後に「確定」ボタンを押します。

※「土質データ③」の支持層で設定する先端地盤N値の扱い (Q1-2-1参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-2-1

< NA型で設計便覧の適用基準・令和2年9月>にナェック ※PHC杭でプレボーリング工法の場合にR2杭基礎設計便覧 考慮の有無で、押込力・引抜力の制限値に違いが生じる理由 (Q1-3-9参照) https://www.forum8.co.ip/fag/win/foundation-b29-ga

https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-3-9

永続/変動作用

<安定計算の計算方法:2次元解析> <液状化の影響>選択できない状態です。 <作用力の指定方法:入力> <杭頭結合部の計算:しない> <フーチング前面水平抵抗:無視> <フーチング照査:しない>

偶発作用

<安定計算:する> <フーチング前面水平抵抗:無視> <フーチング照査:する>

特殊設計

選択できない状態です。

橋台設計時の計算条件/土圧の作用方向 選択できない状態です。

計算条件	×
基本条件 設計条件 入力条件	
	1
杭 押込力・引抜力 k値・Kv値 杭体照査 その他の条件 群杭	1
林路条件 で 爾族語	
林先端条件	
() 画定 () ビンター () ほね	
C PHCHL C SCHL C SCHL C SCHL	
C サレポーリング C 中間リ(センOトミルク) C 中間リ(コンクリート打設)	
C ハイスペックマイクロバイル	
○ 道示モデル	
 「 酒管ワイルセメント杭 	
タイトル、コントの設定 🖌 取消 ? へいて出	

and the state of t						
⊙ 支持杭	01	摩擦枕				
□ 摩擦杭も支 □ 摩擦杭で根	持杭同様の極限 入れ長が杭径の	表持力度 qdを考)25倍以上あるとお	度する F支持杭の λ iを用いる	λf 1.00		
-押込力の杭の有 ○ 無視	効 <u>重</u> 量 (• ;	考慮	○ 簡易式	引抜力の枕の有効重 ○ 無視	量 (• 考虑	
極限支持力度の	管出方法					
○計算	•	入力(地層データ)	0			
設計地盤面より ・ 無視	上の周面摩擦力 ○ :	考慮				
押込支持力の周 杭先端から	面摩擦力の控除 (* 1・D	(範囲(回転杭を開 ()2・D	K) C 入力 1000 m			
支持力の周面摩 杭朋から	擦力の控除範囲 © 1/β	Nプレボーリング:	E法の場合のみ) C 入力 0.000 m			
杭の降伏支持力	算定時の係数					[]]
	時力の係数 🗌	0.65				
降伏押込み支持	執力の係数 「	0.65				
降伏押込み支持 降伏引抜き支持						
降伏引抜き支持						

設計条件

「設計条件」タブに切り替え、下記に従って選択します。

杭頭条件

<剛結> ※旧基準にあった杭頭条件:ヒンジの選択がなくなった理由 (Q1-1-4参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-1-4

杭先端条件

<

</とンジ>

杭種

</場所打ち杭>

施工工法

選択できない状態です。

― ※杭基礎:コンクリート打設工法(中掘り杭工法)にも対応して います。

押込力·引抜力

「押込力・引抜力」タブに切り替え、下記に従って選択します。

杭の種類 <支持杭> 押込力の杭の有効重量 <考慮> 引抜力の杭の有効重量 <考慮> 極限支持力度の算出方法 <入力(地層データ)> 設計地盤面より上の周面摩擦力 <無視> 押込支持力の周面摩擦力の控除範囲(回転杭を除く) <先端杭から:1・D> 支持力の周面摩擦力の控除範囲(プレボーリング工法の場合の み) 選択できない状態です。 杭の降伏支持力算定時の係数 <降伏押込み支持力の係数:0.65> <降伏引抜き支持力の係数:0.65>

		18.9 0			
େ	れのす 8貫出位置 御笹中心 C 部	管外縁			
枕体 応:	のヤング係数比 力度照査に用いるヤング係数比	15.00			
枕期 ④ 秋 〇 秋	秋平力PH=0時の正曲げ、負曲に 枕頭曲げモーメントMと同じ向き(枕頭曲げモーメントMと同じ向き(「の扱い 符号)を正曲げ 符号)を負曲げ			
せん	断限界状態3の設定(PHC杭/	C+PHC杭のPHC部)-	e antru		
C t	せん助スパンの詳細計算をする ++ ())につい の 辞見計算をする	分割ビッチ 0.10	m		
Ct	せん断スパンを指定する 9.9	-			

____杭体照查

「杭体照査」タブに切り替え、下記に従って選択します。

【杭頭水平力PH=0時の正曲げ、負曲げの扱い】

杭頭モーメントMtと同じ向き(符号)を正曲げ∕負曲げとして 扱いかを選択してください。 <杭頭曲げモーメントMtと同じ向き(符号)を正曲げ>

※ここの杭頭モーメントMtは、下記で確認できます。

「安定計算(永続/変動作用)」-「杭頭反力・変位」画面の
MT

・「安定計算(永続/変動作用)」-「断面力図」画面の杭頭M

反力·制限値 断面力·制限値	 ○ 反力と制限値の比 ○ 反力と制限値の比 ○ 断面力と制限値の比 ○ 断面 	」と制限値 の差 i力と制限値 の差	
EQ無し/有り時の基礎 (* 計算しない)	またね の計算する 「 低淡係数DE巻	考慮する	
液状化の影響を考慮す で D+TH+EQ,D+EQ	「る組み合わせ〈永続/変動作用時〉 「© D+EQ		
負の周囲摩擦力 (*) 税許にない。 (*) 税許する	群誌としての角の原面増加力 SL体としての検討 私の有効産量 コンワント林の瞬時の前方向力 PicR板の技術に行った 読計地验面より上の原面増売力	 ご通用する ご行う ご 汚慮する ご 汚慮する ご σcoを汚慮する ご 汚慮する 	 ご 通用しない ご 通用しない ご 行わない ご 考慮しない ご す 恋しない ご す 恋を 恋しない ご 考慮しない

その他の条件

- 「その他の条件」タブに切り替え、下記に従って選択します。

断面二次モーメント 選択できない状態です。 計算値・制限値の抽出方法 <反力・制限値:反力と制限値の比> <断面力・制限値:断面力と制限値の比> EQ無し/有り時の基礎ばね <計算しない> 液状化の影響を考慮する組み合わせ(永続/変動作用時) 選択できない状態です。 負の周面摩擦力 <検討しない> 群杭としての押込み力に対する検討 <検討しない>

×方向 1.000	「Kill 前にも適用する	31日時時は、H298回元176編(1296)に20月1週8日45の米で考慮して計算9つにお。 307補正係数メルは考慮されません。	
第税としての押込 ● 検討しない ○ 検討する	み力に対する検討 一群枕の底面積AG の内部設定	の取扱いー 秋部分の面積 の 林部分を含む の 林部分は時代	
	C 直接指定	X方向描 0.000 (m) ※底面積AG= X方向幅×Y方向幅 Y方向描 0.000 (m) 杭本数 0 本	

群杭

「群杭」タブに切り替え、下記に従って選択します。

$k値の補正係数<math>\mu$

永続/変動作用時の計算において、杭中心間隔が小さく水平 地盤反力係数kH値を低減する場合に入力します。 α・Eo値から算出したkH値に乗じて計算します。 『基礎ばね計算にも適用する』をチェックすると、基礎ばね算 出用の水平地盤反力係数kH(a・Eoではなく動的変形係数 EDを用いて算出したkH)にも乗じます。 <全て1.000>

群杭としての押込み力に対する検討

R2杭基礎設計便覧4.1(p.228~)を参照し、 群杭としての押 込み力に対する検討を行かどうかを選択します。 <検討しない>

続/変動作用		
風崖	☞ 直接入力	○ 自動設定
水平方向地盤反力係数	○ 直接入力	○ 自動計算
植方向ばね定数	☞ 直接入力	○ 自動計算
押込力·引抜力	☞ 直接入力	○ 自動計算
作用力(自動計算時)	☞ 計算も入力も可	 自動計算のみ
抗頭接合計算の杭頭作用力	C 直接入力	☞ 安定計算結果を常に連動
発作用		
M- Ø	☞ 直接入力	○ 自動計算
押込み/引抜支持力の上限値	☞ 直接入力	○ 自動計算
地盤データ	☞ 直接入力	○ 自動計算
		自動計算

─ 入力条件 「入力条件」タブに切り替え、下記に従って選択します。

プログラム内部で自動計算するか、任意の値を直接入力するか を指定します。 <全て直接入力>

最後に「確定」ボタンを押します。

1-5 杭配置

Ref. Ker	- 30.41	36CH1	
6년(18)1 전쟁 전문(전) - 17월(5년) - 17월(5년)	760	45448 P.7.04007.040	
Bit Finite Partie 1.2. Matter Provide 1.2. Matter Provide 1.2. Matter Provide 1.2. Matter Provide 1.2. Matter Provide 1.2. Matter Matter 1.2. Matter Provide 1.2. Matter Provide 1.2.		68 .58(Y).40	

__ <mark>杭配置</mark> 左メニューから「杭配置」 をダブルクリックします。

杭配置

「杭配置」タブに切り替え、下表に従って値を入力します。

杭最小間隔 (m)	DP	3.050
杭縁端距離(m)	DLX	1.200
	DLY	1.200
杭列数	NX	3
	NY	3
杭間隔	WX	
	WY	

<配置タイプ:全配置>を選択します。

- 整形配置ボタンを押すと左側画面に反映されます。

🧱 杭配置	×_	―― 杭データ
<u>全代原</u> 全代原 全代原 全代原 全代原 全代原 2 な の 市 の こ の に ま の に ま の に ま の に た の に の こ の の に の こ の に の こ の に の こ の に の こ の に の こ の に の こ の に の こ の に の こ の に の こ の に の こ の こ の に の こ の こ の に の こ の こ の に の こ つ つ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ こ つ つ つ つ つ つ つ つ つ つ つ つ つ	客本条件 度数報 株式/室 水データ 度数代欠位量 登場代欠位量 登場代欠位量 登場代欠位量 登場代欠位量 支援兵力 構成の 市 日 市 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>「杭データ」タブに切り替え、下記に従って値を入力します。 場所打ち杭 <杭外径(m):1.2000> <設計杭長(m):19.90>と入力します。 ※鋼管ソイルセメント杭のとき、杭データ画面の設計杭長(杭 先端)は、鋼管の先端位置を入力します (Q1-2-8参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-2-8</td>	「杭データ」タブに切り替え、下記に従って値を入力します。 場所打ち杭 <杭外径(m):1.2000> <設計杭長(m):19.90>と入力します。 ※鋼管ソイルセメント杭のとき、杭データ画面の設計杭長(杭 先端)は、鋼管の先端位置を入力します (Q1-2-8参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-2-8
我計校長: 010~10080	(1000 (100) (1000 (10	「適用」ボタンを押します。
	× 基本条件 医振幅 林記版 林データ 「着食代"実位量 単切実暗 - 秋の水平実位の非際値 44	腐食代/変位量 「腐食代/変位量」タブに切り替え、下記に従って選択します。
全代選択 全代選択 全代選択 全代認済 米Cert(Shift'E专引) + ワンック、ドラッグで経営権の運貨 米Cort(Shift'E专引) + ワラッグで図が完成 米Eのジックで未満して満足の運動の加助性	武(立)和授 1530 (mm) は計算 安定の府何住後 1530 (mm) マロク府何住後 1420 (mm) マロクト 1420 (mm) は計算 マロクト 1420 (mm) についておりました。	 地盤の変形係数の推定方法 <標準貫入試験に加えて室内試験又は孔内水平載荷試験を行って求める場合> ※「腐食代/変位量」画面にて杭体照査(H29道示IV P.273)にある調査・解析係数を決定します (Q1-4-2参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa.

✓確定 ¥取消 ? ヘレレブ(B)

(Q1-4-2参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. . htm#q1-4-2

「dd計算」ボタンを押すと下記数値が自動入力されます。 杭の水平変位の制限値dd <変位の制限:15.00(mm)> <安定の耐荷性能:43.20(mm)>

最後に「確定」ボタンを押します。

1-6 材料

制限值dd:1.00 ~ 999.00

D R M R MAG-HOURE		laste.
· 초려 문서 · 전쟁 · 전쟁 · 전 조선 · 가 필요/카 · · · · · · · · · · · · · · · · · · ·	740	120771 (荷輪成為大時(C大時)
		6#39(12#0
-0 -9-5/3 (486) 140 -0 898/171 		

--- 材料 左メニューから「材料」をダブルクリックします。

その他

「その他」タブに切り替え、値を入力します。

上載土の単位重量

<上載土(湿潤) kN/mឺ:18.0> <上載土(飽和) kN/mឺ:18.8>

「確定」ボタンを押します。

1-7 杭体データ

HE SEC-FORK	λη <u>IFERINE</u> DOBRINE DRIVER ? NO CO		
5-0 XM	- 347.64	36041	
地理 秋島紀 ● 計量品計 ● 秋田: ● 秋田: ● 秋田: ● 秋田:	7 6 0	动响应 内 为阿(C方用)	
(74): [7:43442 (75): [7:45]		683.54(Y340	
- 9 安安21 (48年14日 - 9 フージン (48年14日 - 9 景和3月) - 9 景和3月) 浄地			

 杭体データ
 _ 左メニューから「杭体データ」をダブルクリックします。

ここでの変更はない為、確認後「確定」ボタンを押します。

htm#q1-2-3

※場所打ち杭におけるコンクリートの降伏応力度σcyの算出 根拠 (Q1-2-3参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa.

1-8 予備計算・結果確認

	2041	34CA1
5-022-001 5-027 5-	T & (1)	4044879789(c536)
 フーレブタビス フーレブタビス フーレブタビス マーレブタビス マーレブクビス マーレブク マ	<u></u>	6#34(1284)

___ 予備計算・結果確認 左メニューから「予備計算・結果確認」 をダブルクリックしま す。

子信	計算結果確認									×
Г					杭データ 層厚 kh個	t Kvfð	1 押込力/引抜力	1		
					杭外徑	D1	1.2000	m		
	~	~	-		杭内径	D2	0.0000	m		
					設計杭長	L1	19.90	m		
		\bigcirc			断面二次モーメント	I	0.101787602	m4		
					ヤング係数(*107)	Е	2.50	kN/m ^e		
					特性值	β	0.170	m-1		
					外側時代		0.110	mm		
		\cup			内側鉄代			mm		
					獨管内徑	D3		m		
		杭タイプ	출국 1 <u>·</u>	1_						
					a	計算	1 Mate	🗙 Arci	â ? N	17°(H)

予備計算結果の確認を行います。

ここでは初期値から値を変更しませんので、そのまま「確定」 ボタンを押します。

1-9 フーチング形状

- フーチング形状 左メニューから「フーチング形状」をダブルクリックします。

	記号	単位:(m)
フーチング上面寸法	L1	8.500
フーチング天端偏心量	еу	0.000
フーチング下面寸法	LY	8.500
フーチング上面寸法	B1	8.500
フーチング天端偏心量	ex	0.000
フーチング下面寸法	LX	8.500
上載土(レベル1用)	H1	0.500
フーチングハンチ部の高さ	H2	0.000
フーチング下端部の高さ	Н3	2.200

脚柱形状寸法

<柱本数:1>と入力し、 <矩形>を選択します。 下表に従って入力してください。

	柱寸	柱寸法(m)		置(m)
柱	а	b	х	у
1	4.000	2.500	0.000	
2				0.000
3				

- 「適用」 ボタンを押すと左側画面へ反映されます。

最後に「確定」ボタンを押します。

1-10 基準値

基準値

左メニューから「基準値」をダブルクリックします。

※基準値の設定を行っていない場合、次の項目「作用力」での 設定ができません。

「荷重ケース」タブに切り替え下表に従って値を入力します。

※荷重タイプはプルダウンから変更できます。
No.5以降は<荷重タイプD・空欄・空欄>に設定します。
※不要な荷重名称、荷重略称はセルをクリックした状態で「Back space」キーで削除します。

