

矢板式係船岸の設計計算 Ver.5

Operation Guidance 操作ガイダンス

本書のご使用にあたって

本操作ガイダンスは、おもに初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

ご利用にあたって ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

@ 2019 FORUM8 Co., Ltd. All rights reserved.

目次

6 第1章 製品概要

- 6 1 機能及び特長
- 8 2 適用基準
- 9 3 フローチャート
- 10 第2章 操作ガイダンス 港湾基準の組杭形式モデルー
- 101モデル作成101-1新規作成
- 11 1-2 初期入力
- 13 1-3 水位条件
- 14 1-4 形状
- 17 1-5 考え方
- 20
 1-6
 地層

 21
 1-7
 任意荷重
- 21 1-8 土圧強度
- 21 1-9 盛土
- 22 1-10 部材
- 24 1-11 検討ケース
- 25 2 基準値
- 25 2-1 設計用設定基準値
- 29 2-2 鋼材
- 31 3 計算実行
- 31 3-1 計算実行
- 31 3-2 形状決定
- 32 3-3 タイ材反力
- 32 3-4 控え杭の設置位置
- 33 3-5 形状決定(控え杭)
- 33 4 結果確認
- 34 4-1 前面矢板
- 35 4-2 仮想ばり法
- 36 4-3 たわみ曲線法
- 36 4-4 支保工
- 36 4-5 控え工
- 37 5 計算書作成
- 38 5-1 全印刷
- 41 5-2 結果一覧
- 41 5-3 結果詳細
- 42 6 オプション
- 42 6-1 地層入力方式
- 42 6-2 表示項目の設定
- 43 7 ファイルの保存方法
- 44 第3章 操作ガイダンス 漁港基準の直杭形式モデルー
- 44 1 モデル作成

44	1-1	新規作成
45	1-2	初期入力
48	1-3	形状
49	1-4	考え方
51	1-5	地層
52	1-6	任意荷重
53	1-7	部材
55	1-8	検討ケース
57	2 基	準値
57	2-1	設計用設定値
59	2-2	鋼材
61	3 計算	算実行
61	3-1	計算実行
62	3-2	形状決定
62	3-3	タイ材反力
63	3-4	控え杭の設置位置
63	3-5	形状決定(控え杭)
63	4 結果	果確認
64	4-1	前面矢板
65	4-2	仮想ばり法
66	4-3	支保工
66	4-4	控え工
67	5 計算	算書作成
68	5-1	全印刷
71	5-2	結果一覧
71	5-3	結果詳細
72	6 才	プション
72	6-1	地層入力方式
72	6-2	表示項目の設定
73	7 7	アイルの保存方法

74 第4章 Q&A

第1章 製品概要

1 機能及び特長

対象構造

設計対象構造は、「普通矢板式」と「自立矢板式」です。

矢板式係船岸

<前面矢板壁>

普通矢板式、自立矢板式共通です。壁体種類は、鋼矢板、鋼管矢板とします。
 材質、上部コンクリートの有無、裏込材の有無については下表の通りです。
 サポートの材質については、降伏応力度、許容応力度をテーブルとして用意しております。

壁種類	鋼矢板	鋼管矢板
材料	SY295	SKY400
	SY390	SKY490
上部コンクリート有無	★有り	★有り
裏込材有無	指定	指定

★は選択なし(内部固定扱い)。

<控え工> (1)形式 控え工のサポート形式は次の3形式です。

形式	断面種類
直杭	H形鋼、鋼管杭
矢板	鋼矢板、鋼管矢板
組杭	H形鋼、鋼管杭
版	Х

控え版につきましては、現在、サポートしておりません。

(2)材料

下表の材質テーブルを用意し、降伏応力度、許容応力度テーブルを用意しております。

控え種類	鋼矢板	鋼管矢板	H形鋼	鋼管杭
材質	SY295	SKY400	SHK400	SKK400
	SY390	SKY490	SHK490M	SKK490

<付属構造物> (1)タイ材 タイ材段数は1段です。 (2)腹起し材 断面形状並びに材質は下表の通りです。

腹起し種類	H形鋼	溝形鋼
材質	SS400	同左
	SM490	

(3) 控え杭タイプとタイ材の取付方法について

項目		直杭		矢板		組杭	
		H形鋼	鋼管杭	鋼矢板	鋼管矢板	H形鋼	鋼管杭
上部コンクリート有無		指定		指定		★有り	
控え側腹起しの有無		★無し		★有り		★無し	
裏込材		指定		指定		★	無し
タイ材の平面配置	間隔	タイ材間隔と同じ		タイ材間隔と同じ		タイ材間隔と同じ	
	上部コンクリート有	★杭と杭の中間		関係なし		★杭と杭の中間	
	上部コンクリート無	★ 杭(こ直結	関係なし		>	<

★は選択なし(内部固定扱い)。

普通矢板式の計算機能

<検討ケース> 次の3ケースです。

基準類	常時	地震時	牽引時	津波引き波時
港湾基準	★永続状態	変動状態(L1地震動)	変動状態(牽引時)	
漁港基準	★常時	地震時	牽引時	津波引き波時
災害復旧工事	★常時	地震時		

<検討ケースと設計部材>

牽引時は「タイ材」と「腹起し材」の設計計算になります。

部材	常時	地震時	牽引時	津波引き波時
前面矢板	0	0	×	0
タイ材	0	0	0	0
腹起し	0	0	0	0
控え工	Ó	0	×	Ō

<前面壁の設計計算>

照査項目	計算方法	港湾	漁港
根入れ長照査	フリーアースサポート法	0	0
	フィックストアースサポート法(たわみ曲線法)	0	0
	ロウの方法(弾性ばり解析法)	0	×
断面力計算法	仮想ばり法	0	0
	フィックストアースサポート法(たわみ曲線法)	0	0
	ロウの方法(弾性ばり解析法)	0	×
断面照查	降伏応力度照查/許容応力度照查	0	0
タイ材照査	引張降伏応力度照査/許容応力度照査	0	0
腹起し照査	曲げ降伏応力度/許容応力度照査	0	0

<控え工の設計計算>

照査項目	計算方法	港湾	漁港
直杭/矢板	港湾方式(港湾基準)	0	×
	Changの式(漁港基準)	×	0
	設置距離の計算	0	0
	突出杭の扱い	0	0
	曲げ降伏応力度/許容応力度照査	0	0
矢板	長杭とみなし得る場合	0	0
	長杭とみなし得ない場合	0	0
組杭	タイ材の張力を各杭の軸方向支持力のみで抵抗すると考える場合	0	0
	タイ材の張力を杭の曲げ抵抗も考慮して、杭の軸直角方向支持力も含めて考える場合	×	×
	支持力の検討(打撃工法による打ち込み杭)	0	0
	軸方向降伏応力度照查/軸方向許容応力度照查	0	0

自立矢板式の計算機能

<検討ケース> 次の3ケースです。

基準類	常時	地震時	牽引時	津波引き波時
港湾基準	★永続状態	変動状態(L1地震動)	変動状態(牽引時)	
漁港基準	★常時	地震時	牽引時	津波引き波時
災害復旧工事	★常時	地震時		

<検討ケースと設計部材>

部材	常時	地震時	牽引時	津波引き波時
前面矢板	0	0	0	0

<矢板壁の設計計算>

照査項目	計算方法	港湾	漁港	災害
根入れ長照査	港研方式(港湾基準)	0	×	×
	チャンの式(漁港基準)	×	0	0
断面力、変位計算	港研方式(港湾基準)	0	×	×
	チャンの式(漁港基準)	×	0	0
断面照査	降伏応力度照查/許容応力度照查	0	0	0
	鋼管矢板二次応力の検討	Ó	X	X

2 適用基準

適用基準

・港湾の施設の技術上の基準・同解説 (平成30年5月) 社団法人 日本港湾協会 (以下「港湾基準H30」と略します)

・港湾の施設の技術上の基準・同解説 (平成19年9月) 社団法人 日本港湾協会 (以下「港湾基準H19」と略します)

・漁港・漁場の施設の設計参考図書 2015年度版 水産庁 (以下「漁港参考図書」と略します)

・漁港・漁場の施設の設計の手引 2003年度版 社団法人 全国漁港漁場協会 (以下「漁港基準」と略します)

参考文献

・災害復旧工事の設計要領 (平成27年版) 社団法人 全国防災協会 (以下「災害復旧」と略します)

·漁港·漁場構造物設計計算例 平成17年 社団法人 全国漁港漁場協会

・港湾構造物設計事例集(平成30年改訂版) 一般財団法人 沿岸技術研究センター

・港湾構造物設計事例集(平成19年改訂版) 一般財団法人 沿岸技術研究センター

・鋼矢板・設計から施工まで2014(平成26年10月) 鋼管杭・鋼矢板技術協会

・建設省河川砂防技術基準(案)同解説・設計編(平成9年10月) 建設省 河川局監修、社団法人 日本河川協会編

第2章 操作ガイダンス -港湾基準の組杭形式モデル-

1 モデル作成

港湾基準の組杭形式(普通矢板式)データを例題として作成します。(使用サンプルデータ: Sample-PortH30Kumi.F7B) 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

操作ガイダンスムービー
 Youtubeへ操作手順を掲載しております。
 矢板式係船岸の設計計算
 操作ガイダンスムービー(3:08)

1-1 新規作成

-新規作成

初期入力をチェックして、確定ボタンを押します。

1-2 初期入力

設計条件を入力して、詳細設定ボタンを押します。

一般事項

名称設定

タイトル・コメント:設計条件の出力に使用します。 <タイトル:F漁港-3.5m岸壁の設計> <コメント:粘土地盤の場合> 項目表:現在使用しておりません。

適用基準

適用基準を選択します。 「港湾基準(H30)」では、矢板壁の降伏応力度σykが変更され ているため、既存のデータを読み込んで「港湾基準(H19)」ま たは「港湾基準(H30)」へ変更し、初期入力画面を確定した場 合、データ内の矢板壁の降伏応力度σykを一括変更するか確 認するダイアログが開きます。 <港湾基準(H30)>を選択します。 (Q36参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q36

適用基準-表示名称

適用基準が"漁港基準"の場合に、計算書に出力する基準名称 を以下のいずれとするかを選択してください。 旧基準 : 漁港・漁場の施設の設計の手引 2003年度版 社団法人 全国漁港漁場協会 新基準 : 漁港・漁場の施設の設計参考図書 2015年度版 水産庁 ※本設定による計算部への影響はありません。

構造

設計対象が、普通矢板式か、自立矢板式かを指定します。<普 通矢板式>を選択します。

耐用年数

耐用年数を入力します。腐食計算時に使用します。<30>を入力 します。 (Q5参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q5

施工延長

施工延長を入力します。印刷情報であり、設計計算には使用しておりません。<120.000>を入力します。

前面矢板壁-鋼材種類、鋼材No、上部エコンクリートを設ける

設計予定の壁体種類並びに使用鋼材番号を入力します。<鋼 管矢板><鋼材:4>を選択、<上部工>にチェックします。

側面形状

前面上部工天端高 前面上部工天端高を入力します。本プログラムでは、この位置 から前面矢板壁に土圧が作用するものとします。 <G.L.:2.700>

前面矢板天端高

矢板壁の天端高を入力します。本プログラムでは、矢板全長を この矢板天端高から矢板先端高とします。 <G.L.:2.000>

計画水深

計画水深を入力します。印刷情報であり、設計計算には使用しません。<G.L.:-3.500>

構造水深

構造水深を入力します。本プログラムでは、海底面がこの位置にあるものとして、海側の受働土圧載荷開始位置とします。 <G.L.:-4.000>

地表面天端GLを設定する

チェックを外した場合、「地表面天端=前面上部工天端高」となります。 (Q67参照) https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q67