	荷重タイプ	荷重名称	荷重略称
1	D	D	D
2	1.0(D+L)	1.0(D+L)	1.0(D+L)
3	D+L	D+L	D+L
4	D+EQ	D+EQ	D+EQ

※基準値では、下記設定が可能です。 コンクリート材質、鉄筋材質,荷重ケース等の共通データ、および各基礎の諸数値を設定します。 本画面のデータは、基礎形式を変更しても引き継がれ、同じ データを用いることができます。

- 「開く」 ボタンにより、 基礎データファイル (*.PFJ) から、 基準 値データのみを抽出して読み込むことができます。

基準値データを変更した場合、関連する照査の再計算を行う 必要があります。必ず、再計算を行ってください。

1-11 作用力

<mark>作用力</mark> 左メニューから「作用力」をダブルクリックします。

1作用力				- 🗆 🗙
冰条件 荷加	重ケースの設定 作用力			
方向X方向	1)			
No 参照 番号	荷重タイプ	荷重名称	荷重略称	▲ 角の周五摩擦力 検討する荷重ケ ニフ垂巻歩入力
1 1	D	D	D	してのされ、
2 2		1.0(D+L)	1.0(D+L)	参照番号ではな (原東ケーフ南
8 8	D+L	D+L	D+L	着板でしてくた
4 4	D+EQ	D+EQ	D+EQ	
5				0 🛬
6				
1				
8				
9				~
「重ケーステ	ーブル〈「基準値」-「荷重ケース」を参照)			
1	D	D	D	^
2	1.0(D+L)	1.0(D+L)	1.0(D+L)	
3	D+L	D+L	D+L	
ŧ	D+EQ	D+EQ	D+EQ	
5	D			
6	D			
7	D			
8	D			
9	D			×
	荷重ケース:1~120	水位運動	🗐 ft 🗐 🖌 📽 😰	🗙 10:58 📔 ? ^6.7'(H)

___荷重ケースの設定

「荷重ケースの設定」タブに切り替えを入力します。

※「参照番号」に数字を入力することで、基準値で設定した荷 重タイプ・名称・略称が自動で設定されます。

タブを切り替え、「Y方向タブ」、「X方向タブ」どちらも下記に 従い入力します。

No	参照番号	荷重タイプ	荷重名称	荷重略称
1	1	D	D	D
2	2	1.0(D+L)	1.0(D+L)	1.0(D+L)
3	3	D+L	D+L	D+L
4	4	D+EQ	D+EQ D+EQ	

※作用力画面で負の周面摩擦力を検討するケースを方向毎に 指定します

(Q2-8-1参照)

https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q2-8-1

1	作用力							-		×
跡	条件 7	育重ケースの設定 作	用力							
*8	分條数	「考慮「後」の数値を読	始定してください。							
YS	向 X方	तम्								
No	参照 番号	荷重タイプ	荷重名称	給直力 V 0kN0	水平力 H (kN)	モーメント M (kNrm)				
1	1	D	D	15548.96	0.00	0.00				
2	2	1.0(D+L)	1.0(D+L)	17358.53	0.00	0.00				
3	3	D+L	D+L	18736.46	0.00	0.00				
4	4	D+EQ	D+EQ	15548.95	3571.91	28516.72				
	ŧ-;	C/FM:-9000000000000000000000000000000000000	~ 90000000.00		水位速的	目計算	✔ 稽定	🗙 40:6	? 🗤	7"(H)

___ 作用力

「作用力」タブに切り替え、下表に従って「Y方向タブ」、「X方 向タブ」の値を入力します。

「確定」ボタンを押します。

Y方向タブ

No	参照 番号	荷重タイプ	荷重名称	鉛直力 V(kN)	水平力 H(kN)	モーメント M(kN・m)
1	1	D	D	15548.96	0.00	0.00
2	2	1.0(D+L)	1.0(D+L)	17358.53	0.00	0.00
3	3	D+L	D+L	18736.46	0.00	0.00
4	4	D+EQ	D+EQ	15548.96	3571.91	28516.72

X方向タブ

No	参照 番号	荷重タイプ	荷重名称	鉛直力 V(kN)	水平力 H(kN)	モーメント M(kN・m)
1	1	D	D	15548.96	0.00	0.00
2	2	1.0(D+L)	1.0(D+L)	17358.53	0.00	0.00
3	3	D+L	D+L	18736.46	0.00	0.00
4	4	D+EQ	D+EQ	15548.96	2952.41	26156.32

1-12 杭体

下記に従って「共通データ」タブの値を入力します。

主鉄筋かぶり

<かぶり1段目(mm):160.0> <かぶり2段目(mm):250.0> <かぶり3段目(mm):350.0>

帯鉄筋

<区間数:2>と入力し <有効長を直接指定する>にチェックを入れます。

区間	帯鉄筋変 化位置(m)	鉄筋径 (mm)	鉄筋量Aw (c㎡)	間隔s (cm)	有効長d (cm)
1	0.000	19	5.730	15.0	88.0
2	2.400	19	5.730	30.0	88.0
3					

使用鉄筋

「使用鉄筋」タブに切り替え、下表に従って値を入力します。

主鉄筋

<断面数:1>と入力します。

断面	断面変化 位置(m)	段	経 (mm)	本数	ピッチ (mm)	鉄筋量 (c㎡)
		1	32	22	126	174.724
1	0.000	2	0	0	0	0.000
		3	0	0	0	0.000
2		1				
Z		2				
2		1				
3		2				

最後に「確定」ボタンを押します。

1-13 フーチング設計

- <mark>フーチング設計</mark> 左メニューから「フーチング設計」をダブルクリックします。

配筋

下表に従い、Y方向、X方向それぞれ入力します。

١	(方向				
		段	かぶり (mm)	径	ピッチ (mm)
	⊢ /Bil	1	150	D25	125
	上頂	2			
	下個	1	200	D32	125
	ド側	2			

径	D19
幅1(m)当たりの本数	2.000
間隔(cm)	50.00
版のとき用いる本数	0.000

X方向

	段	かぶり (mm)	径	ピッチ (mm)
L /Ail	1	150	D29	250
上彻	2			
一一回	1	200	D35	250
下頂	2			

径	D19
幅1(m)当たりの本数	2.000
間隔(cm)	50.00
版のとき用いる本数	0.000

「確定」ボタンを押します。

連続フーチングの柱間照査 C する C しない	フーチング約合鉄筋量算出時の鉄筋の取扱い (* 単鉄筋 (* 複鉄筋
連続フーチングの柱間のせん断配査 でするくせん断えいシー柱部の1/2) でするくせん断えいシー柱部の1/2) でするくせん断えいシの影響を考慮しない) くしない 水平方向特殊きせん断配書	
	せん想服査における服査位量の集中符重の刺扱い

※捕捉

- 「フーチング設計」- 「計算条件」- 「偶発作用」 タブ

※杭基礎:偶発作用時の水平押し抜きせん断照査に対応してい ます。

水平方向押抜きせん断照査

水平方向の押抜きせん断照査を行う場合は「する」を指定しま す。「する」を指定すると「照査対象杭範囲」「有効幅が重なる 場合の取扱い」「考慮する下側鉄筋範囲」が有効になります。

照査対象杭範囲(最端部杭座標からの離れ)

照査対象とする杭の特定範囲を、底版端部に最も近い杭位置 (杭中心)からの距離を杭径の倍率で指定します。

通常は最もフーチング端部に近い杭となりますが、施工誤差が 有る場合や千鳥配置で照査させる場合など、最もフーチング端 部に近い杭以外も照査範囲に含める場合に本設定で調整して ください。

なお0.000とすると最もフーチング緑端に近い杭座標のみが対象となります(計算方向に平行して設置されている場合は同軸上では最もフーチング緑端に近いものだけが対象となります)。なお杭径が複数ある場合は最も大きな杭径を用いて範囲を決定します。

「有効幅が」最終作用力に達するまでに一度降伏状態となり、 その後非降伏状態となり最終作用力載荷時では降伏となって いない場合に、基礎が降伏したと判定するか、基礎は降伏して いないと判定するかを指定します。

有効幅が重なる場合の取扱い

隣接する杭の有効幅が重なった場合の取扱いを指定します。 重なる範囲をそのまま計算に用いる場合は、「重なりを無視す る」を指定します。重なった部分を等分配する場合は「重なり を考慮する」を指定します。

有効幅は、その幅内にある底版鉄筋のカウントに用います。 重なりを考慮する場合で重なりの境界線上に鉄筋が有る場合 は、断面積の1/2ずつを考慮します。

端部杭の有効幅の広がりの取扱い

端部にある杭の照査に用いる鉄筋をカウントする範囲の取り 方を指定します。

「0.5・Dとする」または「端部または1・Dとする」から選択します。「0.5・Dとする」を指定すると、

杭のフーチング緑端側の範囲を杭中心から杭径の0.5倍までとします。

「端部または1・Dとする」を指定すると、杭のフーチング縁端 側の範囲を杭中心から杭径までとフーチング縁端の短い方とし ます。

なお杭のフーチング中央側の範囲は、杭中心から1・Dとしま す。

※有効幅が重なる場合の処理は、「有効幅が重なる場合の取扱い」スイッチの設定に従います。

考慮する底版下面鉄筋範囲

押抜きせん断耐力の算出に用いるフーチング下面鉄筋の範囲 を指定します。フーチング下面鉄筋が2段以上ある場合に、最 下段から何段までを考慮するかを「最下段のみ」「全て」「指定 する」から選択します。

「全て」を指定すると下側鉄筋に配筋されている全鉄筋が対象 となります。「指定する」を指定した場合は右の段指定が有効 になり、段数を指定できるようになります。

なお下側鉄筋が1段しか配筋されていない場合はいずれを選択 しても同じとなります(「指定する」で2段としても実際に配筋 されている段数までしか考慮できません)。

1-14 偶発作用-基本条件

基本条件 左メニューから「基本条件」をダブルクリックします。

「条件 用力を指定して偶発作用を行 発作用(計算方法)	7) (L	ない C 柱基部断面 C 柱基部断面 C 柱基部断面 次元解析 C 2.5次元	カ(両方向) Cフー カ(Y方向のみ) Cフー カ(V方向のみ) Cフー 時折	チング作用力(両方向) チング下面作用力(Y方向 チング下面作用力(X方向	1のみ) 1のみ)
	 レ ×方向 無視 □ 次代1 □ タイフ 視 □ 洋方² ○ 正方向 ↑ (○ 正方向 → (9 比考慮 <u>「 流動化</u> 考慮 ○ 負方向 ↓ ○ 負方向 ←	杭体水平荷重 フーチング上の任意 □ フ 分書徴	○ なし ○ あり 荷重 ーチング照査 □ 安田 1000) E計算
间 X方向 [正方	·向 ↑	自力	5 L	
	タイプI		タイプI	タイプエ	
Cz• kho	1.3000	1.7500	0.0100	0.0100	
khp	0.74	0.74	0.01	0.01	
khg	0.54	0.70	0.01	0.01	
khN	0.673	0.673	0.001	0.001	
橋脚の終局水平耐力	-	-	大きな余裕がある	大きな余裕がある	
2. この設性化(液無/浮無)	期待しない	期待しない	期待しない	期待しない	
5礎の塑性化(液無/浮有)	期待しない	期待しない	期待しない	期待しない	
。礎の塑性化G液有/浮無)	期待しない	期待しない	期待しない	期待しない	
。礎の塑性化(液有/浮有)	期待しない	期待しない	期待しない	期待しない	
Wu (kN)	6510.00	6510.00	0.00	0.00	

基本条件(共通)

計算条件を下記に従って入力します。
 <計算条件:液状化考慮>のチェックを外します。
 <水位:浮力無視>にチェックを入れます。
 <分割数:1000>

下表に従い、Y方向タブ、X方向タブを入力します。

Y方向タブ

	Œ	方向↑
	タイプI	タイプⅡ
Cz•kho	1.3000	1.7500
khp	0.74	0.74
khg	0.54	0.70
khN	0.673	0.673
橋脚の終局水平耐力	-	-
基礎の塑性化(液無/浮無)	期待しない	期待しない
基礎の塑性化(液無/浮有)	期待しない	期待しない
基礎の塑性化(液有/浮無)	期待しない	期待しない
基礎の塑性化(液有/浮有)	期待しない	期待しない
Wu(kN)	6510.00	6510.00
hu(m)	12.200	

X方向タブ

	Œ	方向→
	タイプI	タイプⅡ
Cz•kho	1.3000	1.7500
khp	1.51	1.51
khg	0.54	0.70
khN	1.373	1.373
橋脚の終局水平耐力	-	-
基礎の塑性化(液無/浮無)	期待しない	期待しない
基礎の塑性化(液無/浮有)	期待しない	期待しない
基礎の塑性化(液有/浮無)	期待しない	期待しない
基礎の塑性化(液有/浮有)	期待しない	期待しない
Wu(kN)	4095.00	4095.00
hu(m)	17.200	

Rd (kN)	7318.50					浮力無視	浮力考慮
Wp (kN)	3562.66			鉛直力算出用	水位 (m)	0.000	0.000
hp (m)	8.030	※hp: 底板下面からWp 重心位置までの高さ(m) ※hF: 底版下面からWF		Up (kN	0	0.00	0.00
上載土厚(m)	2.700			Ws (kN)		588.26	588.26
WF (kN)	4088.99			WF'(kN)		4088.99	4088.99
hF (m)	1.100	重心位置ま	での高さ(m)	Vo (kN)		15558.41	15558.41
上載土の慣性力)を考慮する(作用力計算時	1)	Vo'(kN	0		
(位は標高,上載	土厚はフーチ	シグ下面から	うの厚さ	予備計算用水	<位 (m)	0.000	0.000
水位(EQ有り)	 C 鉛直が 	力算出用水位	と同じ	Vo', H	id', Md' 連動	水位高,上載土厚	連動 作用力計算
17 118 AE (1400 1724	′ I						
		浮力無	無視		洋力:	与虑	
	۲¢	浮力類 河向	無視 X方向		浮力: 5向	考慮 ×方向	
Hd (k.N)	Yt	浮力類 7向 0.00	無視 ×方向 0.00		浮力: 5向 0.00	考慮 ×方向 0.00	
Hd (kN) Md (kN•m)	YA	浮力兼 5向 0.00 0.00	NULL NULL NULL NULL NULL NULL NULL NULL		洋力: 5向 0.00 0.00	考慮 ×方向 0.00 0.00	
Hd (kN) Md (kN+m) Hd' (kN)	Y7	浮力類 7向 0.00 0.00	無視 ×方向 0.00 0.00 		洋力: 51向 0.00 0.00	考慮 ×方向 0.00 	
Hd (kN) Md (kN·m) Hd' (kN) Md' (kN·m)		浮力策 7向 0.00 0.00 	無規 ×方向 0.00 0.00 		浮力: 5向 0.00 0.00 	考慮 ×方向 0.00 	
Hd (kN) Md (kN・m) Hd' (kN) Md' (kN・m) フーチング下面#	<u> </u>	洋力美 5/向 0.00 	#親 次方向 000 0.00 		洋力: 5向 0.00 0.00 	考慮 ×方向 000 000 Y方向 ×方向 ▲大 へ	

基本条件(杭基礎)

- 「基本条件(杭基礎)」タブに切り替え、下表に従って値を入力 します。

Rd(kN)	7318.50
Wp(kN)	3562.66
hp(m)	8.030
上載土厚(m)	2.700
WF(kN)	4088.99
hF(m)	1.100

─「作用力計算」ボタンを押すことで画面右上の表は、自動的に 入力されます。

 発作用(基本条件)	×
基本条件(共通) 基本条件(杭基礎) 計算条件① 計算条件②	計算条件③
基礎に主たる塑性化を考慮する場合の設計	
基礎に主たる塑性化を考慮するか(基礎が降伏に達したとき、応	答望性率の照査を行うか否か)を指定します。
□ 「「「補助に主たる塑性化が生じるとき、基礎に主たる塑性化を考	度しない。 ● 免疫橋のとき、基礎に主たる塑性化を考慮しない
主たる塑性化が生じる部材の利定 ・ khp C khN	免疫構造とみなす方向 🔽 Y方向 🗹 X方向
生たる望住しい主しる部門は、パウように利用します。 khyE=khp・・・ 橋脚基部に主たる塑性化が生じる	※広葉期性本服素水行為各位の場合に適田
khyF <khp・・・基礎〜地盤系に主たる塑性化が生じる< td=""><td>× 28 2 1 + 2 1 1 5 2 1 1 5 2 1 1 0 2 1</td></khp・・・基礎〜地盤系に主たる塑性化が生じる<>	× 28 2 1 + 2 1 1 5 2 1 1 5 2 1 1 0 2 1
- 作用力直接指定(社会認知識力の入力))4の全作用力に対するよ で 初期1用力を含めよい C 初期作用力を含める	期時を用力(H*, M*)の取扱い
作用力直接指定時の路代制定の取扱い	
 途中降伏は移伏とする 最終作用力時で判定する 	
●料物に対する受動土圧係額KEP,地盤反力度の上閉値phuの取 で利用を考慮しない	J (),)
	▲ 爆定 ● 水戸(円)

____ 計算条件②

「計算条件②」タブに切り替えます。

基礎に主たる塑性化を考慮する場合の設計を下記に従って入 力します。 <橋脚に主たる塑性化が生じるとき、基礎に主たる塑性化を考 慮しない>のチェックを外します。 <主たる塑性化が生じる部材の判定:khp>

最後に「確定」ボタンを押します。

1-15 偶発作用-杭本体

杭本体 左メニューから「杭本体」をダブルクリックします。

Μ-φ

「M-φ」タブに切り替え、下表に従って曲げモーメント、曲率タ ブの値を設定します。

「計算」 ボタンを押すことで、曲げモーメントタブ、曲率タブの 表が自動的に入力されます。

その他

「その他」タブに切り替え、数値を確認します。

- <杭体単位長さ重量kN/m:27.71>

支持力上限值(kN/本)

<押込み支持力の上限値:13775> <引抜き抵抗力の上限値(浮力無視):-5601>

最後に「確定」ボタンを押します。
1-16 偶発作用-地盤データ

地盤データ 左メニューから「地盤データ」をダブルクリックします。

盤データ										×
上載荷	重 (浮力無視	>	kN/m²		48.60	杭間隔	÷杭径 新設杭(Y方向)	2.542	
	(浮力考慮)	>	kN/m²				新設杭(X方向)	2.542	
載荷重 ○ 地盤	算出用の上載土 面〈EQ有り〉	厚の指定- ・ 上載	土厚		目計算	,				
力無視	1	l								1
そ働土!	E強度 水平地	醫反力係對	t]							-1
No	層種	層厚 (m)	(kN	c /m²)	¢ (度)	γ (kN/m³)	層上端op (kN/m²)	層下端pp (kN/m²)	着目点ビッチ (m)	
1	粘性土	10.500	6	0.00	0.00	7.00	168.60	242.10	0.200	
2	砂質土	8.000		0.00	32.00	9.00	472.85	751.69	0.200	
3	砂礫土	1.400		0.00	36.00	11.00	927.39	1000.97	0.200	
246 英联邦	· 24-16 年 11-末小、1	7 #19898/	の着日占ビ	2.7FI1##	前径 / 4大日安		新大わでいます			
71.565 1083	2011303 <u>9</u> 0-00501	C. 9408880		.99184	UE/ #20 g	109-200-80	ancen i cular y			
									¥	
					_		1	an: ¥ B		н

[出用の上載土厚の指定] 『>にチェックを入れます。 | ボタンを押します。 浮力無視)に自動的に値が入力されます。

渡

」ボタンを押すと「受働土圧強度」と「水平地盤反 値が自動的に入力されます。

データ					×
上載荷重	(浮力無視)	kN/m²	48.60	杭間隔÷杭径 新設杭(Y方向)	2.542
	(浮力考慮)	kN/m²		新設杭(X方向)	2.542
:載荷重算出 ○ 地盤面<	3月の上載土厚の EQ有り) (D指定 ☞ 上載土厚	圖 計算	,	
力無視					
受働土圧強	度 水平地盤反	「力係数」			1
No	層厚 (m)	kHE (kN/m³)]		
1	10.500	16898.818	-		
2	8.000	55449.247			
3	1.400	184830.823			
杭基礎設計	便覧において、	抗頭部の着目点ビッチ	は杭径/4を目安に	することが記載されています	
					(
				. / ***	
					1 407 (D)

—— 水平地盤反力係数

「水平地盤反力係数」タブに切り替え、数値を確認します。

No	層厚(m)	kHE(kN ∙ mႆ)
1	10.500	16898.818
2	8.000	55449.247
3	1.400	184830.823

最後に「確定」を押します。

1-17 計算・結果確認

・左メニューから「結果総括」をダブルクリックします。

積	果総括 結果確認	12			-	-		×
定	算 杭体照査	£						
変積	位の制限の照 暗方向	l査						
No	荷重名略称	$\delta f_X(nn) \leq dd(nn)$	$PNnax(kN) \leq Rdp(kN)$	$PNnin(kN) \ge Pdp(kN)$				
1	D	0.00≦15.00 (0.0000)	1727.7≦4676.0 (0.3695)	1727.7≧0.0 (-)				
2	1.0(D+L)	0.00≦15.00 (0.0000)	1928.7≦4676.0 (0.4125)	1928.7≧0.0				
橘	油直角 方向							
No	荷重名略称	$\delta f_X(nn) \leq dd(nn)$	$PNnax(kN) \leq Rdp(kN)$	$PNnin(kN) \ge Pdp(kN)$				
1	D	0.00≦15.00 (0.0000)	1727.7≦4676.0 (0.3695)	1727.7≧0.0 (-)				
2	1.0(D+L)	0.00≦15.00 (0.0000)	1928.7≦4676.0 (0.4125)	1928.7≧0.0 (-)				
安福	2の前荷性能 地方向 【万乗2 略称	の照査 「Sfy(nn) <dd(nn)」< th=""><th>DNnov(UN) < D4(UN)</th><th>$DN_{DN} = (UN) > Dd(UN)$</th><th></th><th></th><th></th><th></th></dd(nn)」<>	DNnov(UN) < D4(UN)	$DN_{DN} = (UN) > Dd(UN)$				
1	D	0.00≦43.20 (0.0000)	1727.7≦6167.0 (0.2801)	1727.7≧-2027.0 (-)				
3	D+L	0.00≦43.20 (0.0000)	2081.8≦6167.0 (0.3376)	2081.8≧-2027.0 (-)				
4	D+EQ	6.82≦43.20 (0.1580)	3442.1≦6167.0 (0.5582)	13.2≧-2027.0 (-)				
橘	油直角方向							
No	荷重名略称	δfx(mn)≦dd(mn)	$PNmax(kN) \leq Rd(kN)$	PNnin(kN)≧Pd(kN)				
1	D	0.00≦43.20 (0.0000)	1727.7≦6167.0 (0.2801)	1727.7≧-2027.0 (-)				
3	D+L	0.00≦43.20 (0.0000)	2081.8≦6167.0 (0.3376)	2081.8≧-2027.0 (-)				
4	D+EQ	5.83≦43.20 (0.1349)	3264.7≦6167.0 (0.5294)	190.6≧-2027.0 (-)				
78	小設定	EDADI +			開じる(0)		? 167	• (H)

荷重ケースごとに、安定計算,杭体照査結果を抽出して表示します。

詳細はヘルプよりご確認ください。

【安定計算(永続/変動作用)】

左メニューから「安定計算(永続/変動作用)」 をダブルクリック します。

指定された杭について、各々の計算結果を表示します。

複数杭指定した場合、各項目ごとに最大値あるいは最小値を 表示します。ただし、許容支持力・引抜力が異なる杭が混在す る場合の杭軸方向反力は「計算条件」-「設計条件」-「その 他の条件」で指定した方法(反力と許容値の比、反力と許容値 の差)により抽出した値を表示します。

また、許容値を超えたとき赤文字で表示します。

※杭基礎の安定計算の計算時、コレスキーの計算失敗のエラー が出る際の対処方法 (Q1-3-3参照)

https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-3-3

【杭体(永続/変動作用)】

U	筋データ															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
	5520115	Ē	ŕ		19 00		Ja Ch	Hun		¥y	ď			Mud		
0	荷重名略称	行	列	(kN 正曲げ	.m) 頂曲げ	(kN)	(kN.m.)	(kN.m.)	正曲	(kN	.m) 頂曲!	f	(I 正曲げ	<n-m) 11曲げ</n-m) 	- 判定	
		1	1	0.00	0.00	1727.66	2009.99	3081.06	153	7.64	1537	.64	1996.5	3 1996.5) (0.0000	3) OK	
	D	1	1	0.00	0.00	1727.66	2009.99	3081.06	158	7.64	1537	.64	1996.5	3 1996.5) (0.0000	3 ок	
		1	1	0.00	0.00	2081.83	2022.92	3179.15	154	7.54	1547	.54	2060.0	9 2060.0) (0.0000	9) ОК	
3	D+L	1	1	0.00	0.00	2081.83	2022.92	3179.15	154	7.54	1547	.54	2060.0	9 2060.0) (0.0000	9) ОК	
		1	1	317.53	425.38	3442.12	2079.96	3517.55	187	1.97	1871	.97	2849.2	2 2849.2	2 ок	
1	D+EQ	3	1	317.53	425.38	13.21	1782.72	2546.67	160	4.44	1604	.44	2062-6	1 2062.8	; } ок	
ŧ1	重ケース毎に	E	限力	Nmax,	下段が	Nninを表	示してい	ます。						- H -		
ł,	も断力に対す	する	服	界状態3												
0	荷重名略称	行	列	S (kN)	¥ (kN.n)	N (kN)	Susd (kN)	Si ()	icd (N)	τn≦ (N	制限值 /ma2)	判定				
		1	1	0.00	0.00	1727.66	1020.	.06 19))(0.0	389.33 0000)	0.000	≦1.700 .0000)	OK.	1			
		1	1	0.00	0.00	1727.66	1020.	.06 19))(0.0	989.33 0000)	0.000	≦1.700 .0000)	OK.	1			
		1	1	0.00	0.00	2081.83	1020.	.06 19	89.33 0000)	0.000	≦2.600 .0000)	OK	1			
5	U+L	1	1	0.00	0.00	2081.83	1020.	.06 19	89.33 0000)	0.000	≦2.600 .0000)	OK	1			
	D.00	1	1	396.88	317.53	3442.12	1570.	42 28	341.90 397)	0.402	≦2.600 .1547)	OK	1			
1	D+EQ	3	1	396.88	317.53	13.21	1491.	.22 28	341.90 397)	0.402	≦2.600 .1547)	ОК	1			
t q	。 動ケース毎に	E	設力	Nmax.	下段が	、 Nninを表	示してい	ます。				· · ·	2			

.左メニューから「杭体(永続/変動作用)」をダブルクリックします。

杭体照査結果を表示します。

杭体の計算方法については、「計算理論及び照査の方法」– 「杭体(永続/変動作用)」–「杭体(永続/変動作用)」を参 照ください。

※「降伏曲げモーメントの特性値Mycの計算に失敗しました」 とエラーが出る際の対処方法(場所打ち杭の場合) (Q1-4-4参照) https://www.forum8.co.jp/faq/win/foundation-h29-qa. htm#q1-4-4

【安定計算(偶発作用)】

📓 レベル2地震時照査 結果確認 \times 計算条件 (源状化 の 無現 C 考虑 C 流動時 (多イブ1 C タイブI C タイブI C オカ無限 C 浮力考定) 総括表|一覧表|荷重変位関係|詳細表示| □ 「 判定OK時の許容比率(計算値/制限値)を表示する Y方向 渡状化 <mark>増</mark>電動 水位 総合判定 基礎降伏 応答 変位 せん断力 杭頤 (城体の塑性化) (城南変化位置) 【報理】 第2 方用機理 (W) 無視 I 浮力用機理 (W) 無視 I 浮力用機理 (W) 無視 I 浮力再慮 -考慮 I 浮力用機理 -考慮 I 浮力用機理 -考慮 I 浮力用機 -考慮 I 浮力用機 -考慮 I 浮力用機 -考慮 I 浮力用機 -OK OK QK х方向 液状化 <mark>地震動</mark> 水位 総合判定 <u>基礎降伏 応客</u> 変位 せん断力 枕頭 (航<u>体の塑性化</u>) (前面変化位置) park (I () 57 - 57 不位 | 総合判定 無視 I | 写力兼语 () 無視 I | 写力寿徳 -無視 I | 写力寿徳 -寿彦 I | 浮力兼祖 | -寿彦 I | 浮力兼祖 -寿彦 I | 浮力兼通 -寿彦 I | 浮力寿慮 -寿彦 I | 浮力寿慮 -寿彦 I | 浮力寿慮 -<u>OK</u> NG <u>OK</u> <u>OK</u> 1000 **?** 117 (H) 7%가設定 印刷 •

-左メニューから 「安定計算(偶発作用)」 をダブルクリックしま す。

レベル2地震時の照査結果を表示します。

各検討ケースごとの判定結果を表示します。OK, OUT, 降伏の詳細は下記説明を参照してください。 OK, OUT, 降伏をクリックすると、該当検討ケースの結果画

OK, OU1, 降伏をクリック9 ると、該当検討ケースの結果画 面を開きます。 く割合の2時の訪察は変(計算信/問題信)をまニナストも

<判定OK時の許容比率(計算値/制限値)を表示する>を チェック(レ)したとき、判定OKに対する余裕率を表示しま す。

【フーチング(偶発作用)】

左メニューから「フーチング(偶発作用)」 をダブルクリックしま

🚵 フーチング	照査(偶	発)						-		×	
計算条件		- 液状化 ● 無視	C 考虑	C 流動時	地震動タイプ ・ タイプ I	○タイプⅡ	水位 ・ 浮力無視	O 注	力考慮		
総括表 Y:	総括表 Y方向 X方向 抽出結果										
Y方向											
	10, 22, 41				1						
液状化	地震動 タイブ	水位	曲げ照査	せん断照査							
無視	I	浮力無視	<u>OK</u>	<u>OK</u>	1						
無視	I	浮力考慮]						
無視	Π	浮力無視	<u>OK</u>	OK]						
無視	Π	浮力考慮]						
考慮	I	浮力無視]						
考慮	I	浮力考慮									
考慮	Π	浮力無視									
考慮	Π	浮力考慮]						
流動時	I	浮力無視]						
流動時	I	浮力考慮]						
流動時	Π	浮力無視]						
流動時	Π	浮力考慮			1						
 x 方向											
液状化	地震動 タイブ	水位	曲げ照査	せん断照査							
無視	I	浮力無視	NG]						
無視	I	浮力考慮]						
無視	Π	浮力無視	NG]						
無視	Π	浮力考慮]						
考慮	I	浮力無視									
考慮	I	浮力考慮]						
考慮	Π	浮力無視]					-1	
) <u> </u>	π	省十日市			1					<u> </u>	
7ォント設定		印刷	•				確定 🗶 🎙	防消	? 147	' (H)	

【基礎ばね】

<mark>基礎ばね</mark> 左メニューから「基礎ばね」をダブルクリックします。

2次元解析の場合、EQ無し, EQ有り, および固有周期算定用の地盤ばね定数を算出します。

2.5次元解析の場合、固有周期算定用の地盤ばね定数を算出します。

このX次元解析の選択は、「計算条件」ー「基本条件」画面の 永続変動作用ー安定計算の計算方法の選択を指しています。

k値

EQ無し、EQ有り、および固有周期算出に用いる各層の水平方 向地盤反力係数を表示します。

計算結果(EQ無し, EQ有り, 固有周期算定用地盤ばね定数) フーチング下面中心におけるばね値を算出, 出力します。

底版レベル2地震時の照査結果を表示します。

照査方法については、「計算理論及び照査の方法」-「杭基礎」-「レベル2地震時照査」-「基礎の非線形性を考慮した解析方法」-「底版照査」をご参照ください。

2 計算書作成

日力項目の設定/選択		×
設計条件	結果詳細出力の設定	
テージファイル名	10-22-1 400	
	の面計具	新華中国
結果一覧出力 赤続/変動作用 【 単焼作用	出力ケース 抗指定 上部出力ビッチ(m) 0.5	出力ケース 抗指定 杭体照査
全選択・解除 Q ブルビュー	下部出力ビッチ(m) 1.0	設定杭指定
	出力行数 52 合	枝の販売変化位置
結果詳細出力		
▶ 設計条件		ニー ニース 田力ゲース
▼ 安定計算		
▶ 断面計算		
▶ 基礎杭計算結果一覧表		
▶ 予備計算		
▶ 杭頭接合部		
□ フーチング照査	偶筆作用	
☞ 偶発作用	山力項目 技ど空	
▶ 基礎はね計算	10.1876	
□ ねU継手照査		
▶ (注筋かご無溶接工法)		
全選択・解除 日、ブレビュー		
 Y→X方向 C X→Y方向 		
		✓ 確定 × 取消 ? ヘレブ(H)