11

朔望平均満潮位面(高水位)H.W.L. H.W.L.を入力します。<H.W.L.:1.800>

朔望平均干潮位面(低水位)L.W.L. L.W.L.を入力します。<L.W.L.:0.000>

前面矢板壁に裏込材を設ける

前面矢板の背面側に裏込材を設けるか否かを指定します。 本プログラムでは、矢板式係船岸の主働崩壊面を計算するに は裏込材の影響を考慮することができます。 <チェック>を入れます。

主働側常時上載荷重

常時扱いの上載荷重を入力します。<10.00>

地層

地表面天端GLを設定する

地表面天端GLを任意に設定する場合は選択します。設定でき る範囲は残留水位以上、上部工最上部高さ以下です。別途設 定しない場合は、上部工の最上部の高さが地表面となります。 普通矢板式の場合は、タイ材取付位置、控え杭最上部の高さ は地表面以深の設定となりますので注意してください。<チェッ ク>は外します。

地層

地層データを入力します。初期入力画面では、一旦、主働側(陸 側)、受働側(海側)の地層データを同じ条件で生成しますが、 [地層]画面にて、個別に変更することができます。

No.	層厚	土質種類	平均N值	γt	φ	Co
1	6.000	砂質土	16.0	18.0	30.00	0.0
2	20.000	粘性土	32.0	15.0	0.00	40.0

タイ材

取付位置

前面矢板におけるタイ材取付位置を標高で入力します。残留水 位近辺に設定される場合が多いのはないかと考えられます。 <1.200>

水平間隔

タイ材の水平間隔を入力します。<2.400>

控え工 タイプ

控え工のタイプを指定します。<組杭>を選択します。

種類、鋼材番号

控え工の断面種類、検討鋼材番号を指定します。<H形鋼><鋼 材:9>を選択します。

検討ケース

検討ケースを指定します。処理に都合上、牽引時を行いたい場合は、地震時を必ず選択して下さい。 <チェック>を入れます。

考え方

土圧強度の直接指定

前面矢板に関する土圧強度を内部で自動計算せず、直接指定 を行いたい場合は選択してください。本設定は、Ver.3現在、津 波引き波時を検討する場合は設定することができません。 <チェック>は外します。

1-3 水位条件

検討水位を入力します。 ツリービュー「検討水位」をクリックします。

検討水位			×
▶ 残留水位を内部計算す	-3		
	永続状態(常時)	変動状態(レベル1)	
朔望平均満潮面 H.W.L	1.800	1.800	
朔望平均干潮面 L.W.L	0.000	0.000	
残留水位 R.W.L	1.200	1.200	
水の単位体積重量	- 10.1 kN/m³ Ж ≇	6引時は、永続状態(常時)と同値とする。
範囲:-99.999~999.999		✓ 確定 ¥	取消 🥊 ヘルプ(出)

朔望平均満潮面(高水位)H.W.L.

各検討ケースにおけるH.W.L.を入力します。<H.W.L.:1.800>

<mark>朔望平均干潮面(低水位)L.W.L.</mark> 各検討ケースにおけるL.W.L.を入力します。<L.W.L.:0.000>

残留水位-内部計算

内部計算時は、H.W.L.とL.W.Lの潮位差の2/3とします。 < チェック>を入れます。

残留水位-R.W.L.

内部計算に拠りがたい場合は、各状態におけるR.W.L.を直接 入力します。

水の単位体積重量

水の単位体積重量を入力します。残留水圧、動水圧の計算など に使用します。<10.1>

1-4 形状

側面

側面形状を入力します。

前面矢板壁

上部工天端高

上部コンクリートの天端高を入力します。本プログラムでは、 上部工天端から矢板先端高までの長さを壁長として扱います。 また、この天端高は背面地盤高とみなし主働土圧の作用開始 高になります。<2.700>

矢板壁天端高

矢板壁の天端高を入力します。本プログラムでは、矢板壁天端から矢板先端高までの長さを矢板長として扱います。<2.000>

タイ材取付位置

タイ材の取付位置を入力します。基本的に矢板壁天端より下方 になるものと考えられます。<1.200>

タイ材傾角

タイ材の傾き角度を入力します。時計回り(右下がり)を+で入 力して下さい。<0.00>

計画水深

係船岸の計画用の水深を入力します。本情報は設計計算に使用せず、印刷情報としてのみ使用します。 <-3.500>

構造水深

本プログラムでは、本水深を海底面として設計計算を行いま す。<-4.000>

エプロン幅

エプロン幅を入力します。この幅情報は計算には使用しておりません。<10.000>

勾配がある場合は、勾配ありにチェックマークをして下さい。 勾配は1:nで入力します。この時、nが正(n>0)で、反時計回り (右上がり)になります。<チェック>なし

控え工

控え工設置検討範囲

本データは、設計計算そのものは一切関係ありません。しかし ながら、控え杭の設置位置を検討する上で、プログラム上、ど うしてもある制限範囲を設ける必要があるために、このような 範囲を指定して頂いています。設計される控え杭の設置位置 が、かなり後方に離れることが予想される場合は、その離れを 見込んだ範囲を入力して下さい。<20.000>

控え上部エ天端高

控え杭に上部工(頭部コンクリート)を設ける場合は、その天端 高を入力して下さい。<2.200>

控えエ天端高

控え杭、そのものの天端高を入力します。控え杭の長さは、この天端高から杭先端高までの長さになります。<2.000>

組杭交差高

組杭の場合に、押込杭と引抜杭が交差する位置を標高で入力 します。<1.000>

杭傾角α1、杭傾角α2

組杭の場合に、押込杭と引抜杭が傾斜角を入力します。押込 杭、引抜杭ともに+で入力して下さい。 < *a*1:25.00><*a*2:25.00>

上部工

前面矢板タブ

本形状は断面図を作図するためのものであり、設計計算に一 切使用しておりません。

h1:上部コンクリートの前面高(m) <2.000>

h2:上部コンクリートの背面高 <2.000>

b1:上部コンクリートの全幅 <0.800>

b2:上部コンクリートの天端幅 <0.800>

b3:上部コンクリートの背面幅 <0.000>

b4:上部コンクリートの前面から矢板壁センターまでの距離<0.400>

控えエタブ

本形状は組杭の場合に、上部コンクリート重量として使用しま す。組杭以外は、設計計算に一切使用しておりません。

b:上部コンクリートの全幅 <1.500>

b1:上部コンクリートの前面から控え杭のセンタまでの距離 (組杭の場合は交差位置) <0.750>

h:上部コンクリート高さ <2.000>

裏込材

裏込材	×										
前面失板壁											
裏込材の天端寄 GL. 0.700 m											
裏込材の形状と物性値											
No. 層厚 h(m) 上面幅 比(m) 公配 上(m) 湿潤単位重量 で(kN/m ³) 小中単位重量 マ(kN/m ³) 約和単位重量 マ(kN/m ³) 自知単位重量 マ(kN/m ³) 自知単位重量 マ(kN/m ³) No. <td< td=""><td></td></td<>											
1 4.700 1.500 1.000 18.0 10.0 20.0 40.00 15.00											
2											
🖌 🖌 曜定 🛛 🗶 取消 🥊 🦿	ヘルプ(出)										

前面矢板壁タブ

前面矢板壁背面に設ける裏込材は、最大2層まで定義することができます。一般的には1層の台形形状が多いと思いますが、必要に応じて、2層で裏込形状を入力して下さい。

本プログラムでは、前面矢板壁背面に設ける裏込材の扱いは 以下の通りです。

【Ver1.00.00~1.01.01の仕様】

裏込材は、控え工の設置位置を計算(主働崩壊面)する際に使用しますが、前面矢板壁に作用する土圧計算では無視します。 【Ver1.02.00~の仕様】

裏込材は、控え工の設置位置を計算(主働崩壊面)、並びに、[考 え方-前面矢板]画面で、「□ 土圧計算に裏込材を考慮する」 にチェックマークを入れた場合には、前面矢板壁に作用する土 圧計算でも考慮できるようになりました。

裏込材の天端高

裏込材の(上層)天端高を入力します。 <0.700>

裏込材の層厚

(各層の)裏込材の層厚を入力します。 <4.700>

裏込材の上面幅

(各層の)裏込材の上面幅を入力します。 <1.500>

裏込材の勾配 1:n

(各層の)裏込材の背面勾配を入力します。+の場合は、右下が り(上面よりも下面が幅広)、-の場合は左下がり(上面よりも下 面が幅狭)となります。 <1.000> *処理の都合上、下面幅が0.00m以下(0を含む)の場合は 対応不可です。

裏込材の単位重量

裏込材の単位重量を入力します。地震時主働崩壊角を計算 する際の、見掛けの震度を計算する際に使用します。<湿潤: 18.0> <水中:10.0> <飽和:20.0>

裏込材の内部摩擦角、壁面摩擦角

裏込材の内部摩擦角、壁面摩擦角を入力します。 <内部: 40.0> <壁面:15.0>

1-5 考え方

前面矢板

前面矢板	x
前面矢板盤 計算方法 「フリーアースサポート法 骨線構造計量ビッチ 0.10 ▼ m 「 たわみ曲線法 骨線構造計量ビッチ 0.50 ▼ m - 収束積度 1/ 10 ▼ mred 最大期号モーンCトMmaxの取扱い - 伝力調査出用モデルから抽出 「 ひの式 b, 500200 kN/m ³ - 地盤種類 - 砂質土地盤 ← 料性土地盤 タイ材より上の分力の扱い フリーアースサポート法 6 考慮 C 無規 たわみ曲線法 (透査 C 無規	 □ 土田建成の道規指定参行う 土田の考え方 □ 土田計画に築込め材を考慮する □ 土田計画に築込め材を考慮する ■ 料田・広告からについい(金融を基準、災害期目) ※時 C KZ 7h C K(Z 7hm) K 0560 地密時 C KZ 7h C K(Z 7hm) K 0560 地密時 C KZ 7h C K(Z 7hm) K 0560 ・ ・ 二、「加田の田の地磁時料社層の扱い 酸度の補正 C 無補正 C 直接補正 土田の補正 C 無補正 C 直接補正 土田の補正 C 無補正 C 道使調整

- ツリービュー 「前面矢板」 をクリックします。

計算方法

フリーアースサポート法:<チェック>を入れます。

骨組構造計算ピッチ

変位、断面力計算を「仮想ばり法」で実施します。仮想ばり法は、構造骨組み解析(Frame計算)で行いますので、その際の骨 組構造計算ピッチ(節点間隔)を指定します。 <0.10>

たわみ曲線法:<チェック>を入れます。

骨組構造計算ピッチ

たわみ曲線法を構造骨組み解析(Frame計算)で行います。その 際の骨組構造計算ピッチ(節点間隔)を指定します。 <0.50> (Q48参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q48

収束精度

たわみ曲線法は矢板先端の回転変位がゼロ度になる長さを算 出した上で、各種の解析結果を採用するものです。しかしなが ら、先端の回転変位がちょうどゼロ度になることは殆ど有り得 ません。そこで、収束精度を設定し、その範囲内に収まった時 点で収束したものと判断することにします。その時の収束精度 を mrad(ミリラジアン=>1/1000ラジアン)で設定します。(1/1) mradで十分な解析精度であると思われます。設定を細かくす ると 解析精度は向上しますが、解析時間が大幅に長くなりま すので、ご注意下さい。 <10>