出力項目の選択、出力条件の設定、および印刷プレビュー画面 の表示を行います。

最後に「確定」ボタンを押します。

※プレビュー画面

表紙、目次の追加、ページ情報の設定、文書全体の体裁を設定も可能です。また、印刷、他のファイル形式への保存を行ったり、ソースの編集を行うことで文章を修正することができます。

3 図面作成

直接基礎

- 下記条件のとき、図面作成を行うことはできません。
- ・支持力計算が未計算
- ・底版形状に段差がある場合
- ・底版形状が円形、小判形の場合

杭基礎

- 下記条件のとき、図面作成を行うことはできません。
- ・杭体照査が未計算
- ・回転杭
- ・杭体断面数>3
- ・斜杭あり

よって、本操作ガイダンスにて作成可能な杭基礎を例とします。

3-1 基本条件

基本条件			×
		新設・既設杭	増し杭
なし 場所打ち杭 鋼管がイルセ PHC杭 SC杭 SC杭 SC杭 H形鋼杭	メント杭 C杭		
結合方法・配置方向		○ 方法A ⊙ 方法B	
縦書き1(側面 作図 縦書き2(側面 方向 横書き1(側面 横書き2(側面	左・縦断面右) 右・縦断面左) 下・縦断面上) 上・縦断面下)	0000	
杭形状数		1	1
 杭配置図に作図する ○ なし ○ X軸 橋軸直角方 ○ Y軸 橋軸方向 	軸名称	林配置図の作図方 © 回転なし ○ 反時計回り90 ○ 時計回り90月 - 柱状図作図 © なし	法 D度回転 寛回転 C あり
		動設定 🛛 🗙 取	消 ? ハルプ(出)

図面作成モードの基本条件の入力および作図対象(杭種・杭 形状数)の表示・変更を行います。

作図方向

作図方向(縦書き・横書き)と側面・縦断面の作図位置(左・右 あるいは上・下)を指定します。

杭配置図に作図する軸名称

杭配置図に作図する軸名称を(作図なし、X方向名称、Y方向 名称)から指定します。

杭配置図の作図方法

杭配置図の作図方向を指定します。

柱状図作図

「柱状図」を作図するかしないかを指定します。

「詳細設定」ボタン

「断面位置」、「かぶり」や「鉄筋」に関する情報などを確認・ 修正する場合にクリックします。「形状」・「かぶり」・「鉄筋」 のボタン有効となりますので、各ボタンクリック後に表示され る各項目画面を入力・修正してください。すべてのボタンの左 側が「緑」に変わった(入力済みとなった)段階で図面生成が 行えます。

「自動設定」ボタン

設計計算が終了した直後の条件で図面生成を行う場合にク リックします。本ボタンがクリックされると鉄筋情報生成・図 面生成・図面確認の起動までを自動で行います。

- 今回は「自動設定」を押します。

「図面確認」 画面が表示されます。 主な機能は、以下の通りです。 表示機能 図面の全体表示や拡大表示が行えます。

編集機能

図形・寸法線・引出線の移動が行えます。

出力機能

SXFファイル・DWGファイル・DXFファイル・JWWファイル・ JWCファイルへの出力、および、プリンタやプロッタへの印刷 が行えます。

3-2 形状

杭情報

作図する杭の配置や形状寸法などに関する情報の表示および 作図に必要な情報の指定を行います。 各寸法を指定してください。

※グレー表示の情報については、「入力モード」にて入力してく ださい。

3-3 かぶり

主鉄筋かぶり 主鉄筋かぶり(mm)
 C1
 C2
 C3
 C4

 1
 160.0
 250.0
 350.0
 0.0
 1 111 1 01 02 1 03 参考寸法 0.0000 杭径(m) 杭長(m) ✓確定 × 取消 ? ヘルプ(H) 左メニュー「かぶり」をクリックし、右側「かぶり」 をクリックし ます。

主鉄筋かぶりおよび底面鉄筋かぶりを「外形から鉄筋中心ま での距離(単位:mm)」で指定します。 ガイド図を参考に入力してください。なお、「新設・既設杭」と 「増し杭」の内容は同じですが、「場所打ち杭」と「場所打ち 杭以外」で設定内容が異なりますのでご注意ください。

※新規で図面作成モードに入った場合と、「入力」→「杭基礎」 →「断面計算」→「場所打ち杭配筋」画面でかぶりが変更され た場合、「入力」→「杭基礎」→「断面計算」→「場所打ち杭配 筋」画面のかぶりを自動で設定します。

3-4 鉄筋

【主鉄筋】

左メニュー「鉄筋」をクリックし、右側「主鉄筋」をクリックし ます。

主鉄筋

主鉄筋の情報を指定します。 なお、「新設・既設杭」と「増し杭」の内容は同じですが、「場 所打ち杭」と「場所打ち杭以外」で設定内容が異なりますので ご注意ください。

【帯筋筋】

帯鉄筋

帯鉄筋情報を設定します。 なお、「場所打ち杭」と「場所打ち杭以外」で設定内容が異な りますのでご注意ください。 また、「場所打ち杭」の場合、組立筋は、「その他の鉄筋」で入 力してください。

【その他】

その他の鉄筋	×
	1 組立版(m) 単式年 「19】 単式年 「19】 「19】 単式年 「19】 「19】 「19】 単式年 「19】 「「19】 「」19】 「「19】 「」19】 「」19】 「「19】 「」19
(祝宝の) 1.2000 (祝長(a)) 20.000 (祝宝(a)) 1.2000 (祝長(a)) 20.000 「 鉄範かご無容積工法	野田位置 15 空学(2) グラク 供給(2) 登録(2) グラク 供給(2) 登録(2) グラク 日本 日本<
	▲ 報定 × 取消 ? ^67"(出)

その他の鉄筋

主鉄筋・帯鉄筋以外の鉄筋情報を設定します。なお、「新設・ 既設杭」と「増し杭」の内容は同じですが、「場所打ち杭」と 「鋼管杭・鋼管ソイルセメント杭」で設定内容が異なりますの でご注意ください(「PHC杭・PC杭・SC杭・SC杭+PHC 杭・RC杭」については本画面は表示されません)。

3-5 図面生成・確認、鉄筋生成

基準値

図面生成

配筋図の各図形を生成する際の諸条件の指定や 図面生成時に使用する基準値や書式などの作図条件を設定し ます。

「図面生成」をクリックすると鉄筋情報生成・図面生成が実行 され図面確認画面が起動します。

※鉄筋情報の再生成を行うかどうか選択する画面が出ます。

・「はい」:入力情報[形状、かぶり、鉄筋径、配筋ピッチ]に基づいて鉄筋情報を再生成し、図面の生成を行います。 ・「いいえ」:既存の鉄筋情報[鉄筋かぶり、鉄筋寸法、配筋情報]に基づいて、図面の生成を行います。

? ヘルブ(<u>H</u>)

・「キャンセル」:図面生成を中止します。

現在の鉄筋情報を破棄し「入力・形状・かぶり・鉄筋」面面の 設定を反映した鉄筋情報を再生成して図面を生成します。 ※「入力・形状・かぶり・鉄筋」画面の設定を変更した場合に 「よしいを指定して下さい

※「鉄筋情報」画面を開いて、鉄筋情報を変更した場合に 「いいえ」を指定して下さい

鉄筋情報を生成した後に図面生成を行いますか? 「「は い」: 鉄筋生成を行い図面を生成します。

「いいえ」:現在の鉄筋情報で図面を生成します。

「キャンセル」:図面生成を中止します。

3-6 鉄筋情報

鉄筋情報

す。

「新設・既設杭」・「増し杭」の各鉄筋情報の確認・修正を行います。

「対象杭選択画面」が表示されますので、「新設・既設杭」と 「増し杭」のいずれかを選択後、鉄筋情報表示を行う杭を指定 (左クリックによる反転表示状態)します。

「確認・修正」 ボタンをクリックすると「鉄筋選択画面」 が表示されます。

鉄筋情報の詳細入力で配筋する鉄筋を指定するためのウィンドウで、鉄筋一覧に追加された鉄筋が配筋図に作図されま

鉄筋選択画面	×
鉄筋グルーブ名称一覧 主鉄筋 帯鉄筋 組立筋 スペーサー 底面鉄筋	鉄筋一覧 1 設主鉄筋 (運続) 1 1 追加
	編集 削除 閉じる(C)

選択している鉄筋について「編集」ボタンより設定・確認ができます。

ここでは主鉄筋 (連続)の情報 (1~3段すべて共通)を設定 できます。本入力は継ぎ手位置が同じとなる連続継ぎ手で主 鉄筋を配置する場合に使用してください。

「確認表示」ボタンを押すと、下記画面のように該当鉄筋の確 認が可能です。

3-7 鉄筋一覧

鉄筋一覧

配筋される鉄筋の記号・径の一覧表示を行います。「対象杭選 択画面」が表示されますので、「新設・既設杭」と「増し杭」の いずれかを選択後、鉄筋一覧表示を行う杭を指定(左クリック による反転表示状態)します。

「確認・修正」 ボタンをクリックしてください。「鉄筋一覧画 面」 が表示されます。

■ 鉄筋一覧					-		×
鉄筋種類	記号1	径 1	記号2	径 2	記号3	径	3
1 段主鉄筋(連続)1	P1	32					
1 段帯鉄筋1	P2	19					
1 段組立筋1	P3	13					
スペーサー1	P4	13					
底面鉄筋1	P5	13					
5							>
<							>
						開じる	(C)

「鉄筋一覧画面」が表示されます。

※「鉄筋一覧画面」の記号あるいは径のセルを左ダブルクリッ クするか、左クリック選択後「Enterキー」を押すことで詳細 鉄筋情報の入力ウィンドウが表示され、詳細鉄筋情報の修正 が行えます。なお、本ウィンドウで記号あるいは径を直接修正 することはできません。

4 設計調書

■ 請表出力ライブラリ Ver. 24.0.0: [登巷の貸計]
 ー □ ×
 ■ ■ ■ ● ● ● ● 日

テンプレート: スタイル設定 × テンプレートリスト 用紙方向 ∈横 ○縦 直接基礎 鋼管矢板基礎 比較表杭基礎 マージン ±mm <u>► 6</u> ÷ mm 上 6 左 6 右6 ÷mm ÷mm ▶ 用紙サイズに合わせて印刷 テンプレート確認 プリンタ選択 閉じる(G) パルフ*(H)

上メニュー「設計調書」をクリックします。

設計調書は、平成24年道路橋示方書の設計調書を基にした FORUM8独自の書式の設計調書となります。

※以下の条件の場合は、設計調書の作成には対応していません。但し、2次元解析時で条件(2)(3)の場合は、Ver.3.0.8(Suite Ver.2.0.8)から対応しました。

(1)2.5次元解析を選択している(2)地層に傾斜がある(3)杭径・杭長変化を選択されている

※「調表出力ライブラリ Ver.2」は当製品と別にインストール する必要があります(本プログラムのみでは動作いたしません)。

操作方法は、「調表出力ライブラリ Ver.2」のヘルプを参照して ください。

テンプレートは「調表ライブラリ」の[スタイル設定]にて選択で きます (調表ライブラリVer2.00.00以降)。

設計調書の出力設定

設計調書の出力設定画面が表示されます。 ※Ver.6より設計調書出力時に荷重名称を、名称で出力するか 略称で出力するかの選択に対応しました。

「永続,変動作用照査」タブ、「偶発作用照査(レベル2地震動 作用時)」タブそれぞれを適宜設定し「確定」ボタンを押しま す。

スタイル設定

出力するテンプレートが登録されているテンプレートリスト名 の選択と、印刷時の各種設定を行います。テンプレートを選択 するにはテンプレートリストの中から、出力するテンプレートが 登録されているテンプレートリスト名称をクリックします。

テンプレートリスト

現在登録されているテンプレートリスト名称を表示します。 ダブルクリックで、テンプレート確認画面を表示します。

テンプレート確認

現在選択されているテンプレートリスト内のテンプレートのイ メージをリストで表示します。 「テンプレート確認」 ボタンを押します。

用紙方向

印刷の向きを設定します。「プリンタ選択」 ボタンで表示される 「印刷の向き」 ででも設定できます。

マージン

印刷の余白の余白をmm単位で設定します。

■ テンプレート確認		-	×
テンプレート:			
▲磁工設計調書(その1)	基礎工設計調書(その2)		
$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$			
基礎工設計調書(その3)	基礎工設計調書(その4)		
下部工設計調書 フーチング			

※テンプレート確認ボタンを押すと、選択しているテンプレートのイメージを左図のようにリストで表示します。

※Ver.6より杭基礎、鋼管矢板基礎の設計調書を下記のように 改良しました。

- ・鋼管矢板基礎の設計調書出力に対応しました。
- ・杭基礎の杭体設計は、方向毎に出力するようにしました。

・杭基礎のレベル2地震時に杭頭の仮想鉄筋コンクリート断面の判定を表示するようにしました。

5 データ保存

「ファイル」-「名前を付けて保存」からデータを保存します。 既存のデータに上書きする場合は「ファイル」-「上書き保存」 を選択します。

第3章 Q&A

0 全般

- Q0-1 各方向の名称を変更できるか。
- A0-1 計算書等に用いている各方向の名称は、「基準値」-「荷重ケース」画面の方向名称で変更できます。
- Q0-2 「橋脚連動用XMLファイル」がグレー表示で機能しません。ラインセンス (Lite/Standard/Advanced) が関係しますか?
- A0-2 3種類のライセンス (Lite/Standard/Advanced) のいずれのライセンスでも、この機能は利用することはできます。 まず、基礎選択画面の「杭基礎/直接基礎/ケーソン基礎/鋼管矢板基礎/地中連続壁基礎」を選択し、基礎形式を確定して ください。 その後に、メニュー「ファイル」ー「橋脚連動用XMLファイル」を実行をお試しください。

Q0-3 設計調書出力時、数種類の杭を1つの比較表にまとめる手順は?

A0-3 比較表等で複数の設計調書データを使用される場合は、ファイルをBTDTファイルで保存していただき、それを使用して 設計調書の出力を行ってください。

> (1)安定計算,杭体応力度計算が終了している状態にします。
> (2)杭基礎側の[ファイル]メニューの[設計調書データの保存]を選択します。
> (3)任意の名前を設定し保存します(拡張子*.BTDT のファイルが保存されます) ⇒比較表を作成したい杭基礎データそれぞれについてBTDTデータの保存を上記手順で行ってください。
> (4)[設計調書]をクリックします。
> (5)「設計調書の出力設定」画面で「確定」-「閉じる」ボタンを押し、「調表出力ライブラリ」画面まで進みます。
> (6)調表出力ライブラリ画面上の左から2番目の[調表作成実行]ボタンよりデータファイル選択画面が開きますので、(3)で 作成した設計調書用データファイル(*.BTDT)を指定してください。
> (7)同様の手順で設計調書用データファイル(*.BTDT)を選択してください。
> (8)対象とするファイルの指定が終わったら、「確定」ボタンで画面を閉じます。
> (9)画面下に表示されている調表シートを選択(ダブルクリック)すると、先ほど選択したデータの調表を表示します。

- Q0-4
 「調書出力ライブラリがインストールされていないため設計調書には移行できません」と出ます。

 Ver.6からこのようになりました。どうしてですか?
- A0-4 基礎の設計・3D配筋(部分係数法・H29道示対応)Ver.6から64bit版に対応し、32bit版と64bit版の2つ用意しています。 「調表出力ライブラリ Ver.2」も32bit版と64bit版があり、32bit製品で設計調書出力を行うときは32bit版の、64bit製品で 設計調書出力を行うときは64bit版の「調表出力ライブラリ Ver.2」をインストールする必要があります。 (使用している製品が64bitであれば、メイン画面のタイトルバーに「(x64)」と表示されます。)

ご使用の製品をお確かめのうえ調表出力ライブラリをインストールいただき、設計調書作成ができるかご確認ください。 「調表出力ライブラリ Ver.2」はこちらからダウンロードいただけます。

▼ 調表出カライブラリ Ver.2

https://www.forum8.co.jp/download/tyohyo2-down.htm

Q0-5 低減係数DEを考慮する対象項目の内容はどこに記載されていますか?