最大曲げモーメントMmaxの取扱い

たわみ曲線法を選択した場合に、応力度照査に使用する Mmaxを、応力度算出用モデル、根入れ長用モデルのどちらで 算出された断面力を用いて計算するかを選択します。<応力度 算出用モデルからの抽出>を選択します。

ロウの式

ロウの式は、港湾基準の場合で、かつ、フリーアースサポート法の検討が行われている場合に選択することができます。ロウの 式で検討を行う場合は、地盤バネ定数を設定して下さい。

地盤の種類

前面矢板の地盤種類を選択します。選択方法につきましては、 港湾基準では「部分係数」の設定、漁港基準では「安全率」の 設定に使用します。 <粘性土地盤>を選択します。

タイ材より上の外力の扱い

フリーアースサポート法(仮想ばり法含む)、たわみ曲線法において、タイ材より上に作用する外力(土圧)を考慮するか否かの設定を行います。 <フリーアースサポート法:考慮> <たわみ曲線法:考慮>

土圧の考え方

裏込材を考慮する

裏込め材の物性値をそのまま使用して土圧計算を行う場合 は、チェックマークを付けます。この場合、[形状-裏込材]で入力 した物性値(砂質地盤扱い)で土圧計算を行います。この時、裏 込材は「砂質土」扱いとします。 <チェック>を入れます。

エプロン勾配を考慮する

土圧計算に、エプロン勾配を考慮するか否かを設定します。地 表面が水平面となす角(β)考慮するか否かの設定になります。 <チェック>を入れます。

海底面から-10.0m区間の地震時粘性層の扱い 震度の補正

[計算理論及び照査の方法-作用-土圧-地震時の粘性土主働土 圧の補正について]をご一読下さい。

また、適用基準が災害復旧工事の場合に直線補正を選択した 場合、換算載荷重の算出過程においては、すべり面の水平距離 算出のため震度は無補正の値を使用します。 土圧強度の算出過程に関しては、この限りではありません。 <無補正>にチェックを入れます。

土圧の補正

港湾基準P.337および漁港基準P.113に従って直線補正を行う 場合、各粘性土層の下面における土圧が、海底面の土圧よりも 小さい場合、海底面の土圧に補正する必要があります。

しかしながら、『港湾構造物設計事例集 平成30年改訂版』 の計算例では、各粘性土層の上面と比較し、各粘性土層の上面 における土圧に補正するようになっています。

実務上でもそのように行っているというご意見を頂戴している ため、土圧を比較する位置を選択できるようにしました。 ・無補正:従来バージョン通り土圧の補正を行わない ・海底面基準:海底面の土圧と各粘性土層の下面における土 圧を比較する

・粘性土層上面基準:各粘性土層上面と下面の土圧を比較する

控えエ

控え工 ×
「作用力の扱い □ 上部コンクリート(Wo)、上部コンクリートより上の土重量(Wo)を直接与える
上部コンクリートの重量 Wc 0.00 kN 上部コンクリートより上の土の重量 Ws 0.00 kN 上部コンクリートの単位重量 Yc 22.60 kN/m ³ ト部コンクリートより上の土の単位重量 Ys ^{18.00} kN/m ³
- 支持力に対する検討 検討方法 打撃工法(澄湾) ▼ 杭の区別 C 支持杭 © 摩擦杭
□ 押込抵抗力を直接入力する(載荷試験による) Rt or Ru 0.01 k.N □ 引抜抵抗力を直接入力する(引抜試験による) Rt1 or Ru1 400.00 k.N □ 引抜抵抗力の(該計用値)算出時に杭の自重を考慮する wpk 50.00 k.N
開塞車 α ⁹⁰ % -主働崩壊面の開始位置(たわみ曲線法) ○ 構造水深から ○ M=0地点から
【 ✔ 確定】 ★ 取消 ? ヘルブ(出)

作用力の扱い

上部コンクリート、上部コンクリートより上の土重量を直接与える

作用力(鉛直力)を計算する際に、上部コンクリート(Wc)、上部 コンクリートより上の土重量(Ws)を直接与える場合はチェック マークを入れます。プログラム内部にて、上部コンクリート、並 びに、上部コンクリートより上の土の体積計算を行い、単位体 積重量を与えて、鉛直力を算出する場合はチェックマークを外 して下さい。

支持力に対する検討

検討方法

検討方法を指定します。支持力の検討を行わない場合は、杭の 断面照査を行うだけになります。 <打撃工法(港湾)>

杭の区別

杭の区別を指定します。 <摩擦杭>

押込抵抗力を直接入力する

載荷試験により押込抵抗力が既知である場合はチェックマー クをして、直接入力して下さい。

引抜抵抗力を直接入力する

引抜試験により引抜抵抗力が既知である場合はチェックマー クをして、直接入力して下さい。

引抜抵抗力の算出時に杭の自重を考慮する

杭の自重を考慮する場合はチェックマークをして、杭自重を入 力して下さい。

閉塞率

港湾基準P.594を参考にして下さい。 <90>

主働崩壊面の開始位置(たわみ曲線法)

たわみ曲線法を選択した場合に、控え工の設置位置検討時の 主働崩壊面開始位置(高さ)をモーメントゼロ点にするか、海底 面とするかを選択してください。<M=0地点から>を選択しま す。

1-6 地層

層													×
《地階	のデータの	層厚⇔標譜	5 I.J. I	オプション	月-[地層)		から切り	皆えが可能	きです。				
働側	受働側												
No.	層厚 (m)	土質 種類	平均 N値	湿潤単 位重量 γt (kN/m³)	水中単 位重量 (kN/m ³)	飽和単 位重量 ?? sat (kN/m ³)	内部 摩擦角 (度)	[常時] 壁面 摩擦角 (度)	[地震時] 壁面 摩擦角 (度)	粘着力 Co (kN/m²)	粘着力 増分 (kN/m ³)		^_⊐Ľ~©
1	6.000	砂質土	16.0	18.0	10.0	20.0	30.00	15.00	15.00	0.0	0.0		
2	20.000	粘性土	32.0	15.0	7.0	17.0	0.00	0.00	0.00	40.0	0.0		
3													
4													
5													
6													
7													
8													
9													
							. 1						1
						γ'=γs	at−γw			1	錠	🗙 取消	? ~ルJ(H

Bit X = Min 10. # (m) 1 19.300 ¥ 61±± 22.0 1 19.300 ¥ 61±± 15.8 7.0 1.0 0.00 0.00 0.00 1.0 19.300 ¥ 61±± 15.8 1.0 1.0 ¥ 10±± 1.0 1.0 1.0 ¥ 10±± 1.0 1.0 1.0 ¥ 10±±± 1.0 1.0 1.0 ¥ 10±±±± 1.0 1.0 1.0 ¥ 10±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	地層	のデータの	層厚⇔標語	6 I.J. I	オプション	/]-[地層)	(महत्त्र)	から切り	替えが可能	ಕಿಂತ.				
I PER	働側	2160199												
1 19300 ¥ð±± 320 15.0 7.0 17.0 0.00 0.00 40.0 0.0 2 -	No.	層厚 (m)	土質 種類	平均 N値	湿潤単 位重量 介t (kN/m³)	水中単 位重量 (kN/m ³)	飽和単 位重量 ?Y sat (kN/m ³)	内部 摩擦角 (度)	[常時] 壁面 摩擦角 (度)	[地震時] 壁面 摩擦角 (度)	粘着力 Co (kN/m²)	粘着力 増分 (kN/m ³)	^	
2 <t< td=""><td>1</td><td>19.300</td><td>粘性土</td><td>32.0</td><td>15.0</td><td>7.0</td><td>17.0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>40.0</td><td>0.0</td><td></td><td></td></t<>	1	19.300	粘性土	32.0	15.0	7.0	17.0	0.00	0.00	0.00	40.0	0.0		
	2													
	3													
	4													
	5													
	6													
	7													
9	8													
	9													
													_	

初期入力で入力した地層データが初期値としてセットされま す。データを確認・修正します。 ツリービュー「地層」をクリックします。

[コピー]ボタン

主働側、受働側、他方にその地層データをコピーします。

層厚(または標高)

地層は上から順番に入力します。最下層の下端位置は必ず壁体先端位置よりも(余裕を見て)深い位置まで入力してください。また、層厚入力の際は、基準点を地表面天端G.L.(または前面矢板最上部)として、基準点以深の層厚を入力してください。

土質種類

土質種類を砂質土または粘性土とします。

平均N値

N値を入力します。土の硬軟判定、変形係数αEoの評価の計 算、地盤反力係数の自動算定等に使用します。

土の湿潤単位重量、水中単位重量、飽和単位重量

土の湿潤単位体積重量、水中単位体積重量、飽和単位体積重 量を入力します。

内部摩擦角

内部摩擦角を入力します。

壁面摩擦角

壁面摩擦角を入力します。受働側は符号を判定して土圧計算 を行います。

粘着力と粘着力増分

粘着力は、一定値だけでなく、深さ方向に強度が増す1次関数 として入力できます。各層上端からの距離Zの着目位置での粘 着力を C=Co+k・Z で表すこととします。 Coは各層上端での粘着力、kは各層における深度1m当たり の粘着力の増加分k(kN/m2/m)、Zは各層上端からの距離と します。

1-7 任意荷重

任意荷重							
↓ v	永続状 鉛直荷	態 変動状態(重 0)	レベル1地震動) DO kN/本	1			
y1 (GL) H1	No.	荷重種類	載荷位置G.L. y1(m)	載荷位置GL. y2(m)	水平荷重 H1 (※)	水平荷重 H2 (kN/m²)	î
5	1						
y2 (GL)	2						
H2	3						
	4						
y1 (GL)	5						
n1	6						
Ψ				※ 集	中荷重:kN/m	分布荷重:kl	√/m²
				▲ 確定] 🗙 Wi	<u>۽ جار</u>	(H)

永続状態、変動状態(レベル1地震動)タブともに鉛直荷重は 0.00kN/mです。

鉛直荷重

断面照査の際に利用しています 矢板壁天端に作用するものとして扱い、応力度算出の際の軸 力として入力値をそのまま使用します。 (Q14参照) https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q14

任意荷重は地表面天端位置~地表面最下端に収まるように設 定してください。 (Q14参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q34

1-8 土圧強度

(今回の入力には不要です) 初期入力-考え方-土圧の直接指定にチェックをつけると、入力 メニューが表示されます。

初期入力で指定した検討ケースが表示されています。 各ボタン切り替えでデータを確認・修正します。

シート上で右クリックを行うとポップアップメニューが表示され ます。

「常時」⇔「地震時」間、または各検討ケースそれぞれでの「主 働側」⇔「受働側」間のコピーが可能です。 「主働側」⇔「受働側」間のコピーにおいては、構造水深を考 慮したコピー機能となっています。

読込

[CSV保存]や、結果確認画面で出力したCSVファイルを読み込みます。

保存

現在入力している土圧強度をCSVファイルに保存します。

1-9 盛土

(今回の入力には不要です) 初期入力-適用基準-災害復旧工事(H27)を選択すると、入力メ ニューが表示されます。

盛土を設ける

盛土を設置せずに検討を行いたい場合はチェックを外してくだ さい。

1-10 部材

前面矢板壁材

SKY400) C SKY490				■ 腐食の影響	
7					○ 腐食後の断面諸量を	自動計算 (・低減係数で考慮
≇手幅 ⊲	a 250.0 mm				席食代	
も用鋼材	播号 4				耐用年数	30 (年)
2.	綱材名称	I(cm4)	Z(cm ³)		席食速度(海側)	0.300 (mm/年)
	D400 t9	21100	1057		100-00-100 MM (P.B. (NO)	0.000 ((77)
	D400 t12	27600	1378		AN ECOEDE (P218)	0.020 (mm/4+)
	D500 t9	41800	1670		電気防食効率	0.00
	D500 t12	54800	2190		■ 清涼形完する	,
	D500 t14	63200	2530		L LE 1918 AE 7 0	
	D600 t9	73000	2430		腐食代G毎個D	9.00 (mm)
	D600 t12	95800	3190		17-0-(2-(25-0))	0.80 (mm)
	D600 t14	111000	3690		700 EVE 9 (9 2018) /	0.00 (1111)
	D600 t16	125000	4170		断面諸量計算時に使	用する腐食代
)	D700 t9	117000	3330		 ・	値 @ 海側
1	D700 t12	154000	4390			
2	D700 t14	178000	5070		M SALW TH	
3	D700 t16	201000	5750		15.76(1+32	
1	D800 t9	175000	4370		Iに関して	0.65
5	D800 t12	231000	5770			0.85
3	D800 t14	267000	6680		21,390,7	0.03
1	D800 t16	303000	7570			
3	D900 t12	330000	7330	~	■ 計算項目への影響	
					根入れ長さ	
					変位、 断面力	Г
					応力度	🔽 🔂 0n/0
					AG/JBL	N OUNC

— ツリービュー「前面矢板壁材」をクリックします。

材質

材質を指定します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル]をご覧下さい。<SKY400>

鋼材

継手幅a

鋼管矢板間の継ぎ手幅を入力します。単位幅当りの断面諸 元、もしくは、1本当りの発生断面力の計算に使用します。 <250.0>

使用鋼材番号

鋼材番号を指定します。鋼材テーブルは[基準値-鋼材-矢板壁] で確認、修正することができます。<4>

腐食

腐食の影響

腐食低減係数を直接指定するか、自動計算するかを選択して ください。<低減係数で考慮>を選択します。

低減係数

自動計算する場合 → 指定された鋼材名と、腐食代を変更 すると、自動的に低減係数を計算します。計算に使用した断面 性能算定図のグラフは、右側のボタンより結果確認できます。 このとき、使用鋼材に該当する鋼材が存在しない場合は、低 減係数の自動計算を行うことが出来ません。 直接指定する場合 → 断面二次モーメント用、断面係数用 (断面積Aも含む)の低減率を入力して下さい。詳細はメーカー にご確認下さい。

計算項目への影響

本プログラムでは、各計算項目毎に腐食前の断面諸元を用い るのか、腐食を考慮した腐食後の断面諸元を用いるのかを指 定することができます。 矢板壁では、フリーアースサポートによる根入れ長計算には、 本計算スイッチは使用しておりません。

応力度照査については、腐食後の断面を用いることで安全側 の設計計算になるものと考えられますが、根入れ長計算、断 面力計算、設置位置計算(Lm1)などでは、どちらが大きくなる のかは不明な点もあります。そのため、プログラム側で設定す ることが難しいと判断し、設計者にて設定して頂く仕様とさ せて頂きました。<応力度>のみにチェックを入れます。

タイ材

タイ材									
取付位置 GL. 使用材質番号	1.200 m 設置	間隔 2.400 岡材直径 [1 m 44.0 (mm)						
No		種類			[路伏応力度(N/mm2)]	^			
1		SS400(<40)	nm)		235				
2		SS400(>40r	nm)		215				
3		SS490(<40r	nm)		275				
4		SS490(>40r	nm)		255				
5	5 高張力鋼490 325								
6		高張力綱5	90		390	~			
席食 ↓ 応力度に腐1 耐用年数 腐食速度	食代を考慮する <u>30</u> 0.030	(年) (mm/年)							
□ 直接指定 腐食代	する	(mm)							
<mark><必ず[基準値-</mark>	設計用設定値-	部分係数](の鋼材降伏強	度を見直して予	र्ट्टाः > √ 今すぐ	見直す			
				🖌 確定	🗙 取消 🥊 🥐	ヽルプ(出)			

腹起し

腹起し				
材質 C SS400 @ SM490	使用鋼林 - 綱材	村番号 5		
腹起しタイプー	No.	鋼材名称	Zx(cm ³)	^
(● 清杉潤 ○ H杉潤	1	[150×75×6.5×10	115	
- 唯記 昭本式	2	[150×75×9×12.5	140	
GTI (10 CTI (1	3	[180×75×7×10.5	153	
(* 1L/10 (C 1L/4	4	[200×80×7.5×11	195	
_ 庭台	5	$[200 \times 90 \times 8 \times 13.5]$	249	
「「「「「「「「「「」」」「「「」」」「「「」」」「「「」」」「「「」」」「「」」「「」」「「」」「「」」」「「」」」「「」」」「」」「」」」「」」」	6	$[250 \times 90 \times 9 \times 13]$	334	
▼応力度に低減休飲を考慮する	7	[250×90×11×14.5	374	
腐食速度 ※参考値 0.030 mm/年	8	[300×90×9×13	429	~
唐食低減係数(Zに関して) Ⅰ.00				
		🖌 確定 🚺 👗 取消	? ~1	э(H)

使用材質番号

使用する材質番号を入力します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル]をご覧下さい。 <7>

使用鋼材直径

使用するタイ材の直径(腐食前)を入力します。断面積などは円 断面としてプログラム内部で計算します。<44.0>

腐食-応力度に腐食代を考慮する

応力計算に腐食の影響を考慮する場合は設定してください。 チェックを入れます。

腐食-直接指定する

腐食代を直接指定する場合はここにチェックをしてください。 チェックを外します。

[今すぐ見直す]ボタン

適用基準が港湾基準の場合に、タイ材の応力照査時の部分係 数の扱いに注意して下さい。

材質

材質を指定します。<SM490>

腹起しタイプ 腹起し材が溝形鋼かH形鋼かを指定します。<溝形鋼>

<mark>腹起し照査式</mark> 曲げ照査式を選択します。 <TL/10>

腐食-応力度に腐食代を考慮する

応力計算に腐食の影響を考慮する場合は設定してください。 チェックを入れます。

腐食-腐食低減係数

断面係数用(断面積Aも含む)の低減率を入力します。<1.00>

使用鋼材番号 使用する鋼材番号を指定します。<5>

控え工材

質 SHK4	100 @ SHK490					
				■ 歴貨の影響		
材才				 腐食後の断面諸量 	を自動計算 〇	低減係数で考慮
甲込側	岡村番号 9			腐食代		
目抜側	网材番号 9			耐用年数	30	(年)
No.	獨材名称	I(cm4)	Z(cm ³)	腐食速度	0.020	(mm/年)
1	H-100×100×6×8	378	76	□ 直接指定する		
2	H-125×125× 6× 9	839	134			
3	H-150×150× 7×10	1620	216	腐食代	0.60	(mm)
4	H-175×175×7×11	2900	331	10.20015.000		
5	H-200×200× 8×12	4720	472	19676(1453)		
6	$H - 250 \times 250 \times 9 \times 14$	10700	860	「日に閉して	1.00	
7	$H - 300 \times 300 \times 10 \times 15$	20200	1350		1.00	
8	$\rm H-350\!\times350\!\times12\!\times19$	39800	2280	21-000 C	1.00	
9	$H - 400 \times 400 \times 13 \times 21$	66600	3330			
10	$H - 400 \times 400 \times 18 \times 28$	92800	4480	■ 計算項目への影響		
11	$H = 400 \times 400 \times 20 \times 35$	119000	5570	設置位置	Г	
12	$H = 400 \times 400 \times 30 \times 50$	187000	8170	根入れ長さ	Г	
13	$H = 400 \times 400 \times 45 \times 70$	298000	12000		-	
14	$H = 500 \times 500 \times 25 \times 25$	157000	6270	》2.111、87080/J	-	
15	$H = 500 \times 500 \times 25 \times 25$	163000	6520	応力度	v	
				支持力	v	On/Off

材質

材質を指定します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル」をご覧下さい。<SHK490>

押込側鋼材番号、引抜側鋼材番号 鋼材番号を指定します。<9> <9>

腐食 腐食の影響

<腐食後の断面諸量を自動計算>にチェックを入れます。

計算項目への影響

<変位、断面力><応力度><支持力>にチェックを入れます。

1-11 検討ケース

永続状態 (常時)

永続状態(常時)	×
─上載荷重── 前面矢板壁用 主働側	10.00 kN/m ² 受働側 0.00 kN/m ²
控え工用	10.00 kN/m ²
前面矢板の扱い □ 仮想支持点を直接与	える GL. 0.000 m
	▲確定】 ★ 取消 ? ヘルプ(H)

変動状態(異常時:レベル1地震動)

変動状態(異常時:レベル1地震動)
└上載荷重 前面矢板壁用 主働側 5.00 kN/m ² 受働側 0.00 kN/m ²
控え工用 5.00 kN/m ²
前面矢板の扱い 「 仮想支持点を直接与える GL. 0000 m
震度の扱い 886日標度 0.14
RWL.下面の震度 C空中 ©水中
-見かけの震度の計算式 ○ 荒井・横井の提案式
 ○ 荒井・横井の提案式(γw=10.0) ○ 二建の提案式 □ 見かけの器度の取扱い
 層ごと ○ 深度ごと
その他の荷重 ▼ 動水圧を考慮する 分割ビッチ 0.10 ▼ m
ア 控え工上部コンクリートの慣性力を考慮する ト部コンクリートの増仕重量 次c 22.60 kN/m ³
▲ · · · · · · · · · · · · · · · · · · ·

- ツリービュー 「永続状態 (常時)」 をクリックします。

上載荷重

上載荷重を入力します。 <主働側:10.00><受働側:0.00> <控え工用:10.00>

前面矢板の扱い

仮想支持点を直接与える(普通矢板式の場合)

仮想ばり法で変位、断面力計算する際の下方の支点(仮想支持 点)を直接指定する場合はチェックマークをしてその標高を入 力します。直接指定しない場合(内部設定)は、港湾基準は構造 水深(海底面)、漁港基準で砂質土の場合は構造水深、漁港基 準で粘性土の場合は、主働側圧と受働側圧が等しくなる位置 となります。

(Q24参照) https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q24

上載荷重

上載荷重を入力します。通常は、常時の1/2程度と考えられま す。<主働側:5.00><受働側:0.00><控え工用:5.00> (Q32参照) https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q32

前面矢板の扱い-仮想支持点を直接与える 永続状態、常時と同じ。

<u>震度の扱い-照査用震度</u> 震度を入力します。<0.14>

震度の扱い-R.W.L.下面の扱い R.W.L.直下の震度を空中震度にするか水中(見掛け)震度にす るかを指定します。<水中>

<mark>震度の扱い-見かけの震度の計算式</mark> 荒井・横井の提案式(rw=10.0)にチェックを入れます。

震度の扱い-見かけの震度の取扱い 層ごとにチェックを入れます。

その他の荷重-動水圧を考慮する 動水圧を考慮する場合は、チェックマークを入れます。<チェッ ク><ピッチ:0.10>

その他の荷重-控え工上部コンクリートの慣性力を考慮する

組杭の設計において、水平作用力を計算する際に、上部コンク リートの慣性力を考慮するか否かを指定します。慣性力を考慮 する場合は、上部コンクリート単位体積重量(空中重量)を入力 して下さい。<チェック><単位重量:22.60>

変動状態(異常時:牽引時)

1箇所の係船柱に作用する牽引力 <100.0>

1箇所の係船柱に作用する牽引力を均等に分担するタイ材本数 (普通矢板式の場合)