- A0-5 H29道示V編 P.169に「DEを乗じて低減させる耐震設計上の土質定数は、3.5に規定されるとおり、地盤反力係数、地盤 反力度の上限値及び最大周面摩擦力度とする」と記載されています。
- Q0-6 インストール時に下記のエラーが表示される場合の解消方法はありますか? モジュール C:\Program Files\Common Files\DrawingsX23.1\TeighaX_23.1_16.dll で登録に失敗しました。 HRESULT-2147024770。
- A0-6 インストール時にエラーが発生する原因として、「Microsoft Visual C++」のライブラリがインストールされていないことが 考えられます。
 下記の「Microsoft Visual C++ 再頒布可能パッケージ」をインストールしていただくか、「Windows Update」を行った後 に、製品のインストールを行う必要があります。
 Microsoft Visual C++ 再頒布可能パッケージ
 x86: https://aka.ms/vs/17/release/vc_redist.x86.exe
 x64: https://aka.ms/vs/17/release/vc_redist.x64.exe

Q0-7 荷重タイプ1.0(D+L)はどのような荷重か?

A0-7 下記に該当する荷重となります。
 H29道示IV編 P.167 (3)2)から以下抜粋しました。
 「基礎の設計にあたっては、基礎の変位を橋の機能に影響を与えないとみなせる範囲に留めるために、I編3.3に規定される作用の組合せ及び荷重係数等に加えて、永続作用支配状況として、以下の作用の組合せ及び荷重係数等を考慮する。」
 1.00(D+L+PS+CR+SH+E+HP+ (U))

1 杭基礎

1-1 適用範囲・準拠基準等

- Q1-1-1 既設検討・補強設計に対応しているか。
- A1-1-1 現在は対応しておりません。 H29道示を適用した既設検討・補強設計に関する参考資料や基準類の発刊後に対応を検討する予定です。

Q1-1-2 杭1本ごとに断面変化を別々に設定可能ですか?

- A1-1-2 杭を配置する全杭で、断面変化数は共通の設定です。 新設既設杭の場合は断面数を2とした場合、杭全ての断面数が2となります。
- Q1-1-3 杭体の断面力結果 (例えばモーメントM) が通常とは異なる描画になっているのは何故か?
- A1-1-3
 2.5次元解析のときの曲げモーメント図は、M = (My^2+Mx^2)^(1/2) ("^"はべき乗を示しています) により、図化しています。
 Y,X両方向に曲げモーメントが生じるケースを考えると、合成された曲げモーメントの方向は深度とともに変化し一定しないため、2.5次元解析時には、上記のように出力しております。
 そのため、モーメントは常に正値となり、途中で折れ点が生じることがあります。せん断力、水平変位についても同様です。

Q1-1-4 旧基準にあった杭頭条件:ヒンジの選択がなくなったのはどうしてか?

A1-1-4 H29年道示 P.228,229の記述により、剛結のみの計算に変更されています。 「従来の設計方法では、杭頭接合部が剛結の場合とヒンジ結合の場合の両方の照査を行っていたが、今回の改訂では、 構造条件をより適切にモデル化するという観点から、杭頭接合部を剛結とみなせるように設計することを踏まえ、杭の部 材照査についても剛接合の場合のみを行うこととされた」

Q1-1-5 14年道示基準の「基礎の設計」データを読込む事は可能ですか?

A1-1-5 H29道示対応版でH14道示対応版のデータファイル (*.F8F)を直接開くことはできません。 お手数をおかけしますが、一度H24道示対応版で開いてから (*.F1F/ H24道示対応版のデータファイル(*.F8F)) に保存し なおし、これをH29道示対応版で開いていただくようお願いいたします。 ※各製品の「ファイルを開く」ダイアログで、開きたいファイルの種類を選択してください。

> 下記製品はH24道示対応版となります。 ※基礎の設計(旧基準)Ver.2の拡張子は*.F1Fです。 ※基礎の設計計算 Ver.10/Ver.11の拡張子は*.F8Fです。

- Q1-1-6 R2年杭基礎設計便覧対応の基礎はVer.5からになりますが、その杭基礎と連動下部工製品及びバージョンはどのように なっていますか?
- A1-1-6 基礎の設計・3D配筋(部分係数法・H29道示対応)Ver.5と下記製品が連動します。
 - ・橋脚の設計・3D配筋(部分係数法・H29道示対応) Ver.4.2.1~
 - ・橋台の設計・3D配筋(部分係数法・H29道示対応) Ver.4.1.3~
 - ・「箱式橋台の設計計算(部分係数法・H29道示対応) Ver.3.0.0~
 - ・ラーメン式橋台の設計計算(部分係数法・H29道示対応) Ver.3.0.0~

1-2 入力全般

- Q1-2-1 「地層」-「土質一覧」-「土質データ③」画面の支持層で設定する先端地盤N値はどういう値を入力するのか。
- A1-2-1 H29道示IV編 P.244に「杭先端の極限支持力度qdの特性値を表-10.5.2から定める際、評価に用いるN値は、杭体先端 から杭径の3倍下方までの範囲の平均値としてよい」 とあります。この平均値のN値を入力して頂くことを想定します。
- Q1-2-2 橋台と基礎を連動して使用している。基礎側の計算書において、橋軸方向と橋軸直角方向の名称が反対になっている。対 処方法はあるか。
- A1-2-2 「基準値」画面の荷重ケースの項目において、方向名称の指定があります。 橋台と連動した際のX方向を「橋軸方向」、Y方向を「橋軸直角方向」へ変更して再度ご検討ください。
- Q1-2-3 「杭体データ」画面の場所打ち杭におけるコンクリートの降伏応力度ocyの算出根拠は?
- A1-2-3 コンクリートの応力度-ひずみ曲線(H29道示Ⅲ5.8.1等)を参照して、コンクリート杭の降伏応力度を0.85×σckとしてい ます。この値は負の周面摩擦力の計算時に参照されますが、任意に変更可能ですので設計者の判断で自由な値とするこ とが可能です。
- Q1-2-4 H29道示IV P.273 (b)の地盤の変形係数の推定方法について多層地盤時のN値の判断基準はどうすればよいか。
- A1-2-4 N値の範囲の判断基準は、H29道示IV P.274 杭頭部では杭径の5倍程度の範囲が目安にしてよいとあります。
- Q1-2-5 橋脚の設計の「基準値」→「計算用設定」→「荷重」の水の単位重量をγw=9.8に設定しているが、UC-1連動基礎連動の 場合、基礎の設計ではγw=10.0となっているのはなぜか。
- A1-2-5 問い合わせの状況より、何らかの原因で、橋脚側と基礎側で水の単位重量の整合が取れていない状態となっています。 大変お手数ですが、下記の手順によりデータの更新を行うことでご対応くださいますようお願いいたします。

1.「橋脚の設計」側の「基準値|計算用設定」画面を開き、「荷重|単位重量|水γw」を「10.0」に変更し「確定」します。 2.再度上記の項目を開き、「水γw」を「9.8」に戻し「確定」します。

- ※この間、「基礎の設計」側の「地層」画面は閉じた状態としてください。
- 3.「基礎の設計」側の「地層」画面にて、単位重量が「9.8」に更新されていることをご確認ください。

なお、「基礎の設計」側の「地層」画面を開いた状態でデータ連動後、「地層」画面を確定する等の操作を行った場合、更 新前の基礎側の設定が上書きされることがあります。 このようなケースで、再度同様の現象が発生した場合、お手数ですが、上記「1~3」の手順にてデータの更新を行ってくだ さいますようお願いいたします。

- Q1-2-6 押込み力の周面摩擦は杭先端から任意の範囲を控除できますが、引抜き力は杭先端まで周面摩擦力を考慮しています。引 抜き力照査で周面摩擦力を控除できないようにしている理由は?
- A1-2-6 H29道示IV P.249の「押込み力のみに対して周面摩擦力を考慮する範囲となる」の記述から押込み力に対して、「計算条件-押込力・引抜力」画面の押込支持力の周面摩擦力の控除範囲で指定して頂くようにしています。 押込力及び引抜力を含めて支持層の最大周面摩擦力度fを考慮しない場合は、「土質データ②」の周面摩擦力で『入力』とし、該当する層のf=0にする方法で対処する事ができます。
- Q1-2-7 鉄筋かご無溶接工法の吊り荷重(鉄筋かご総重量W)の自動計算に対応していますか?またどのような重量を設定するのですか?
- A1-2-7 自動計算には対応していません。 例えば、鉄筋かごを吊り下げながら設置すると考えたとき、吊り下げ時の全荷重(杭鉄筋、補強リング等、想定される鉄筋 かごの総重量)を入力致します。

Q1-2-8 鋼管ソイルセメント杭の場合の設計杭長(杭の先端)は?

A1-2-8 鋼管ソイルセメント杭のとき、「杭配置」-「杭データ」 画面の設計杭長(杭先端)は、鋼管の先端位置を入力して頂くこと を想定しております。

鋼管長(フーチング下面から杭先端までの鋼管部の長さ)を入力してください。

- Q1-2-9 載荷試験により求める場合以外を選択する場合、どのような基準で選択すればいいでしょうか。(どの層のN値等)
- A1-2-9 変形係数の推定方法に関する試験の範囲は、H29道示IV P.274において、杭頭部では杭径の5倍程度の範囲が目安になる、との記載があります。
- Q1-2-10 回転杭の閉端/開口タイプの入力はどうすればよいか?
- A1-2-10 以下のように設定をお願いします。 ・閉端タイプは、「杭配置」-「杭データ」画面の羽根内径Dwi=0 ・開口タイプは、「杭配置」-「杭データ」画面の羽根内径Dwi≠0
- Q1-2-11 「地層」-「地層線」-「設計地盤面」の水位の入力があるが、設計上、この水位を考慮しないようにするにはどうすれば よいか?
- A1-2-11 「設計地盤面」画面の水位(EQ無し)及び水位(EQ有り)の設定を最小値-999.00、杭が配置されても問題ない標高に設定して頂く事で、水位は考慮されません。

Q1-2-12 PHC杭のスパイラル鉄筋を配置する方法は?

- A1-2-12 以下の設定箇所をご確認ください。
 - (1)永続変動時
 - ・「計算条件」 「設計条件」 画面でスパイラル鉄筋を考慮する
 - ・「杭配置」 画面で 断面変化を設定する
 - ・「杭体」 画面でスパイラル鉄筋を考慮する範囲(1~)を設定する

(2)偶発作用時

・「偶発作用」--「基本条件」--「計算条件①」 画面でスパイラル鉄筋を考慮する、せん断照査方法=杭体のせん断力≦杭体のせん断耐力を選択します。

- ・「偶発作用」--「杭本体」--「杭種別データ」画面でスパイラル鉄筋を考慮する範囲(1~)を設定する
- Q1-2-13 杭配置画面の確定時に「杭緑端距離に誤りがある」のメッセージが出るのはどうしてですか?

A1-2-13 H29道示IV10.8.7 P.288~P.289の「緑端距離は、・・・標準的には杭径の1.0倍とすればよい。」を参照し、入力された杭 緑端距離が杭径の1.0倍より小さくなるとき警告の意味で表示しておりますが、杭緑端距離は杭基礎の安定計算には影響 しないことから、「強行」でそのまま計算できるようにしています。 ただし、この結果の適用の是非につきましては、道示の記述をご参照いただいた上で、最終的には設計者の方のご判断に より決定してくださいますようお願いいたします。

Q1-2-14 斜角を設定するにはどうすればよいか?

 A1-2-14 斜角は次のように設定してください。
 ・地層の傾斜なし、杭径変化なしのとき 以下の手順により、斜杭となる杭を指定してください。指定された杭のみ斜杭となります。
 斜角を設定する方向を選択する。
 杭を指定する。杭を指定する方法には、「データ」と同様、『範囲』,『杭』,『行列設定』があります。
 上記1)により選択した方向の角度0を入力する。
 [適用] ボタンより確定する。
 各杭列ごとの斜角は計算方向に同一とします。同一杭列に直杭と斜杭が混在する場合、計算上2列とみなし、これを考慮した杭列数が100列以下という制限があります。

> ・地層の傾斜または杭径・杭長変化ありのとき 「データ」と同様の方法により、杭の角度を指定してください。角度の向きは下図のとおりです。

- Q1-2-15 地層傾斜を考慮する場合、地層はどの範囲で入力すればよいか?
- A1-2-15 計算上、最左端部の杭中心~最右端部の杭中心までの範囲になる様に入力して頂く必要があります。

Q1-2-16 橋台杭基礎の連動で底版に斜角がある場合、斜角底版が「基礎の設計」側に反映されていないのはなぜか?

A1-2-16 底版に斜角がある場合でも、「基礎の設計・3D配筋(部分係数法・H29道示対応)」では矩形の底版形状しか設定できま せん。 橋台杭基礎連動時には、橋台側の「基礎-基礎の扱い」画面の設定により基礎側の底版幅が決定されます。

・タイプ1:斜角の考慮無、断面寸法換算

・タイプ2:斜角の考慮有、断面最大寸法

・タイプ3:斜角の考慮有、断面中心位置

底版傾斜に沿って杭配置を行う場合は、基礎側の「杭配置」画面において、「杭配置の指定方法=任意配置」として杭ごとに座標値を指定してください。

Q1-2-17 下部工杭基礎連動の場合で杭基礎の安定計算の計算方法=2次元解析/2.5次元解析を変更するにはどうすればよいか?

連動中、基礎側では本スイッチは変更できません。下記基礎形式から選択・変更する事ができます。 A1-2-17 ■橋台杭基礎連動の場合は、橋台側の初期入力画面の基礎形式「杭基礎/杭基礎(2.5次元解析)」 ■橋脚杭基礎連動の場合は、橋脚側の初期入力画面の基礎形式「杭基礎(連動)/杭基礎(2.5次元解析連動)」

Q1-2-18 杭配置の設計杭長(第1断面=7.9m、第2断面=2m、第3断面=24.5m)と入力し、計算実行後に設計杭長が変更されてい るのはなぜか?

A1-2-18 「杭体」画面の「断面変化位置を自動計算する」をチェックしている場合、部材計算が実行されると、断面2・断面3の設計抗長が自動的に変更されるケースに該当しています。 指定した断面変化長で常に計算・保存したい場合は、この断面変化位置を自動計算するのチェックを外してご検討ください。

- Q1-2-19 橋台の設計と連動させる時に杭基礎の設計側で地層傾斜を選択した場合、橋台側で2.5次元を選択しなければいけない のでしょうか。2次元でも計算は可能でしょうか。
- A1-2-19 地層傾斜を考慮したレベル2地震時照査を行う場合は橋台側で2.5次元を選択する必要がございます。 2次元では計算することはできません。レベル2地震時照査を行わない場合は、2次元でも計算は可能です。 地層傾斜においては、「地層」画面ヘルプに地層傾斜を考慮する場合の制限を記載しています。
- Q1-2-20 プレボーリング杭工法の以下記述を考慮した場合の設定についてどのように設定すればよいでしょうか?
 ①H29道示IV P.229(3)
 ②R2杭基礎設計便覧 P.195
 ③R2杭基礎設計便覧 P.209
- A1-2-20 以下の設定を確認してください。
 ①②:「計算条件-設計条件-押込力・引抜力-支持力の周面摩擦力の控除範囲」=考慮するに変更します。
 ③:プログラムの永続変動作用時における杭の水平変位照査位置は、「地層-地層線-設計地盤面」画面の設計地盤面 (EQ無し/EQ有り)で設定された位置としているため、1/βを考慮した値にこの設定を変更します。

1-3 安定計算(永続変動作用)

Q1-3-1 安定計算における変位制限照査時の引抜力の制限値を0で照査している理由は?