港湾基準では、P.1023を、漁港基準では、P.440をご参照下さい。

牽引力作用位置

作用位置は、上部工天端からの高さ(m)で入力します。構造が、 普通矢板式の場合は、印刷用の入力となり、計算には使用して おりません。構造が、自立矢板式の場合は、変位計算などに使 用します。

2 基準値

2-1 設計用設定基準値

材質テーブル

材質						×
綱矢板(前面壁、控え工) 綱管	矢板(前面壁	、控え工) H形綱	(控え工) #	管杭(控え工)	腹起し材(溝形斜	間、H形鋼) タイ材
ヤング係数 2000 × 10 ⁵ N/	mm ²					
港湾基準						
設計用値(N/mm²) SY	295 SYS	90				
曲げ降伏応力度 σyk 2	95 3!	10				
漁港基準						
許容曲げ応力度 σ a(N/mm²)	SY295	SY390				
常時	180	235				
地震時	270	353				
,						
範囲:0.01~9.99			標準値	🗸 1	龍 🗶 取	消 🥇 🥐 ヘルプ(日)

鋼矢板(前面壁、控え工)タブ

鋼管矢板(前面壁、控え工)タブ 前面壁並びに控え工のタイプが矢板の場合に参照します。 [標準値]ボタン 表示しているタブのデータについて、プログラムが定めている 標準値を自動的にセットします。

[ヤング係数] 検討される鋼材のヤング係数を設定します。

[港湾基準] 港湾基準を選択された場合に参照します。降伏応力度を入力 して下さい。

[漁港基準]

漁港基準を選択された場合に参照します。許容応力度を入力 して下さい。

H形鋼(控え工)タブ 控え工のタイプが直杭、組杭の場合に参照します。

対質										
鋼矢板(前面壁、控え工) 維	電管矢	「板(前面	壁、控え工)	形鋼(控え]) 鋼管杭(控え工)	腹起し材	(溝形綱	H形綱)	9イ材
ヤング係数 📃 💴 × 10 ⁵	N/m	m²								
港湾基準						_				
設計用値(N/mm ²)	SK	K400	SKK490							
曲げ降伏応力度σyk		235	390							
軸方向降伏応力度σyk		235	390							
漁港基準										
			常時	地震	時					
許容応力度(N/mm ²)		SKK400	SKK490	SKK400	SKK490					
許容曲げ応力度でる		140	185	210	278					
軸方向許容引張応力度の	⊽ta	101	102	201	202					
軸方向許容圧縮応力度の	Гса	301	302	401	402					
範囲:0.01~9.99				1	標準値	~	確定	🗙 取消	2	ヘルプ(田)

鋼管杭(控え工)タブ

控え工のタイプが直杭、組杭の場合に参照します。 [鋼管杭(控え工)]の値の変更を行います。

	常時		地震時		
許容応力度(N/m㎡)	SKK400	SKK490	SKK400	SKK490	
引張	101	102	20	202	
圧縮	301	302	401	402	

腹起し(溝形鋼、H形鋼)タブ

腹起し材の材質テーブルです。

タイ材タブ

タイ材の材質テーブルです。タイ材は10種類まで登録することができます。

安	순	率
~	ᆂ	—

安全率	\times
普通矢板│自立矢板│	
港湾基準 漁港基準	
- 控え直枕、矢板 必要根入れ長算定係数 150 Lm1	
標準値 ┃ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Ш

普通矢板式-港湾基準タブ

[必要根入れ長算定係数 [#.##]Lm1以上] 港湾基準では、P.623に根入れ長さがLm1の1.5倍を超えれば、 長杭とみなし得るとあり、さらに、Lm1を超えれば、その杭の挙 動は長杭と殆ど変わらないという記載があります。デフォルト は1.50にしています。

普通矢板式-漁港基準タブ

[前面矢板壁-フリーアースサポート法] 漁港基準のP.431に安全率が提示されています。

[前面矢板壁-たわみ曲線法] 漁港基準のP.447で算定された長さの1.2倍を根入れ長とする という記述があります。 本プログラムでは、フリーアースサポート法と同じように地盤種 類別、検討ケース別に設定が出来るように配慮していますが、 全て同じ安全率としています。

[控え直杭、矢板-必要根入れ長算定係数 [#.##]/β以上] 漁港基準では、P.216に半無限長の杭として、杭の突出の有無 や杭頭条件(自由、固定)によらず、L≧3/βを満足するものとす るということが記載されています。設定値 (デフォルト) は3.00 にしています。

[控え組杭-許容支持力用安全率] 押込杭については、漁港基準のP.207、引抜杭はP.211に記載 があります。

[控え版-安定性の検討用安全率] 控え矢板で長杭とみなし得ない場合の版の計算に用いる安全 率で、漁港基準P.442に記載があります。

自立矢板式-港湾基準タブ

[必要根入れ長算定係数 [#.##]Lm1以上] 港湾基準では、P.623に根入れ長さがLm1の1.5倍を超えれば、 長杭とみなし得るとあり、さらに、Lm1を超えれば、その杭の挙 動は長杭と殆ど変わらないという記載があります。デフォルト は1.50にしています。

自立矢板式-漁港基準タブ

[必要根入れ長算定係数 [#.##]/β以上] 漁港基準では、P.216に半無限長の杭として、杭の突出の有無 や杭頭条件(自由、固定)によらず、L≧3/βを満足するものとす るということが記載されています。デフォルトは3.00にしてい ます。

部分係数(港湾基準H19・材料係数アプローチ)

	Contra de C			【粘性土系地	1972 (1972)		
		永続状態 (耐震強化施設以外)	実動状態 (レベル1地震動等)			永続状態 (耐震強化施設以外)	変動状態 (レベル1地震動音
Ƴ tan Φ°	せん断抵抗角の正接	0.75	1.00	$\gamma \tan \phi'$	せん新抵抗角の正接	0.80	1.00
γc	粘着力	1.00	1.00	γc'	粘着力	0.80	1.00
Υw	有効単位重量	1.00	1.00	YW	有効単位重量	1.05	1.00
γô	壁面摩擦角	0.90	1.00	78	壁面摩擦角	0.95	1.00
γq	上载荷重	1.00	1.00	γq	上載荷重	1.00	1.00
γ RWL	残留水位	1.00	1.00	γ RWL	残留水位	1.00	1.00
γa	構造解析係数	1.00	1.20	γa	構造解析係数	1.00	1.20
γkh	販査用農食		1.00	γkh	照査用震度		1.00
費土系統	57 1221	永続状態 (耐需味作協致13外)	支助状態 (レベル1歩音動等)	【粘性土杀地	**1	永続状態 (所書等化物語以外)	実動状態 (レベル1地震動)第
9貫土系列		永続状態 (耐震強化施設以外)	支動状態 (レベル1地震動等)	【粘性土系地		水绕状態 (術賞養強化總額以外)	支動状態 (レベル1地震動等
γtanφ"	20 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>永</u> 続状態 (耐震強化施設以外) 0.85	支助状態 (レベル1地震動等) 1.00	【移動生系統 	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	水続状態 (所得強化施設以外) 0.85 0.92	支助状態 (レベ)レ1地震動車 1.00
▶貫土系列 γtan φ' γc'	27 112 112 112 112 112 112 112 1	<u>永</u> 続技能 (耐震強化確認以外) 0.85 1.00	変動状態 (レベル1地震動等) 1.00 1.00	【林林生土系が 	 	永徳状態 (新農藩に施設以外) 0.85 1.00	支助状態 (レベル1地震動) 1.00 1.00
▶賞土系列 γtan φ' γc' γw'	27 地域] せん断振抗角の正接 彩着力 有効単位重量 ちてたた。	<u> </u>	変動状態 (レペル1地震動等) 1.00 1.00 1.00	【移性土系が 	 せん新振技角の正接 も若力 有効単位重量 	水铁状態 (計畫筆化結果以外) 0.85 1.00 1.05	支助状態 (レベル1地震動等 1.00 1.05
サ	27 地域】 せん断振抗角の正接 私若力 有効単位重量 登面剛県角 し参加奈	永続状態 (新提数に確認以外) 0.85 1.00 1.05 1.00 1.00 1.00	支動状態 (レベル1地震動等) 1.00 1.00 1.00 1.00 1.00	【料約性土糸地 	 は人所抵抗内の正接 私若力 有効単位重量 登面前的内 は一時近年 	永禄状態 (所提新出施源以外) 0.85 1.00 1.05 1.00	支助状態 (レベル1地震動理 1.00 1.00 1.05 1.00
γtanφ [*] γc [*] γc [*] γσ [*] γσ γσ γσ	 27 #2 世人断部抗角の正接 税若力 有効単位重量 登面標標為 上載荷重 注節停止 注節行生 注節行生 	永奈状態 (新聞生地設以外) 0.85 1.00 1.05 1.00 1.00	支約状態 (レベル1地(高新等) 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(料料土糸地) (料料土糸地) (Y tan Φ') Y c' Y w' Y ô Y q Y q Y (M)	総 せん新振技内の正接 もお方 有効単位重量 設面摩擦内 上載符重 1500-01	永徳状態 (所提示に施設以外) 0.85 1.00 1.05 1.00 1.00 1.00	支助状態 (レベル14と表動型 1.00 1.00 1.05 1.00 1.00 1.00
対 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1		永徳状態 (俳/義敏化状態 (俳/義敏化状態) (85 1.00 1.05 1.00	支約状態 (レベル1地震動等) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(粘性土系地 (粘性土系地 ア tan φ' ア w' ア o' ア w' ア o' ア w' ア a ア a ア a ア a ア a ア a ア a ア a	 	水(花状態 (所有限部に施設以外) 0.85 1.00 1.05 1.00 1.00 1.00 1.00 1.00	支助状態 (レベル1+2数) 1.00 1.00 1.05 1.00 1.00 1.00 1.00
γ tan φ' γ c' γ o' γ φ' γ φ'	27 世人断振流向の正接 私客力 有功単位重量 壁面剛察角 上載荷重 残留水位 SY295SY3935KY490 SY2400	永存状態 (新賀歌王徳歌以外) 0.85 1.00 1.05 1.00	変動状態 (レペル1地震動等) 1.00 1.	マtan Φ' ア c' ア dy ア Ø ア Ø ア Ø ア Øy ア Øy	 2 セ人系形抵抗角の正接 れる若力 者の加単位重量 登画票第6角 上載荷重 茶(255,37390,5K7490) SY2455,37390,5K7490 SXY4400 SXY4400	水(茶)(数 (所)(数 第)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)	支払は大き (レベル1地(支払)) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.
γ tan φ [*] γ c ⁱ γ o ⁱ γ δ γ RWL γ σy γ σy	27 地域) 地域 地域 地域 地域 地域 地域 地域 地域 地域 地域	永待状態 (新力器)加し補助以外) 0.85 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	変動状態 (レベル1地震動等) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(お付土泉村) ア tan Φ' ア c' ア W ア Ø ア RWL ア Øy ア Øy	 せん新版技内の正接 も若力 有効単位重量 登画解的 上載荷重 Sy295,SY390,SKY490 SY245,SY390,SKY490 SY246,SY390,SKY490 SY246,SY3 SY246,SY3 SY246,SY390,SKY490 SY246,SY3 SY246,SY34 SY246,SY24 SY246,S	永徳状態 (新振振に施設以外) 0.85 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	文的代替 (レベル) 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
$\gamma \tan \phi^{\gamma}$ $\gamma c'$ $\gamma w'$ $\gamma \sigma$ γRWL $\gamma \sigma y$ $\gamma \sigma y$ $\gamma \sigma y$ $\gamma \sigma y$	27] (1) (1) (1) (1) (1) (1) (1) (1)	永葆秋隆 (新穀強化施設以外) 0.85 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.0	実動状態 (レベル1地震動等) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	マtanゆ マ マťanφ マ マボ マ	(法) せ人系形抗角の正接 利志市力 有効単位重量 気面伸移内 上航荷重 汚留水位 SY25SSY30SINSY400 SKY400 るKY400 場合所所致 の 高数の子のの の たま の の に接 し 、 の に接 し 、 の に し 、 の に し 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の に 、 、 の 、 の 、 、 の 、 、 の 、 の 、 、 の 、 の 、 、 の 、 の 、 の 、 、 の 、 の 、 、 の 、 、 の 、 の 、 の 、 の 、 、 、 の 、 の 、 の 、 、 の 、 の 、 、 の 、 の 、 の 、 の 、 の 、 、 、 の の 、 の 、 、 の 、 の の 、 、 の の 、 の の 、 の 、 、 、 、 の 、 、 の の 、 の 、 の 、 、 、 の の 、 、 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の 、 の の 、 の 、 の 、 の 、 の の 、 の の の 、 の の の 、 の の の 、 の の 、 の 、 の の の 、 の の 、 の 、 の 、 の の の の 、 、 、 の の 、 の 、 、 、 、 、 の の 、 、 、 の の 、 、 、 の 、 、 、 の の 、 、 、 、 、 、 の の 、 、 の 、 の 、 の の の 、 の の の 、 の の の 、 の 、 の の 、 の の 、 の の の の の 、 の の の 。 の の の の の 、 の の の の 、 の の の の の の の の の の の の の	大洋大阪 (作初後に見まれしが) 0.85 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.0	送付代格 (レベル) 地区物料 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

部分係数は「港湾基準(H19)」の場合にのみ参照します。その 他の基準では一切使用致しません。

[読込] [保存] ボタン

現在設定している部分係数のみXml形式で保存、読込します。 対応拡張子は (*.sps) です。

普通矢板式-前面矢板壁タブ

[矢板壁の根入れ長] 根入れ長検討時の部分係数を入力します。 [矢板壁の応力] 変位、断面力計算時の部分係数を入力します。

普通矢板式-控えエタブ

控え工の設置位置を決定する際の部分係数(横抵抗係数含む) は全て1.0とします(港湾基準P.1016より)。

[直杭の応力] 控え直杭、矢板の設置位置検討時以外に使用します。 [組杭-応力] 組杭の応力照査(断面照査)時に参照します。 [組杭-軸方向抵抗力の抵抗力(押込み杭:支持杭)] 支持力照査時に参照します。 [組杭-軸方向抵抗力の抵抗力(押込み杭:摩擦杭)] 支持力照査時に参照します。 [組杭-軸方向抵抗力の抵抗力)]の値

	永続状態	変動状態
粘着力	1.00	1.00
N値	1.00	1.00

[控え版-安定性] 控え矢板で、長杭とみなし得ない場合の版の計算時に参照し ます。

普通矢板式-腹起しタブ

[腹起し-SS400、SM490の鋼材降伏強度] デフォルトは、1.00としています。 [腹起し-構造係数] 港湾基準P.1010より、永続状態については1.40、レベル1地震 動などに関する変動状態については1.12と記載しています。

普通矢板式-タイ材タブ

[タイ材-鋼材降伏強度]

港湾基準P.1013の永続状態では、SS400とHT690の鋼材降伏 強度に対する部分係数が提示されています。しかしながら、他 の材質の扱いについては不明です。よって、本プログラムでは、 この部分係数については、1種類として、初期値は港湾基準に 記載しているSS400の値にしています。それ以外の材質の場合 は、設計者にて変更して下さい。

		永続状態	変動状態
砂質土系地盤	鋼材降伏強度	0.70	1.00
	構造解析係数	1.00	1.67
粘性土系地盤	鋼材降伏強度	0.70	1.00
	構造解析係数	1.00	1.67

自立矢板式-横方向抵抗係数、根入れ、断面力、変位タブ

[横抵抗係数] 控え杭に準じて、初期値は1.00としています。 [矢板壁の根入れ長] 根入れ長検討時の部分係数です。 [矢板壁の断面力、変位] 変位、断面力計算時の部分係数です。港湾基準では特に記載 がありませんが、本プログラムでは、設計者のご判断にて対応 できるように配慮しています。

自立矢板式-応力度照査タブ 応力度計算時の部分係数です。

部分係数(荷重抵抗アプローチ・港湾基準H30)

◎分係数(通 普通失板 自	周基準H30·荷重抵 立矢板	丸アプローチ)							×
応力度照査に	用いる部分係数				控え組織の軸力照望	町に用いる部分係数			
		γ R(抵抗項)	γS(荷重項)	調整係数m		杭の種類	γ R(抵抗項)	γS(荷重項)	調整係数m
矢板壁	永続状態	0.84	1.18	1.00	永続状態	引持統	1.00	1.00	3.00
	レベル1変動状態	1.00	1.00	1.12		押込杭	1.00	1.00	2.50
夕イ材	永続状態	0.64	1.29	1.00	レベル1変動状態	引抜杭	1.00	1.00	2.50
	レベル1変動状態	1.00	1.00	1.67		押込枕(支持枕)	1.00	1.00	1.50
腹起し	永続状態	1.00	1.00	1.67		押込枕(摩擦枕)	1.00	1.00	2.00
	レベル1変動状態	1.00	1.00	1.12	フリーアースサポー	ト法による根入れ長	- 線査に用, 1る部	分係数	
控え直枕	永続状態	1.00	1.00	1.67		土質構成	γ R(抵抗項)	γS(荷重項)	調整係数m
	レベル1変動状態	1.00	1.00	1.12	永続状態	砂質土地盤	0.72	1.09	1.00
控え組枕	永続状態	1.00	1.00	1.67		粘性土を含む地論	0.77	1.11	1.00
	レベル1変動状態	1.00	1.00	1.12	レベル1変動状態	全ての土質構成	1.00	1.00	1.20
控え版の安定	。 性服置に用いる部分	新新教			たわみ曲線法による	。 根入れ長照査に用い	いる部分係数つ	a(H30用)	
	γR(抵抗項) γS(荷重項)	調整係数m	1		砂質土地盤 和	主を含む地	2	
永続状	驟 1.00	1.00	2.50		永続状態	1.00	1.20		
レベル1支援	加沃縣 1.00	1.00	2.00		レベル1変動状態	1.00	1.20		
範囲:0.01~	~9.99			3	続込 📓 保存	📵 標準値	✓ 確定	🗶 取消	? へげ出

部分係数は「港湾基準(H30)」の場合にのみ参照します。その 他の基準では一切使用致しません。

[読込] [保存] ボタン

現在設定している部分係数のみXml形式で保存、読込します。 対応拡張子は (*.sps) です。

当該書籍の部分係数についての表において「-」となっている 部分係数は、1.0として取り扱いますが、 本製品におきましては、デフォルト値を1.0とし、設計者様のご 判断の上で変更できる仕様としています。

普通矢板タブ

[応力度照査に用いる部分係数] 矢板壁、タイ材、腹起し、控え工の応力度照査に用いる部分係 数です。 [フリーアースサポート法による根入れ長照査に用いる部分係

数] フリーアースサポート法による根入れ長照査に用いる部分係数 です。

[控え組杭の軸力照査に用いる部分係数] 控え組杭の軸力照査(応力度照査)に用いる部分係数です。 [控え版の安定性照査に用いる部分係数] 長杭とみなし得ない場合における控え版の安定性照査に用い る部分係数です。

自立矢板タブ

[応力度照査に用いる部分係数] 矢板壁の応力度照査に用いる部分係数です。 [二次応力を考慮する場合の部分係数] 矢板壁の応力度照査において、二次応力を考慮する場合に用 いる部分係数です。

2-2 鋼材

鋼材テーブル初期値

(壬%百	#R##	27月1日ティーブル・ファイル		
1 <u>279</u>	細生物	1080 27021170	^	
(18)里	394大10X 網絡生板	SSP.55W		
232).	田形綱	Support htw		
	満形:網	Channel.ctw		
₽žT	日間杭	SP.htw		
	鋼矢板	SSP.ssw		
< ፠	マトより初期	ーブルファイルを楽更したい部材を選択し、下の参照ボタ	>」、	
* ※上のリ *初期テー SSP.ssw	マートより初期う ブルファイルの変更 /	ーブルファイルを変更したい部材を選択し、下の参照ボタ	> 、	

矢板壁

<鋼矢板>

-	同矢板	<u>z</u>								×
	No.	鋼材名称	w (mm/妆)	h (mm)	W (kg/m)	A (cm²/m)	I (cm4/m)	Z (cm³/m)	^	
	1	型	400	100	48.0	153.00	8740	874		
	2	型	400	125	60.0	191.00	16800	1340		
	3	型	400	130	60.0	191.00	17400	1340		
	4	IV型	400	170	76.1	242.50	38600	2270		
	5	VL型	500	200	105.0	267.60	63000	3150		
	6	Iw型	600	130	61.8	131.20	13000	1000		
	7	Ⅲ₩型	600	180	81.6	173.20	32400	1800		
	8	IVw型	600	210	106.2	225.50	56700	2700		
	9									
	10									
	11									
	12									
	13									
	14									
	15									
	10								~	
				Mas	terLoad	√ ₩	2 🗙	取消	?~/	レプ(出)

<鋼管矢板>

鋼管タ	天板							×
No.	鋼材名称	D (mm)	t (mm)	A (cm ²)	W (kg/m)	I (cm4)	Z (cm ³)	^
1	D400 t9	400.0	9.0	110.6	86.8	21100	1057	
2	D400 t12	400.0	12.0	146.3	115.0	27600	1378	
3	D500 t9	500.0	9.0	138.8	109.0	41800	1670	
4	D500 t12	500.0	12.0	184.0	144.0	54800	2190	
5	D500 t14	500.0	14.0	213.8	168.0	63200	2530	
6	D600 t9	600.0	9.0	167.1	131.0	73000	2430	
7	D600 t12	600.0	12.0	221.7	174.0	95800	3190	
8	D600 t14	600.0	14.0	257.7	202.0	111000	3690	
9	D600 t16	600.0	16.0	293.6	230.0	125000	4170	
10	D700 t9	700.0	9.0	195.4	153.0	117000	3330	
11	D700 t12	700.0	12.0	259.4	204.0	154000	4390	
12	D700 t14	700.0	14.0	301.7	237.0	178000	5070	
13	D700 t16	700.0	16.0	343.8	270.0	201000	5750	
14	D800 t9	800.0	9.0	223.6	176.0	175000	4370	
15	D800 t12	800.0	12.0	297.1	233.0	231000	5770	
10	D000 +14	000.0	14.0	045.7	071.0	962000	6600	~
			Master	Load	🗸 曜	z 🗙	取消	へいしょ(円)

初期状態、および初期入力を新たなデータで作成した場合に 読込まれる鋼材ファイルの設定を行います。

w:鋼矢板1本当たりの幅を設定します。
 H:鋼矢板の高さを設定します。
 W:鋼矢板1本当たりの単位質量を設定します
 A:鋼矢板1m当たりの断面積を設定します。
 I:鋼矢板1m当たりの断面2次モーメントを設定します。
 Z:鋼矢板1m当たりの断面係数を設定します

[Master Load]ボタン

鋼矢板用鋼材のテーブルを指定したマスターファイルから読込みます。

D:鋼管杭1本当たりの外径を設定します。

- t:鋼管杭1本当たりの厚さを設定します。
- A:鋼管杭1本当たりの断面積を設定します。
- W:鋼管杭1本当たりの単位質量を設定します
- 1:鋼管杭1本当たりの断面2次モーメントを設定します。
- Z:鋼管杭1本当たりの断面係数を設定します