A1-3-1 H29道示IV編 10.4に、(1)杭の配列は,基礎上の橋脚又は橋台の形状及び寸法,杭の寸法及び本数,群杭の影響,施工条件並びに斜杭の適用等を考慮し、永続作用に対して過度に特定の杭に荷重が集中せず,できる限り均等に荷重を受けるように定めなければならない。

(2)杭は, (1)を満足するため, 永続作用支配状況において引抜きが生じないように配列することを標準とする 本プログラムは、上記の(1)(2)を参照し、永続作用支配状況における変位の制限照査の制限値(自動計算の場合の引抜き) は、0.0で照査します。

上記に該当しない場合は、押込み月抜きの制限値を変更する方法もありますので、下記で対処可能です。

・計算条件ー入力条件ー押込力・引抜力を直接入力に変更する

・予備計算・結果確認-押込力/引抜力の該当箇所を変更する。(引抜力制限値変位制限を直接変更)

Q1-3-2 杭基礎の安定計算で、常時も地震時も制限値は同じとなるのか。

A1-3-2 常時と地震時「低減係数考慮しない(液状化無視)」は同じ制限値になりますが、地震時「低減係数考慮する(液状化考慮)」は異なる制限値になります。

Q1-3-3 杭基礎の安定計算を計算すると、コレスキーの計算失敗のエラーになるのは?

A1-3-3 「計算条件」-「基本条件」画面で、永続/変動作用の安定計算計算方法のスイッチ状態が確定されていない可能性があります。 「2次元解析」を選択し、確定後、再度計算を実行してみて下さい。

Q1-3-4 極限支持力度の入力方法は?

A1-3-4 杭先端極限支持力度は、「計算条件」-「設計条件」-「押込力・引抜力」画面の「極限支持力度の算出方法」により算出 方法が異なります。

「計算」を選択した場合

「地層」--「土質一覧」--「土質データ③」画面の支持層(設定は1)の先端地盤N値から杭先端極限支持力度を算出します。

※支持層となる土質データ①の土質種類を参照し、H29道示P.239 表-10.5.2 を用いて算出しています。 「入力(地層データ)」を選択した場合

「地層」-「土質一覧」-「土質データ③」画面の支持層の『qd』の値をそのまま、杭先端極限支持力度とします。 ※土質データ①の土質の種類によらず、qdに設定された値を用います。

Q1-3-5 支持層の変形係数αEo(EQ無し)を変更すると、変位量が大きくなるのはなぜか。

A1-3-5 支持層の変形係数αEo(EQ無し)の変更は、杭先端の杭の軸方向ばね定数Kvに影響を与えますので、計算結果の変位量 は変わります。

> また、永続変動作用の安定計算では、H29道示IV P.260の式(10.6.2)に準拠し、杭の水平変位が杭径の1%を超え,かつ 15mm よりも大きくなる場合には,杭前面の水平方向地盤反力係数は水平変位に応じた補正を行いますので、 このケースに該当する場合、設計地盤面における水平変位に応じて収束計算を行いますので、この影響もございます。

Q1-3-6 予備計算の杭の軸方向バネ定数Kvでγuとγyで零になるのはなぜか。

A1-3-6 杭先端極限支持力度は、「計算条件」-「設計条件」-「押込力・引抜力」 画面の「極限支持力度の算出方法」により算出 方法が異なります。

「計算」を選択した場合

「地層」-「土質一覧」-「土質データ③」 画面の支持層(設定は1)の先端地盤N値から杭先端極限支持力度を算出します。

※支持層となる土質データ①の土質種類を参照し、H29道示P.239 表-10.5.2 を用いて算出しています。 「入力 (地層データ)」を選択した場合

「地層」-「土質一覧」-「土質データ③」画面の支持層の『qd』の値をそのまま、杭先端極限支持力度とします。 ※土質データ①の土質の種類によらず、qdに設定された値を用います。 上記設定をご確認ください。

Q1-3-7 H29基礎ソフトの杭基礎計算はラーメンモデルでモデル化し計算しているのでしょうか?

- A1-3-7 永続変動作用の安定計算は、変位法で算出しています。 H29道示IV(P.257)では、ラーメン構造としてモデル化する旨の記述がありますが、従来より本製品で用いている変位法 は、弾性床上はりの微分方程式を用いてすべて有限長の杭として解析しており、常に杭先端条件,多層地盤および断面変 化を考慮したモデル化を行い、杭頭に単位荷重を与えたときの杭頭変位を求め、この関係からK1~K4を算出しており、杭 体断面力・変位分布も同様に弾性床上はりモデルにより算出しています。 この計算方法により、フーチングを剛体と仮定して計算した場合、ラーメン構造(FRAMEモデルによる骨組解析)による 計算と同じ結果が得られますので、H29対応製品においても変位法による解析を行っています。 また、変位法の記述はH29道示IV 参考資料6(P.548~)に記載されております。
- Q1-3-8 杭頭条件は「剛結」なのに、断面力分布が「ヒンジ」の断面力分布のような結果になるのはなぜか?
- A1-3-8 「杭配置」-「杭配置」-「移動」画面の杭中心位置及びフーチング下面中心の作用力(水平力/モーメント)の大きさが影響しています。 響しています。 杭配置や作用力の大きさによっては、杭頭条件が剛結の場合でも杭頭モーメントが小さくなり、ヒンジのような断面力分 布結果になる場合もあります。
- Q1-3-9 PHC杭でプレボーリング工法の場合にR2杭基礎設計便覧を考慮する/しない場合で、押込力・引抜力の制限値に違いが 生じるのはなぜか
- A1-3-9 PHC杭でプレボーリング工法の場合、R2杭基礎設計便覧を考慮すると、 「計算条件」-「設計条件」-「押込力・引抜力」画面の「支持力の周面摩擦力の控除範囲」が有効となり、限値の計算に おいて、杭頭から1/βの範囲の周面摩擦力が控除されます。 この影響で押込力・引抜力の制限値に違いが生じる場合があります。

Q1-3-10 フーチング直下の地層部分を突出杭として、変動時の慣性力を載荷させるにはどうすればよいか?

A1-3-10 本プログラムでは、設計地盤面が基礎天端(フーチング底面)よりも下方に定義された場合、突出杭と判断しております。 具体的には、「地層」-「地層線」-「設計地盤面」画面の『設計地盤面(EQ無し)』, 『設計地盤面(EQ有り)』(①)の入力 が、「杭配置」-「基礎天端」画面の『基礎天端標高』(②)より下方となる場合に突出杭と判断されます。 突出杭となっているかは、「予備計算・結果確認」-「層厚」画面で、突出長=数値>0で確認することができます。 「作用力」-「杭突出部水平荷重」画面において、突出部のすべての範囲に慣性力を考慮する場合、載荷位置を0.0(m)に する必要があります。

Q1-3-11 周面摩擦力度fは杭の軸方向ばね定数Kvに影響しますか?

A1-3-11 影響します。 杭の軸方向ばね定数Kvの算定は、H29道示IV編 P.260~263に記載のとおりです。 H29道示IV編 P.262 Ruは「10.5.2(4)に従って算出される地盤から決まる杭の極限支持力の特性値」となっています。 10.5.2(4)はH29道示IV編 P.238において式が記載されています。Ru=qd・A+UΣLi・fi この式の通り、周面摩擦力fiが考慮されます。

1-4 杭体照查(永続変動作用)

Q1-4-1 H29道示版では杭の抵抗モーメントを出力する機能がない。H29道示(部分係数法)では概念的にないということか。

- A1-4-1 H24年対応版のソフトでは、抵抗モーメント、及び抵抗モーメントと発生モーメントとの交点深度の出力は、断面変化位置 検討の際の補助となることを目的として出力しております。
 - ・「杭基礎設計便覧(H.4)社団法人日本道路協会」(P.351~)
 - ・「杭基礎設計便覧(H.18)社団法人日本道路協会」(P.175~)
 - ・「杭基礎設計便覧(H.27)社団法人日本道路協会」(P.234~)

H29年道示IV P.564~参考資料9.杭の変化位置の設定例に、杭の変化位置を定める方法の例が明記されております。 この例によれば、抵抗モーメントを求める必要性はありませんので、「抵抗モーメントを出力する機能」は今後も対応予定 はありません。

Q1-4-2 杭体照査(H29道示IV P.273)にある調査・解析係数を決定するためのスイッチはどこにあるか。

A1-4-2 杭配置-腐食代/変位量の画面にスイッチを用意しています。 地盤の変形係数の推定方法は「杭配置」-「腐食代/変位量」画面で選択します。 この選択は、「dd計算ボタン」を押下したとき、橋脚基礎の場合は水平変位の制限値ddを計算する場合に使用します。 また、杭の部材照査におけるH29道示IV P.273 (b)調査・解析係数に記載の正曲げξ1を決定する場合にも使用します。

Q1-4-3 PC杭(SC+PHC杭)の部材照査を行うと計算が止まったような動作になるのはなぜか。

A1-4-3 「基礎の設計」側の改訂 Ver.2.1.0において

「杭基礎: PHC杭のせん断照査においてせん断スパン比の影響 (参考資料8)を考慮するようにしました。」 PHC杭(SC+PHC杭)のケースは、せん断スパンを正確に考慮するため、内部的に細かな深度の計算が必要になり、計算量 が増えております。 ※杭長が長い/荷重ケースが多い場合は特に計算量が増えます。

PCスペックにも多少依存はしますが、2~5分位で計算が終了する可能性がありますのでしばらくお待ちください。 約5分程待っても計算が終了しない場合は、データ(破損防止のため圧縮)を添えて、サポート窓口へお問い合わせください。

Q1-4-4 結果総括/杭体(永続/変動作用)を実行すると、「降伏曲げモーメントの特性値Mycの計算に失敗しました」とエラーが 出る。(場所打ち杭の場合)

A1-4-4 場所打ち杭の場合は、杭体の部材照査において、軸力及び曲げモーメントに対する限界状態1および限界状態3の照査を 行っています。

この照査の制限値は、下記から算出致します。 部材降伏に対する曲げモーメントの制限値 Myd = {1・Φy・Myc ξ1:調査・解析係数 Φy:抵抗係数 Myc:降伏曲げモーメントの特性値 計算時のメッセージにあるように、Myc:降伏曲げモーメントの特性値の計算でエラーが発生しています。 「杭体」ー「使用鉄筋」ー「断面x」の鉄筋量を増加を検討してください。

Q1-4-5 詳細結果の杭体断面力で表示される1.21mFとは何を意味するのか。

A1-4-5 1.2lmFは、地中部の最大曲げモーメントの深さImFに1.2を乗じた位置となり、杭の断面変化位置の決定時に参照されま す。H29道示IV 参考資料9(p.564)を参照ください。

1-5 杭頭結合部(永続変動作用)

Q1-5-1 杭頭接合部の計算を従来のA工法 (フーチングに一定長さだけ埋め込む方法) での計算は可能か。

A1-5-1 H29道示IV P.284~に記載のとおり、接合方法は方法Bのみの記述になりましたので、方法Aには対応しておりません。 杭頭接合部(道示H29)では、以下の照査は行っております。 ・仮想コンクリート断面照査

・杭頭補強鉄筋の定着長

- Q1-5-2 旧24年道示版は、フーチングの支圧応力度,水平支圧応力度,押し抜きせん断応力度,水平せん断応力度が計算できるが、H29道示では必要ないのか。
- A1-5-2 杭頭接合部(道示H29)では、以下の照査は行っております。 ・仮想コンクリート断面照査 ・杭頭補強鉄筋の定着長 支圧応力度、押し抜きせん断応力度,水平せん断応力度に関する記載が、H29道示にはありませんので、Ver.1.0.0~ Ver.4.1.1では対応しておりませんでした。

杭基礎設計便覧(令和2年9月)に押抜きせん断照査(鉛直、水平)が明記され、Ver.5以降でこの照査には対応しましたので、最新バージョンをご利用ください。

- Q1-5-3 PHC杭の杭頭カットオフ区間の照査において、耐荷性能照査の前提を満足させるにはどのような対策をとればよいか?
- A1-5-3 耐荷性能の照査の前提では、R2杭基礎設計便覧(p.275)の記載のとおり、H29道示IV式(5.2.1)(p.79)よりコンクリートの 平均せん断応力度でmを求めますが、でmの算出にはスパイラル鉄筋は影響しません。 せん断応力度を小さくするには、1本当たりのせん断力を小さくするか、b?dを大きくする必要がありますので、杭本数また は杭径を大きくする必要があります。
- Q1-5-4 杭頭接合部 PHC杭のカットオフ照査: ra (制限値) はどこを参照したものか?
- A1-5-4 令和2年杭基礎設計便覧 P.275 「PHC杭のコンクリート設計基準強度は80N/mm2であり、大きなせん断応力度が期待されると考えらるものの、 十分な検証が実施されていないことから、せん断応力度の制限値は、道示IV表-5.2.4に規定されるコンクリート設計基 準強度の上限値となる30N/mm2の値とする。」 以上により、永続作用支配状況:1.9、変動作用支配状況:2.9となります。
- 1-6 フーチング照査(永続変動作用)
- 1-7 安定計算(偶発作用)
- Q1-7-1 レベル2地震時の作用力(動的解析の断面力)を直接指定した場合、基礎に主たる塑性化を考慮した設計(応答塑性率の 照査)は行えないのか。
- A1-7-1 作用力を直接指定してレベル2地震時照査を行う場合、基礎の耐力照査(設定された作用力を載荷したときに基礎が降 伏に達しているか否か)のみ行っており、応答塑性率の照査を行うことはできません。

通常の橋脚基礎であれば、H29道示V10.2(P.234~)のように、橋脚躯体および上部構造には設計水平震度khpを、フーチングには設計水平震度khgを作用させて計算を行い、基礎が降伏に達し応答塑性率の照査を行う条件下であれば、H29 道示V10.4(P.239~)に準じ、応答塑性率を算出します。

しかしながら、作用力を直接指定する場合、柱基部または底版下面中心の作用力を直接与えて照査するため、作用力に対する水平震度は定義されません。

基礎の応答塑性率の算定には、基礎が降伏に達したときの水平震度khyFおよびkhF (=CD・C2z・kho) が必要となりますが、作用力を直接指定する場合、基礎が降伏に達した状態を求めることができたとしても、この状態に相当する設計水平震度khyFを導き出すことができないため、応答塑性率を算出することはできません。

このように、現行では、作用力を直接指定する場合の応答塑性率の算出方法が明確でないことから、応答塑性率の照査 は行わず、基礎の耐力照査のみを行っております。ご了承ください。

Q1-7-2 周面摩擦力を変更したら、安定計算(偶発作用時)の結果に差が生じたのはなぜか。

A1-7-2 偶発作用時は荷重増分法により計算しています。

荷重増分法では、前ステップまでの状態における杭前面地盤の弾塑性状態、杭体の曲げ剛性等を用いて作成した計算モ デル(杭基礎の剛性行列)に、前ステップからの荷重増分を載荷して得られた変位、反力、断面力等の状態量を、前ステッ プまでの累計値に加算していきます。 つまり、ステップごとに上記の計算を行って、原点変位の増分,各杭の杭頭反力の増分,各杭の状態量分布の増分を算出 し、累計しています。具体的には、ステップごとに前ステップまでの累計値を用いて次のように計算しています。

(1)各杭の杭軸方向ばね定数Kvを設定 押込み・引抜きの上限値に達した杭はKv=0.0とします。
(2)各杭の地盤反力係数kHE分布を設定 水平地盤反力度の上限値に達した部材はkHE=0.0とします。
(3)(2)と杭体曲げ剛性を用いて各杭の杭軸直角方向ばね定数K1~K4を算出 杭頭モーメントが全塑性モーメントに達した杭は杭頭ヒンジとします。
(4)道示IV(参6.1),(参6.2)に記述されている三元連立方程式を作成
(5)(4)の三元連立方程式を解いて原点変位を算出
(6)(参6.4)より、各杭の杭頭変位を算出
(7)(5),(6)を用いて(参6.3)より、各杭の杭頭反力を算出
(8)(7),(2)と杭体の曲げ剛性を用いて各杭の状態量(断面力,変位)分布を算出

ケースによっては、押込み・引抜きの上限値の上限値に達すると、上記計算フロー(1)に影響を与えます。 周面摩擦力の変更により、この上限値に達するのが、要因と考えられます。

Q1-7-3 偶発作用の計算書に、「耐震設計上の地盤より上方の杭に作用させる荷重P(1本あたり)」という出力がされる場合とされ ない場合がある。出力される場合はどういったケースで、どういった計算か。

A1-7-3 耐震設計上の地盤面が下がり、突出杭の扱いになった場合、自動的にその部分に杭体慣性力が考慮されます。 杭体慣性力が自動載荷されているか載荷されていないを判断する基準は、 計算書作成の「偶発作用」-「XXX/考慮・地震動タイプI/I・浮力無視/考慮」の出力において、『耐震設計上の地盤 より上方の杭に作用させる荷重P(1本あたり)』(杭体慣性力(kN/m))) 上記に出力されていれば、該当ケースは考慮されていると考える事ができます。

Q1-7-4 基礎応答塑性率の制限値(橋台=3、橋脚=4)は、道示のどの項に記載されていますか?