腹起し

<H形鋼>

No.	鋼材名称	H (mm)	B (mm)	tw (mm)	tf (mm)	A (cm ²)	W (kg/m)	(cm4)	(cm4)	Zx (cm3)	(cm ³)	ix (cm)	iy (cm)
1	H-100×100× 6× 8	100	100	6.0	8	21.59	16.9	378	134	76	27	4.18	2.49
2	$H = 125 \times 125 \times 6 \times 9$	125	125	6.5	9	30.00	23.6	839	293	134	47	5.29	3.13
3	H-150×150×7×10	150	150	7.0	10	39.65	31.1	1620	563	216	75	6.40	3.7
4	H-175×175×7×11	175	175	7.5	11	51.42	40.4	2900	984	331	112	7.50	4.3
5	H-200×200× 8×12	200	200	8.0	12	63.53	49.9	4720	1600	472	160	8.62	5.0
6	H-250×250× 9×14	250	250	9.0	14	91.43	71.8	10700	3650	860	292	10.80	6.3
7	H-300×300×10×15	300	300	10.0	15	118.40	93.0	20200	6750	1350	450	13.10	7.5
8	H-350×350×12×19	350	350	12.0	19	171.90	135.0	39800	13600	2280	776	15.20	8.8
9	$H = 400 \times 400 \times 13 \times 21$	400	400	13.0	21	218.70	172.0	66600	22400	3330	1120	17.50	10.1
10	$H = 400 \times 400 \times 18 \times 28$	414	405	18.0	28	295.40	232.0	92800	31000	4480	1530	17.70	10.2
11	$H = 400 \times 400 \times 20 \times 35$	428	407	20.0	35	360.70	283.0	119000	39400	5570	1930	18.20	10.4
12	$H - 400 \times 400 \times 30 \times 50$	458	417	30.0	50	528.60	415.0	187000	60500	8170	2900	18.80	10.7
13	H-400×400×45×70	498	432	45.0	70	770.10	605.0	298000	94400	12000	4370	19.70	11.1
14	$H = 500 \times 500 \times 25 \times 25$	502	475	25.0	25	356.30	280.0	157000	44700	6270	1880	21.00	11.2
15	$H = 500 \times 500 \times 25 \times 25$	500	500	25.0	25	368.30	289.0	163000	52200	6520	2090	21.00	11.9
10	11 000~000~ 0~107	000	200	0.0	10	6160		0660	010	nee	0.0	0.00	10

H:H鋼1本当たりの高さを設定します。

B:H鋼1本当たりの幅を設定します。

tw:H鋼ウェブの厚さを設定します。

tf:H鋼フランジの厚さを設定します。

A:H鋼1本当たりの断面積を設定します。

W:H鋼1本当たりの単位質量を設定します。

lx:H鋼1本当たりのx軸回り断面2次モーメントを設定します。

ly: H鋼1本当たりのy軸回り断面2次モーメントを設定します (腹起し材用。ただし、未使用)。

Zx:H鋼1本当たりのx軸回り断面係数を設定します。

Zy: H鋼1本当たりのy軸回り断面係数を設定します(腹起し材用。ただし、未使用)。

|x: H鋼1本当たりのx軸回り断面2次半径を設定します(腹起し材用。ただし、未使用)。

ly:H鋼1本当たりのy軸回り断面2次半径を設定します(腹起し材用。ただし、未使用)。

1: H鋼1本当たりの横座屈用断面2次半径を設定します(腹起し材用。ただし、未使用)。

<溝形鋼>

No.	鋼材名称	H (mm)	B (mm)	t1 (mm)	t2 (mm)	W (kg/m)	Zx (cm [:])	
1	[150×75×6.5×10	150	75	6.5	10.0	18.6	115	
2	[150×75×9×12.5	150	75	9.0	12.5	24.0	140	
3	[180×75×7×10.5	180	75	7.0	10.5	21.4	153	
4	[200×80×7.5×11	200	80	7.5	11.0	24.6	195	
5	[200×90×8×13.5	200	90	8.0	13.5	30.3	249	
6	[250×90×9×13	250	90	9.0	13.0	34.6	334	
7	[250×90×11×14.5	250	90	11.0	14.5	40.2	374	
8	[300×90×9×13	300	90	9.0	13.0	38.1	429	
9	[300×90×10×15.5	300	90	10.0	15.5	43.8	494	
10	[300×90×12×16	300	90	12.0	16.0	48.6	525	
11	[380×100×10.5×16	380	100	10.5	16.0	54.5	763	
12	[380×100×13×16.5	380	100	13.0	16.5	62.0	823	
13	[380×100×13×20	380	100	13.0	20.0	67.3	926	
14								
15								

控え工

控え杭(鋼管矢板) D (mm) A (cm²) W (k∉∕m) No 鋼材名称 (cm³) (mm) (cm4) 110.6 1 D400 t9 400.0 9.0 86.8 21100 1057 2 D400 ±12 400.0 12.0 146.3 115.0 27600 1378 3 D500 t9 500.0 9.0 138.8 109.0 41800 1670 4 D500 t12 500.0 12.0 184.0 144.0 54800 2190 5 D500 t14 500.0 14.0 213.8 168.0 63200 2530 6 D600 t9 600.0 9.0 167.1 131.0 73000 2430 7 D600 t12 600.0 12.0 221.7 174.0 95800 3190 8 D600 t14 600.0 14.0 257.7 202.0 111000 3690 9 D600 t16 600.0 293.6 230.0 125000 4170 16.0 10 D700 t9 153.0 117000 700.0 9.0 195.4 3330 11 D700 ±12 700.0 12.0 259.4 204.0 154000 4390 12 D700 ±14 700.0 14.0 301.7 237.0 178000 5070 13 D700 t16 700.0 16.0 343.8 270.0 201000 5750 14 D800 t9 800.0 9.0 223.6 176.0 175000 4370 15 D800 t12 800.0 297.1 233.0 231000 5770 12.0 16 D000 +14 000.0 945.2 11.0 971.0 962000 MasterLoad 【 🖌 確定 🛛 🗶 取消 🥊 ヘルブ(H)

<鋼管矢板>(その他の鋼材情報は、前述と同様です。)

H:溝形鋼1本当たりの高さを設定します。

B:溝形鋼1本当たりの幅を設定します。

- t1:溝形鋼ウェブの厚さを設定します。
- t2: 溝形鋼フランジの厚さを設定します。

W: 溝形鋼1本当たりの単位質量を設定します。

Zx: 溝形鋼1本当たりのx軸回り断面係数を設定します。なお、 この係数は、腹起し材応力度照査に使用するものであり、応力 度を計算する際には、内部的に2枚一組扱いとして、2倍の値 で計算します。必ず、1枚分の断面係数としてください。

D:鋼管杭1本当たりの外径を設定します。

- T:鋼管杭1本当たりの厚さを設定します。 A:鋼管杭1本当たりの断面積を設定します。
- W:鋼管杭1本当たりの単位質量を設定します。
- |:鋼管杭1本当たりの単位負重を設定します。
- Z:鋼管杭1本当たりの断面係数を設定します。
- 2. 剩官机1本当たりの街面係数を設定しより。

3 計算実行

3-1 計算実行

3-2 形状決定

Rta Suff	AIAAE					
	這条件					
上部工実報紙 0.1.2000 新協大保護 0.1.4000 薬協大保 0.1.4000 要想入れ長の表示 フリーフーフサポート法 企業取入れ 企業取入れ 定量数式 企業失振系 小核状態 0.16750 1760 8450 7750 定約式能化べルル地機動 0.11540 12.940 18.740 18.940 たの実験法 企業収入れ 名誉戦系 企業失振系 小核状態 0.16750 1760 8450 7750 定約式能化ベルル地機動 0.11544 2.9413 0.895(病系 小核状態 0.16432 2.432 9.132 8.432 たが、後期 0.16432 2.432 9.132 8.432 たが、後期 0.16432 2.432 9.132 8.432 でのかった状態 0.16432 2.432 9.132 8.432 1.2566 11.556	構造条件	標	ŝ			
	上部工天瑞高	GL. :	2.700			
低速水源 QL-4000 まの要要には上草工業部からの長さ 変の要要には上草工業部からの長さ 変の要には上草工業部がらの長さ 変のまた。 変のまた マンプーフースサポート法 使要性入れ 低の への 、税増増入れ ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル・ビスサイト ・ビスサイル ・ビスサイ ・ビスサイル ・ビスサイル ・ビスサイ ・ ・ ・	前面矢板天端高	GL. 3	2.000			
またまた、 またまたまた、 またまたまたまたまたまた またまたまたまたまたまたまた またまたまたまた	構造水深	G.L	4.000	※必要壁長	は上部エ	天端からの長さ
プレーアースサポート法 化電視入れ 外級技術名 61-5750 な動力能化 61-5750 な動力能化 61-5750 たわた曲線法 化電視入れ 化電視入れ長 化電線長 化高大 水酸 756 たわた曲線法 化電視入れ 化電視入れ長 化電線上 化高大 水酸 756 1240 1874 2840 1874 2874 1874 2874 1874 28740 1874 28740 1874 28740 1874 28740 1874 28740 1	の要根入れ長の表	示		※必要失敬	長は矢敬	夫輩からの長さ
小板状態 0.15790 1790 9.460 7750 支助大能(レベルド総義動) GL-16.040 12.840 18.740 18.940 たかし機能性 支援第大能(レベルド総義動) GL-16.042 12.840 18.740 10.940 たかし機能性 支援第大能(レベルド総義動) GL-6.432 2.432 9.132 0.432 支援第大能(レベルド総義動) GL-9.556 5.556 12.656 11.856 ロックの方法 企業提札入れ 企業現入れ長 企業現長 必要実施長	フリーアースサポ 状態		必要根入れ 先端高(m)	必要根入れ長 (m)	必要壁長 (m)	必要矢板長 (m)
支助け税化(~以上地機動) GL-16.040 12.040 18.740 たの力の曲線法 化悪性心(小) 化 化 化 化 化 化 化 化 化 化 化 化 化	永続状態		G.L5.750	1.750	8.450	7.750
たわか曲線法 大観察 大観察(小) ・ (m) 小観(北) 小観(北) 小(m) 小観(北) 小(m) ・ (m) ・	変動状態(レベル1)	地震動)	G.L16.040	12.040	18.740	18.040
たかみ時法: (2012) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2						
	たわみ曲線) 状態	法	必要根入れ 先端高(m)	必要根入れ長 (m)	必要壁長 (m)	必要矢板長 (m)
実動状態(レベル) (地震動) G19,958 5,958 12,858 11,958 ロウ2025法 仏悪想入れ 必要扱入れ長 必要結長 必要失板長	永続状態		G.L6.432	2.432	9.132	8.432
ロウの方法 必要提入れ 必要提入れ長 必要整長 必要失板長	変動状態(レベル1	地震動)	G.L9.956	5.956	12.656	11.956
ロウの方法 必要提入れ 必要根入れ長 必要競長 必要失板長						
1A38 7E%matrin) (m) (m) (m)	ロウの方法 状態		必要根入れ 先端高(m)	必要根入れ長 (m)	必要壁長 (m)	必要矢板長 (m)
永続状態	永続状態					
変動状態(レベル1地震動)	変動状態(レベル1)	地震動)				
	金属生物 医乙基酸白	F★8\$/\/T	×==			
		L-214 (70)	////HE	*	決定矢板	長は矢板天端か
が面矢板長(上部工を除く)の決定 ※決定矢板長は矢板天端からの長さ	対象構造物	使	用調材	使用植	摺 矢	版長(m) 先9
)面矢板県(上部工を除く)の決定 ※決定矢板長は矢板天電からの長さ 対象構造物 使用瞬材 使用材質 矢板長(m) 先曜為(m)				CK2/10	0	0.000