- A1-7-4
 平成29年道路橋示方書IV P.292 10.9.3基礎の塑性率及び変位の制限値に記載があります。
 【参考】平成24年道路橋示方書V
 P.248 12.5 橋脚基礎の塑性率及び許容変位
 P.258 13.4 橋台基礎の塑性率
- Q1-7-5 「レベル2地震時結果の総括表」画面において、判定OK時の許容比率(計算値/制限値)を表示する」を選択した時、 「杭体」が最大比率を表示していないのはどうしてですか?

A1-7-5 「総括表」画面における「判定OK時の許容比率(計算値/制限値)を表示する」を選択したとき、制限値以下となる部材 にのみ着目して、最大許容比率ではなく最小許容比率を表示するようにしています。 杭体の降伏による降伏の目安は、全ての杭体が降伏する場合ですので、100本の杭があり99本が降伏していても残り1本 が降伏していなければ、基礎は降伏しているとはみなされません。 言い換えますと、残り1本の発生曲げモーメントが降伏曲げモーメント未満(100%未満)であればよいということになりま す。 既に降伏に達した残りの杭はいくら(発生曲げモーメント)/(降伏曲げモーメント)の比率が大きくても関係ありません。 従いまして抽出する杭としましては、(発生曲げモーメント)/(降伏曲げモーメント)の比率が最も小さい杭となります。 これは、本抽出の目的が「基礎が降伏しているか否か」を判定するためであるからです。 Q1-7-6 場所打ち杭の断面変化位置を決定する際、1/2Mmax点と1.2ImFの深い方とありますが1.2ImFは何の基準に準拠しているのでしょうか。

A1-7-6 H29道示IVのP564に記載の通り、場所打ち杭の断面変化位置は
 ①1/2Mmax位置
 ②1.2ImF位置
 ③1/2Asで断面照査を満足する位置
 のうち最も深い位置とされています。
 なお、巻末資料9.「杭の断面変化位置の設定例」も参考にしています。

本製品で断面変化位置を自動決定する場合は、上記のように全ケースの最下位置のケースとするか、第1断面の曲げモー メントと制限値の比が最大のケースで決定するかを選択できるようにしています。「杭体」-「共通データ」の『断面変化 位置の決定方法』にて選択いただけます。どちらを選択されるかは最終的には設計者のご判断で決定してください。

- Q1-7-7 橋台基礎連動時、基礎側の「計算条件」-「基本条件」-偶発作用の選択が出来ません。どうしてですか?
- A1-7-7 橋台基礎連動時は、橋台側の「初期入力」-「レベル2地震時」 基礎底版照査のスイッチを有効して頂く仕様になっています。このスイッチを有効にした後、基礎側の「計算条件」画面をご確認ください。なお、基礎単独でご利用する場合は、「計算条件」画面で指定可能です。
 基礎単独時の偶発作用は、以下の条件の場合、偶発作用は「計算しない」になります。
 (1)2次元解析&地層傾斜=あり(「地層」画面)
 (2)2次元解析&『杭径・杭長変化=あり』(「杭配置」画面)
- Q1-7-8 「作用力を指定して偶発作用を行う」で、柱基部断面力(両方向)を選択し、基本条件(杭基礎)タブで、入力を済ませて 確定を押すと、以下のメッセージが表示されます。どのように修正を行えばよいのか?

A1-7-8

			Vo', Hd, Md 連動	木位高,上載土厚法	助作用力計算	
1 Mill(comp)	te pour	THE MAN AND AND	予備計算用水位 (m)	1.690	3.690	
子体計算用水位(引	動ボタンによ	る運動方法)	V*0cN0	14743.32	11364.91	
※水位は標高、上載	土刷はフーラ	Fング下面からの厚さ	WF'0kN0	8043.84	4826.30	
厂 上載土の慣性力	を考慮する(作用力計算時)	Ws 0xN0	5997.42	5997.42	
hF (m)	1.000	※hF: 原版下面からWF 重く位置までの高さ(m)	Up (kN)	0.00	0.00	
WF 0:N0	8446.03		作用力算出用水位 (m)	1.690	3.690	
上载土厚(m)	4.110			水位無視	水位考慮	

			Y方向		X方向				
		V 0:N0	H 0:N0	M (k:N-m)	H 0:N0	M (k:N•m)			
初期作用力	桂基部	10234.000	0.000	0.000	5293.000	12530.000	Vp*	Hp'	Mp
	應該下面	24977.320	0.000	0.000	5293.000	23116.000	v	H'	Μ'
全作用力外77	柱基部	10300.000	13301.000	123187.000	13303.000	63592.000	Vp	Hp	Mp
	虑版下面	25043.320	16679.412	153167.412	16681.412	93576.412	V	н	м
全作用力外7世	柱基部	10234.000	13301.000	123187.000	13303.000	63592.000	Vp	Hp	Mp
	佛若日下语	24977.320	17608475	154096475	17610475	94505475	V	н	м

青枠のVが初期作用力と全作用力タイプⅠが異なった値を設定した事で、赤枠の底面下面の初期作用力(24977.320kN) と全作用力タイプⅠ(25043.320kN)となっています。 対策(変更)点は、青枠のVが初期作用力と全作用力タイプⅠを一致させる必要があります。

- Q1-7-9 「偶発作用」-「基本条件」-「基本条件(杭基礎)」画面のフーチング重量WFはどのように算出していますか?
- A1-7-9 フーチングの重量WFには、部分係数を考慮した値をセットして頂く仕様になっております。 例えば、製品サンプル(Pile_1.PFJ)の場合、8.5×8.5×2.2×24.5×1.05=4088.9(kN)

Q1-7-10 「計算条件① | 杭体から決まる引抜き支持力の上限値」の選択の出典元は?

A1-7-10 杭体の鋼材と杭頭補強鉄筋の小さい方より算出する選択は「道路橋の耐震設計に関する資料(平成9年3月)」P.4-31を参考にしています。

Q1-7-11 偶発作用の計算条件②にkhpとkhNの選択肢が追加された理由は?

- A1-7-11 khplはCdF=1.1を考慮した震度(H29道示V編 p.238)であり、khyF≦khp であっても橋脚基部が塑性化している可能性が あるため、本スイッチの選択肢をVer.5.0.0で追加し、拡張しました。
- Q1-7-12 「地層」-「低減係数」画面の地震動タイプ2 (タイプ1/II) 低減係数DEで、入力 (液状化判定による計算値) 以外の値が 安定計算に反映されているのはなぜか?
- A1-7-12 「地層」-「低減係数」 画面の設定「耐震設計上の地盤面」は、偶発作用時に影響する設定です。

【Aが指定された場合】

地盤反力が期待できる土層の層厚に関わらず、地盤反力が期待できる土層の最上面を耐震設計上の地盤面とします。

【Bが指定された場合】

土質定数を零としない(地盤反力が期待できる土層)層厚3.0m未満の中間層がある場合、道示V3.5により、耐震設計上の地盤面を層厚3.0m以上の土質定数を零としない(DE(レベル2)0.0)層の上面に設定します。

【Cが指定された場合】

Bと同じ耐震設計上の地盤面を設定し、それより上方の土層に対しては、低減係数がDE>0.0であっても、地盤反力係数,地盤反力度の上限値を0.0として偶発時の計算を行います。

Cを選択している場合は、耐震設計上の地盤面からその上方の土層の低減係数が0.0となり、お考えの低減係数DEと異なる場合があります。

- Q1-7-13 偶発作用(2.5次元解析)において、集計表のPHxと断面力結果の杭頭せん断力が一致しないのはなぜか?
- A1-7-13 2.5次元解析では、X,Y両方向の作用力を考慮した計算を行うため、各杭ごとに、

PN:杭頭杭軸方向反力(kN) PHx:X方向の杭頭水平反力(kN) PHy:Y方向の杭頭水平反力(kN) MTy:Y軸回りの杭頭モーメント(kN·m) MTx:X軸回りの杭頭モーメント(kN·m) のように、両方向の杭頭反力が算出されます。地中部も同様に両方向の杭体断面力が算出されます。 このとき、杭体設計時の杭体モーメントおよびせん断力については、 $M = \sqrt{(My2+Mx2)}$ $S = \sqrt{(Sx2+Sy2)}$ として合成しています。 例えば、 PHx = 1108.096(kN) PHy = -49.967(kN) の場合だと、

杭頭せん断力S = √(1108.0962+(-49.967)2) = 1109.222(kN)となります。

Q1-7-14 偶発作用の計算を実行したとき、杭前面地盤がすべて塑性化し(水平地盤反力度が水平地盤反力度の上限に達し)、水平 方向地盤反力係数を考慮する範囲がなくなった杭が発生しました。 のメッセージが表示される場合がある。計算書はどこをみれば、その判断が可能ですか?

A1-7-14 計算結果につきましては、計算書の「偶発作用」-「液状化**・地震動タイプ**・浮力**」の「前面地盤状態」をご確認くだ さい。 本出力の「死荷重時」で地盤反力係数>0.0,「設計荷重時」で地盤反力係数=0.0と出力している範囲は、地盤抵抗を考 慮した結果、設計荷重時には地盤反力度が上限値に達し塑性状態にあることを示しています。 また、「死荷重時」,「設計荷重時」ともに地盤反力係数>0.0と出力している範囲は、設計荷重時においても地盤反力度 が上限値に達しておらず、弾性状態にあることを示しています。

Q1-7-15 杭基礎の結果一覧出力で「偶発作用」-「部材照査-杭頭」の結果が最も厳しい結果になっていないのはどうしてか?

A1-7-15 仮想鉄筋コンクリート断面の照査において、以下のようなケースを考えてみます。 ①杭 1746.8 (応答値) / 2488.4 (制限値) =0.702 ②杭1476.6 (応答値) / 2079.4 (制限値) =0.710

> 「偶発作用」--「基本条件」--「計算条件③」 画面に「杭頭仮想鉄筋コンクリート断面の照査 照査方法」1列(本) ごとに 照査/全列(杭)で照査のスイッチを用意しており、取り扱いの違いがあります。 全列(杭)を選択している場合、最も余裕の有るデータを抽出して出力、1列(本)ごとに照査を選択している場合は、最も 厳しい結果を抽出しています。

Q1-7-16 偶発作用時基本条件-計算条件③の杭頭仮想鉄筋コンクリート断面の照査で「1列(本)ごとに照査」「全列(杭)で照 査」が選択できるが、どちらを選択したらよいか

A1-7-16 本プログラムの仮想鉄筋コンクリート断面の照査は、杭基礎設計便覧(H19.1)6-3-2(P.301~)を参照し作成しております が、本文献では、一部の杭列のみ杭体の降伏曲げモーメントあるいは杭頭発生曲げモーメントが仮想鉄筋コンクリート断 面の降伏曲げモーメントを超えたとき、仮想鉄筋コンクリート断面の照査を満足したとみなすべきか否か、明確な記述が ありません。

> ただし、杭基礎設計便覧の執筆者による各論(基礎工2006.12月号.P.048~)では、 結合部に損傷が生じた場合の基礎の挙動や変形性能は、現在のところ不明である。設計法を確立するためには、今後も 実験や万が一損傷が生じた場合の補修方法などの研究が必要である。 基礎の許容塑性率に関するこれまでの実験的研究については、杭頭結合部に損傷が生じる場合を想定していない。した がって、確実に基礎で塑性化を先行させるためにも、杭頭結合部をフーチングー杭体間で確実に荷重伝達が行えるような 構造としておく必要がある。

とあります。 本記述は、結合部に損傷が生じた場合の基礎の挙動は未解明な部分が多く、今後の研究成果により設計法が確立される までは確実に安全性が確保される構造とする必要があると述べているものと考えられます。

本プログラムでは、上記の記述を参照し、本照査に対応した旧ソフトVer.6.01.00においては、安全側の評価となるよう、 部分的にでも杭頭結合部に損傷が生じるケースは許容せず、1列でも仮想鉄筋コンクリート断面の降伏曲げモーメントを 超える杭列が生じたとき、仮想鉄筋コンクリート断面の照査を満足しないものと考え、最終的な判定をOUTとしておりま した。

しかしながら、その後、他のユーザ様より、一部の杭の杭頭部が損傷を受けたとしても、ただちに基礎全体の挙動が不安 定とはならないケースも考えられることから、部分的に杭頭に損傷が生じることを許容した照査を行ってもよいのではな いかとのご意見, ご要望をいただき、旧ソフトVer.6.04.00において、この選択を設けました。

ただし、前述のとおり、杭基礎設計便覧には、本選択に関する明確な記述はありません。

最終的には設計者の方のご判断により選択してください。 なお、「1列(本)ごとに照査」が部分的な損傷を許容せず、全杭の耐力を満足して初めてOKと判断する方法、「全列(杭) で照査」が部分的な杭頭結合部の損傷を許容する方法となります。

- Q1-7-17 偶発作用時の水平方向の押抜きせん断照査はどの基準書を参考にしたものか?
- A1-7-17 橋梁構造物設計施工要領 [Ⅳ下部構造編] Ⅳ-42を参考しています。

Q1-7-18 偶発作用時 (レベル2地震動)のM-φ算定における杭群図心と底版中心は一致しますか?

A1-7-18 杭群図心と底版中心が必ず一致するとはかぎりません。イレギュラーなケースも想定して別途算出しています。

$$\begin{split} \Sigma K v i \cdot (x i - e x) = 0 \\ \Sigma K v i \cdot (y i - e y) = 0 \& \mathcal{V} \end{split}$$

 $ex = \Sigma Kv i \cdot x i / \Sigma Kv i$

ey=ΣKvi•yi∕ΣKvi

ここに、

- ex:仮の図心から図心までのX方向の離れ
- ey:仮の図心から図心までのY方向の離れ
- xi:仮の図心を原点としたときの杭iのX座標
- yi: 仮の図心を原点としたときの杭iのY座標
- Kvi:杭iの軸方向ばね定数

Q1-7-19 鋼管系 (鋼管杭, 鋼管ソイルセメント杭, SC杭, 回転杭) において、レベル2地震時のせん断照査を省いている理由は?

A1-7-19 H29道示IV編 P.290 「鋼管杭…せん断力に対する照査は省略することができる」と記載されており、せん断照査は行って おりません。

1-8 フーチング照査(偶発作用)

- Q1-8-1 H24年道路橋示方書とH29年道路橋示方書でレベル2地震時の照査を行った際に降伏の判定が大きくことなる原因は何か。
- A1-8-1 以下の点が、平成24年道路橋示方書と異なっているのが原因となりますが、降伏の判定が大きく変わる場合は、1の項目 をご確認ください。
 - 1. Kvの値

H29年道路橋示方書より、支持杭と摩擦杭でKv値の算出が変更になっております。

平成29年道路橋示方書 P.260をご確認ください。

2. 押込み力の制限値

押込み力の制限値の式において、極限支持力度の特性値の算出が変更になっております。

平成29年道路橋示方書 P.239をご確認ください。併せて、支持力の制限値には、部分係数が考慮されておりますのでご確認ください。

3. 作用力について

作用力については、D+EQ(L2)時の荷重係数、組合せ係数を考慮いたします。

Q1-8-2 フーチング照査に用いる柱基部断面力が正しくありません。のメッセージが表示されるのはどうしてですか?

A1-8-2 このメッセージ記載の通り、「フーチング(偶発作用)」-「X方向」-「柱基部断面力」画面で、柱基部断面力を入力する必要があります。

製品ヘルプ「計算理論及び照査の方法」-「杭基礎」-「レベル2地震時照査」-「基礎の非線形を考慮した解析方法」-「フーチング照査」の連続フーチングの橋軸直角方向の照査を確認ください。 連続フーチング柱間レベル2地震時照査を行うには、底版自重,上載土重量,浮力,杭頭反力,および部材照査時の各柱 基部の作用力が必要となりますが、本プログラムには多柱式橋脚そのものの設計機能がありませんので、部材照査時の 荷重状態における柱基部断面力を直接入力していただくようにしています。 部材照査時の荷重状態における柱基部断面力につきましては、設計者の方のご判断により別途算出してください。

(1)断面照査時の底版下面作用力

、基礎の安定計算に用いた設計荷重を示しており、計算書の「偶発作用」ー「液状化無視/考慮・地震動タイプI/II・浮力 無視/考慮」ー「橋軸直角方向」の設計荷重がこれに該当します。 この荷重状態は、

- ・基礎が降伏に達しなかったとき:最終震度時
- ・基礎が降伏に達して応答塑性率照査を行わないとき:基礎降伏時
- ・基礎が降伏に達して応答塑性率照査を行ったとき:応答変位時
- となります。

(2)柱基部断面力より算出した作用力 本画面で入力した各柱の基部断面力に底版自重, 慣性力, 上載土重量, 浮力を考慮し、底版下面中心の作用力に換算した値です。 具体的には、 $V=\Sigma(Vpi)+上載土重量+底版重量-浮力+任意荷重$ $H=\Sigma(Hpi)+底版慣性力$ $M=\Sigma(Mpi)+\Sigma(Vpi・xi)+底版慣性力によるモーメント+上載土および底版自重の左右非対称性によるモーメントー浮力によるモーメント+任意荷重によるモーメント$ xi:底版下面中心を原点とした各柱中心のx座標となります。

(1)と(2)が一致しない場合、作用力と反力とが釣り合わない荷重載荷状態になりますので、支点に反力が生じ、設計断面 力に影響が生じますのでご注意ください。 計算実行時、(1)と(2)の誤差が約5%を超える場合警告を表示します。あまりに頻繁に警告が表示されるのを防ぐため許 容誤差は5%と大きく設定していますが、本来は完全に一致させる必要があります。

1-9 基礎ばね

Q1-9-1 H24年版とH29年版ソフトの杭基礎の基礎ばね値(固有周期算定用)は同じ結果になりますか?

A1-9-1 軸方向ばね定数Kvに相違が生じるため、基礎ばね値(固有周期算定用)は同じ結果にはなりません。

Q1-9-2 直杭で杭配置が杭1本だけズレが生じた(非対称モデル)ときに、Arv=Avr≠0になるのはなぜか?

A1-9-2 基礎ばねの算定式は以下の通りです。

 $\begin{array}{l} \operatorname{Ass} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{sin2} \; \theta + \operatorname{K1} \cdot \operatorname{cos2} \; \theta) \; \mathrm{i} \\ \operatorname{Asr} = & \operatorname{Ars} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{X} \cdot \operatorname{sin} \theta \cdot \operatorname{cos} \theta - \operatorname{K1} \cdot \operatorname{X} \cdot \operatorname{sin} \theta \cdot \operatorname{cos} \theta - \operatorname{K2} \cdot \operatorname{cos} \theta) \; \mathrm{i} \\ \operatorname{Arr} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{X2} \; \cdot \operatorname{cos2} \; \theta + \operatorname{K1} \cdot \operatorname{X2} \; \cdot \operatorname{sin2} \; \theta + \; (\operatorname{K2} + \operatorname{K3}) \; \cdot \operatorname{X} \cdot \operatorname{sin} \theta + \operatorname{K4} \} \; \mathrm{i} \\ \operatorname{Asv} = & \operatorname{Avs} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{cos} \theta \cdot \operatorname{sin} \theta - \operatorname{K1} \cdot \operatorname{sin} \theta \cdot \operatorname{cos} \theta) \; \mathrm{i} \\ \operatorname{Arv} = & \operatorname{Avr} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{X} \cdot \operatorname{cos2} \; \theta + \operatorname{K1} \cdot \operatorname{X} \cdot \operatorname{sin2} \; \theta + \operatorname{K2} \cdot \operatorname{sin} \theta) \; \mathrm{i} \\ \operatorname{Avv} = & \Sigma \; (\operatorname{Kv} \cdot \operatorname{cos2} \; \theta + \operatorname{K1} \cdot \operatorname{sin2} \; \theta) \; \mathrm{i} \\ \end{array}$

ここに、Ass :水平方向ばね(kN/m) Asr=Ars:水平と回転の連成ばね(kN/rad, kN.m/m) Arr :回転ばね(kN.m/rad) Asv=Avs:鉛直と水平の連成ばね(kN/m) Arv=Avr:鉛直と回転の連成ばね(kN.m/m, kN/rad) Avv :鉛直ばね(kN/m)

直杭の場合、 $\cos\theta$ =1.0、 $\sin\theta$ =0.0になるため、Arv=Avrの算定式は、以下の様になります。 Arv=Avr= Σ (Kv・Xi) 杭が対称配置されている場合は、相殺されてArv=Avr=0になりますが、杭が非対称(杭位置が1本でもずれる)の場合は、 Arv=Avr≠0となります。

Q1-9-3 動的変形係数EDの算出に用いる土の単量γはなぜ湿潤重量を用いているのか?

- A1-9-3 H29道示V編 P.88に動的変形係数の推定式が記述されており、水中の取扱いについての記述がありませんが、一般に湿潤重量を表す記号γtが用いられています。
 また、「道路橋の耐震設計に関する資料(平成9年3月)社団法人日本道路協会」のP.2-4~P.2-10に杭基礎の基礎ばねの計算例が記載されていますが、ここでの計算値は表-2.1.4(P.2-5)のγ(浮力を考慮しない値)から算出したEDを用いて計算した結果と一致します。
 以上により、本プログラムでは、入力された湿潤重量γtを用いて算出した動的変形係数EDを初期設定しています。
- 2 鋼管矢板基礎
- 2-1 適用範囲
- Q2-1-1 仮締切り時の計算及び頂版・矢板接合部の計算の対応はどうなっているか。
- A2-1-1 2019年11月の時点では、仮締切り時の計算及び頂版・矢板接合部の計算に不明な部分(係数等)があるため未対応で す。
- Q2-1-2 鋼管矢板基礎のGj及びqjの値については、平成29年道路橋示方書と平成24年道路橋示方書で異なる理由は何か。
- A2-1-2 平成29年道路橋示方書IVでは、平成24年道路橋示方書のレベル2地震時の設計モデルと同様の 仮想井筒ばりを永続変動作用時並びに偶発作用時において適用することから扱いは下記のようになっています。
 - ■平成24年道路橋示方書
 - ・継手管のせん断剛度 Gj 600000(kN/m2)
 継手の抵抗力qj(常時) 100(kN/m)
 継手の抵抗力qj(地震時) 133(kN/m)
 - ■平成29年道路橋示方書
 - ・継手管のせん断剛度 Gj 1200000(kN/m2)
 継手の抵抗力qj 200(kN/m)

2-2 基本条件

Q2-2-1 継手のせん断ずれ変位を確認することができるか。

A2-2-1 「基礎の設計・3D配筋(部分係数法・H29道示対応)」Ver.3.0.0より、継手のせん断ずれ変位の計算に対応しました。 「基本条件」画面で継手のせん断ずれ変位を計算するを指定後、計算書の本体計算の詳細出力にて確認することができ ます。

2-3 地層、形状

2-4 地盤バネ

- Q2-4-1 「EQ無し, EQ有りの基礎ばね」を算出できるか。
- A2-4-1 可能です。 「基本条件」-「EQ無し, EQ有りの基礎ばね」を計算するに変更すると、「固有周期」「EQ無し」「EQ有り」の基礎ばね を計算します。
- 2-5 支持力・周面摩擦力
- 2-6 設計外力(単位重量・慣性力等)
- 2-7 基礎本体(弾性床上の有限梁)の計算
- 2-8 基礎本体(仮想井筒梁)の計算
- Q2-8-1 負の周面摩擦力を検討するケースは、どこで指定するのか。
- A2-8-1 「作用力」画面で負の周面摩擦力を検討するケースを方向毎に指定してください。 尚、負の周面摩擦力の計算については、「基礎の設計・3D配筋(部分係数法・H29道示対応)」Ver.3.0.0にて対応してお ります。
- 2-9 仮締切り
- Q2-9-1 火打ち梁の検討において、取り付け角度は45°以外指定できるか。
- A2-9-1 火打ち取り付け角は45°固定で計算しており、変更はできません。
- Q2-9-2 盤ぶくれ照査における締切り面積Aはどこの部分になるか?
- A2-9-2 下図の鋼管矢板基礎の場合は、緑色部分が締切り面積Aとなります。 中打ち杭や隔壁がある場合はその部分を除く面積です。

- Q2-9-3 仮締切の計算において、頂版打設後の主働側圧に大きな値が出力されるのは何故か。
- A2-9-3 本プログラムの仮締切り計算は、鋼管矢板天端から矢板先端までを1本棒としてモデル化し、弾性床上の有限長ばりとし て弾塑性解析法により照査しております。

このモデルは、背面側から有効主働側圧が作用し、掘削面側(受働側)の支保工や底盤コンクリート,地盤等で支持されるものとしていますが、これらの支保工や底盤コンクリートは、外圧により仮締切り壁が変形した状態で設置されることから、この段階で発生していた変位を計算に考慮する必要があります。

- この変位は、一般に先行変位と言われており、例えば支保工であれば、次ステップ以降の計算において、
- ①先行変位×支保工バネの荷重(先行変位が生じるのに必要な荷重)を載荷する
- ②先行変位に相当する強制変位を与える 等によりモデル化します。
- 本プログラムでは、①の方法を採用しています。

ここで、頂版打設後のモデル化の方法,計算方法は、道路橋示方書や鋼管矢板基礎設計施工便覧等の基準類,参考資料 等のいずれにおいても提示されておりません。

考え方自体が明確でないことから、本プログラムでは、支保工や底盤コンクリートと同様、上記①の方法にて先行変位を 考慮する方法を採用しており、具体的には、頂版打設直前に生じている先行変位にバネを乗じた荷重を以降のステップの 頂版打設範囲に載荷しています。

このとき、頂版は剛性が高く、打設後に生じる変位は微小であることから、先行変位に乗じるバネ値は、便宜的に極大値 (9999999.0 kN/m2)としています。掘削面側の頂版のバネも9999999.0(kN/m2)としていることから、これにより、頂版 打設時の先行変位に拘束されることになります。

計算書の「主働側圧」の欄に大きな値が出力されるのは、この荷重値が出力されているためで、先行変位× 9999999.0(kN/m2)を示しています。

2-10 合成応力度

- 2-11 保耐法照查
- Q2-11-1 流動化の検討のみを行うことができるか。
- A2-11-1 流動化のみ検討する場合は、「レベル2地震動作用時基本条件」画面の流動化考慮を選択後、液状化の「無視」と「考慮」のチェックを外してご検討ください。
- 2-12 基礎バネ
- 2-13 付属設計
- 2-14 その他

Q2-14-1 鋼管矢板基礎の中間ファイルのルールは?

- A2-14-1 鋼管矢板基礎の結果のファイル名のルールは下記のようになります。
 - ・永続/変動作用ケース ファイル名:***_D_N.AHOY
 ・・・Y方向の照査結果 ファイル名:***_D_N.AHOX
 ・・・X方向の照査結果
 D:1=照査方向Y方向?
 2=照査方向X方向
 N:ケース番号 拡張子:AHOIは、計算用入力データ AHOXは、X方向結果データ AHOYは、Y方向結果データ
 - ・偶発作用時 ファイル名:***(L, T).AHOY ・・・Y方向の照査結果 ファイル名:***(L, T).AHOX ・・・X方向の照査結果 L:0=液状化無視, 1=液状化考慮 T:0=タイプI, 1=タイプII
- 3 ケーソン基礎
- Q3-1 パラペット部材の必要鉄筋量結果が極端に大きい数値になるのはどうしてか
- A3-1 断面厚(パラペット)に対して荷重が大きいと、抵抗することが困難となり、極端に大きな必要鉄筋量が算出されるケース があります。 パラペット厚を増やすこともご検討ください。
- 4 地中連続壁
- 5 直接基礎
- 5-1 設計方法

5-2 入力方法

5-3 計算結果

Q5-3-1 極限鉛直支持力の特性値算定における支持力係数 (Nc、Nq、Ny)の公式はありますか?

- A5-3-1 H29道示の直接基礎:極限鉛直支持力の特性値算定における支持力係数 (Nc、Nq、Nγ)は、以下の式で求めています。 ・Nq=(1+sinφ)/(1-sinφ)・exp(π・tanφ)
 - $\cdot \text{Nc}=(\text{Nq-1}) \cdot \cot \varphi$
 - Ny = exp(7.31319×10-5• φ 3-5.54539×10-3• φ 2+0.291049• φ -3.00714)
 - ※φ3, φ2のφは度
 - ・わかりやすいケーソン基礎の計画と設計:平成10年11月 P.69 図-3.19支持力係数を求めるグラフと算定式
 - ・H29道示 IV編 P.329 図-11.5.1
 - を参考に、H29道示 IV編 P.207 図-9.5.1の支持力係数を求める式として採用しています。

6 液状化の判定

6-1 設計方法

6-2 入力方法

Q6-2-1 完成時が切土の場合や盛土となる場合の入力方法は?

- A6-2-1 製品ヘルプ「操作方法」-「メニューの操作」-「入力」-「液状化の判定」-「検討位置」の説明に入力イメージを掲載しているので、一度、その入力方法をご確認ください。
- Q6-2-2 「設計条件」 画面の「層ごとの土質定数の低減係数を算定する」 の中で、「[xx]m以下の層は低減しない」 設定はどういう時に使うのか。
- A6-2-2 この設定は、H29道示Vp.166に記載されている「ただし、液状化の判定は、一般に、層厚が1m程度以上の連続した土層 を対象に行えばよい」に基づき、層厚が小さい層について土質定数の低減を行わない場合に指定する項目です。 このとき、ここで指定された層厚以下の層については土質定数の低減を行いません。 従いまして、設定する場合には、[0.999]m以下と指定してください。

6-3 計算結果

Q6-3-1 H24道示Vに記載のあった一軸圧縮強度の項ですが、H29道示では説明がありません。 また、一軸圧縮強度の項目はどのように計算に影響しますか?

- A6-3-1 H24道示V(P.134)の解説は、H29道示V(P.66)に記載があります。 計算への影響も同じで、耐震設計上ごく軟弱な土層(地表面から3m以内にある粘性土層で一軸圧縮強度が20(kN/m2)以下の土層)に該当する場合、低減係数が0.000にしています。
- Q6-3-1 液状化の判定において、地盤面における設計水平震度の標準値khgoの値 I種地盤=0.12、II種地盤=0.15、III種地盤=0.18 となっていましたが、なぜでしょうか?
- A6-3-1 液状化の判定に用いる地盤面の設計水平震度の標準値khgoは、H29道示IV編 P.164の表をご確認ください。(参考:H29 道示IV編 P.95)

※Q&Aはホームページ (https://www.forum8.co.jp/faq/win/foundation-h29-qa.htm) にも掲載しております。
基礎の設計・3D配筋(部分係数法・H29道示対応) Ver.8 操作ガイダンス

2024年 9月 第1版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へお問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。 https://www.forum8.co.jp/faq/qa-index.htm

基礎の設計・3D配筋 (部分係数法・H29道示対応) Ver.8 操作ガイダンス

www.forum8.co.jp