矢板長を入力して、確定ボタンを押します。

矢板長

必要矢板長などを参考に、前面矢板の長さ(矢板天端から矢板 先端までの長さ)を決定し入力します。 【注意】上部工天端からの長さ(壁の長さ)ではありません。 <18.00>を入力します。

[先端高]

決定した前面矢板の長さから、「矢板天端 – 決定矢板長」で矢板先端高を表示します。

3-3 タイ材反力

5	14材反力					×																
	反力(計算値)(kN/m)	仮想ばり法	たわみ	曲線法	ロウの方法																	
	永続状態	65.514	63.741		63.741		63.741		63.741		63.741		63.741									
	変動状態(レベル1地震動)	81.537	90.603		90.603		90.603		90.603		90.603		90.603		90.603		90.603		90.603			
	変動状態(牽引時)	65.514	63.	741																		
Í	検討ケース	反力(採用値)	(kN/m)																			
	永続状態	87.91																				
	変動状態(レベル1地震動)	90.36																				
	変動状態(牽引時)	87.91																				
	計算値採用(仮想ばり法)	計算値採用(たわみ曲	線法)																		
	計算値採用(ロウの方法)	計算値採)	用(最大値	1)																		
		↓ ₩	定]	🗙 取消	i 🥐 אול	Έ																

タイ材、腹起しの計算に使用するタイ材反力を入力して、確定 ボタンを押します。

反力(採用值)

各種の計算で得られた反力(計算値)の値を参考にして、タイ 材、腹起しの計算に使用するタイ材反力を入力します。 牽引時は、ここで入力した反力に、[検討ケース-牽引時]で与え られた条件で牽引力を内部計算し加算します。 通常は、永続状態(常時)の反力を入力して頂ければよいものと 考えられます。

計算値採用(仮想ばり法] ボタン 計算値採用(たわみ曲線法)ボタン 計算値採用(ロウの方法)ボタン 計算値採用(最大値)ボタン

計算により算出された支保工反力でタイ材、控え工などの計算 を行いたい場合にクリックします。複数の計算方法で計算して いる場合は、適切と考えられる計算方法を選択するか、最大値 を設定するかを選択することができます。牽引時は、永続状態 (常時)の反力をセットします。

<計算値採用(最大値)>をクリックします。 (Q17参照)

(四7/参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q17 タイ材の設計において用いる反力は、計算過程の画面におい てお客様に設定していただく仕様となっております。 採用する計算値のボタンを押下していただくと、「反力(採用 値)」の値が更新されます。

3-4 控え杭の設置位置

永続状態、変動状態の設置距離を入力して、計算実行ボタンを 押します。

決定設置距離

前面矢板から控え杭までの設置距離を決定します。基本的に は、必要設置距離を満足する距離(より遠くに離す)になると考 えられます。 (Q38参照)

https://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm#q38 計算値採用ボタン

決定設置距離の欄に、内部計算した必要設置距離の内、最大 値をセットします。

3-5 形状決定(控え杭)

形状決定(控	え杭)						×
控え杭上部	工下端高	G.L. 0.200(m)					
	<u>н</u>						
	м.	永続状態	変動状態(しべ	ル1地震動)			
控え杭仮想	地盤面	G.L. 0.200(m)	GL 0.2	00(m)			
控え杭必要	根入れ長	1.898(m)	2.284	(m)			
控え杭先	喘標高	G.L1.520(m)	G.L1.8	70(m)			
控え杭必	要全長	3.883(m)	4.270	(m)			
■別抜催のが	н н						
	<i>.</i>	永続状態	変動状態(レベ	ル1地震動)			
控え杭仮想	地盤面	G.L. 0.200(m)	GL. 0.2	00(m)			
控え杭必要権	根入れ長	3.443(m)	7.304	(m)			
控え杭先	喘標高	G.L2.920(m)	G.L6.4	20(m)			
控え杭必	要全長	5.428(m)	9.290	(m)			
						_	
杭種類		使用鋼材	使用材質	決定控え杭	全長(m)		
押込側の杭	н-	400×400×13×21	SHK490	18.50	10		
引抜側の杭	Н-	400×400×13×21	SHK490	11.00	10		
							~
							~
			-1492/00445000				1 .
			計算値採用	計算続	<u>. </u>	🗙 取消] <u>? ヘルプ(田)</u>

控え杭の決定全長を入力して、計算実行ボタンを押します。

控え杭決定全長

本プログラムでは、控え杭必要根入れ長(全長)の計算を行 い、本画面にてその結果を表示し、これを参考に設計者の判 断で、実際に設計箇所で採用する控え杭決定壁長(全長)を入 力する仕組みになっています。

<押込側:18.500><引抜側:11.000>を入力します。

4 結果確認

— 「結果確認」が出来ます。

4-1 前面矢板

総括表

1	# 総括表:SI単位			-	-		×
E	■ 前面矢板						
Γ	(1)断面諸元						
		項目	ž	して他			
		使用鋼材 使用材質		D500 t12 SKY400			
		上部工天端高 前面矢板天端高 多4材取付位置 構造水深		(G.L. 2.700)m (G.L. 2.000)m (G.L. 1.200)m (G.L4.000)m			
	決定全點 決定全兵 決定根	決定根入れ先端高 悲長(上部工天端高-根入れ先端高) 振長(前面矢板天端-根入れ先端高) 入れ長 (構造水深-根入れ先端高)		(G.L16.000)m 18.700 m 18.000 m 12.000 m			
	(2)根入れ長に対する縣	査結果					
	計算方法	項目	永続状態	変動状態 レベル1 地震動			
	フリーアース サポート法	決定長 D(m) 荷重項 Sd 抵抗項Rd 調整係数 m 判定(m*SdRd < 1)	1.750 10916.53 13401.70 1.000 0.81 OK	12.040 14525.34 17404.80 1.200 1.00 NG			
	たわみ曲線法	計算根入れ長 D(m) 部分係数 ya 決定長≧必要長 判定(決定長≧必要長)	2.432 1.00 12.000≧ 2.432 OK	5.956 1.20 12.000≧ 5.956 OK	5		
	(3)断面力結果						
				ED版 ▼ 閉じる(g)	? ^,	ルブ(日

断面諸元、根入れ長に対する照査、断面力、反力、応力度照査 結果について一覧表形式で、結果確認、出力ができます。

根入れ長に対する照査

【普通矢板式の場合】

港湾と漁港基準で判断方法は異なりますが、基本的に決定長 における力の釣り合いが安全率を満足しておればOKと評価し ています。

【自立矢板式の場合】

港湾と漁港基準で判断方法は異なりますが、基本的に必要根入れ長より決定根入れ長が長ければ判定はOKと評価しています。

断面力、反力

断面力、反力を表示します。なお、断面力、反力は単位幅(1. 0m)当たりの値です。

印刷

一覧表形式の印刷もしくは、HTMLファイル保存します。

土圧分布表

💾 土圧強度分布表								
○ 根入わ長計算用 ○ 広力度計算用	永続	犬熊・変動状	態(牽引時)	変動状態(レ	マル1地震動	1		
C UC/OI (3Real gp/T) C 3/273/scal gp/T)	主領	- 関本の (1997) (19977) (19977) (19977) (1997) (19977) (19977) (19977) (19977) (19	B)					
地表面天端 GL. 2.700 FWL. GL. 1300 1925 1925	No.	層厚 (m)	根入れ長用 土圧強度 層上面 (kN/m ²)	根入れ長用 土圧強度 層下面 (kN/m ²)	応力度用 土圧強度 層上面 (kN/m ²)	応力度用 土圧強度 層下面 (kN/m ²)		
LWL. GL. 0.000	1	1.500	2.91	10.77	2.91	10.77	-	
	2	0.500	10.77	12.23	10.77	12.23		
構造水深 GL4,000 🛃 17.28	3	0.700	8.16	9.52	8.16	9.52		
29.00	4	4.000	9.52	17.28	9.52	17.28		
	5	19.300	9.00	144.10	9.00	144.10		
144.10								
🧐 CSVファイルに出力					刷	:3(C)	? ^//:	7(H)

各検討ケースにおける主働側、受働側の土圧強度と、分布図を 確認できます。

常時・牽引時、地震時 ボタン

初期入力で指定した検討ケースが表示されています。 [常時・牽引時]、[地震時]のボタン切り替えでデータを確認でき ます。

主働側、受働側 ボタン

[主働側]、[受働側]のボタン切り替えでデータを確認・修正できます。

根入れ長用、応力度用

港湾基準選択時のみ使用可能です。 ここで切り替えを行うことでそれぞれの算出結果の土圧分布 図を表示できます。

CSVファイルに出力

計算結果の土圧強度を、CSVファイルに出力します。 また、データ入力時に土圧強度の直接指定を選択した際、土 圧強度の入力画面で読込みを行ったり、各数値をコピー&ペー ストして利用できます。

フリーアースサポート法

4-2 仮想ばり法

体化状態 モーンド島大 ご 構造モデル 作型 反力 変位 BM SF AF 構造モデル ・総点型様データ ・総点型様データ ・総点型様データ ・	🎦 フレーム解析結果					-		×
構造モデル ・総点環管デーク 1 0.0000 2.7000 2 0.0000 2.5000 3 0.0000 2.5000 4 0.0000 2.5000 3 0.0000 2.5000 6 0.0000 2.5000 7 0.0000 2.5000 9 0.0000 1.5000 11 0.0000 1.5000 12 0.0000 1.5000 13 0.0000 1.5000 14 0.0000 1.5000 15 0.0000 1.5000 16 0.0000 1.5000 17 0.0000 1.5000 12 0.0000 0.5000 13 0.0000 1.5000 14 0.0000 1.5000 15 0.0000 0.5000 12 0.0000 0.5000 20 0.0000 0.5000 21 0.0000 0.5000	◆続状態	モーメント最大	- 構造モテツ	レ 荷重 反ナ	変位	BM	SF	AF
Red #st X (m /m) (m) Y (m /m) (m) 1 0.0000 2.5000 2 0.0000 2.5000 3 0.0000 2.5000 4 0.0000 2.2000 5 0.0000 2.2000 6 0.0000 2.0000 9 0.0000 1.0000 11 0.0000 1.0000 13 0.0000 1.6000 14 0.0000 1.0000 13 0.0000 1.0000 14 0.0000 1.0000 15 0.0000 1.0000 16 0.0000 0.9000 20 0.0000 0.9000 21 0.0000 0.9000		構造モデル ■格点座標デー	9					^
1 0.0000 2.7000 2 0.0000 2.5000 3 0.0000 2.5000 4 0.0000 2.4000 5 0.0000 2.3000 6 0.0000 2.1000 7 0.0000 2.1000 9 0.0000 1.8000 10 0.0000 1.5000 11 0.0000 1.5000 13 0.0000 1.5000 14 0.0000 1.2000 10 0.0000 1.5000 12 0.0000 1.5000 14 0.0000 1.5000 12 0.0000 0.5000 12 0.0000 0.5000 12 0.0000 0.5000 20 0.0000 0.5000 21 0.0000 0.5000	•	格点 X 番号	座標 (m)	Y座櫄 (m)				
23 0.0000 0.5000 24 0.0000 0.4000 25 0.0000 0.3000		1 3 4 5 6 7 8 9 0 0 111 112 113 114 115 116 117 118 119 200 211 223 224 23 225	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	2.000 2.600 2.500 2.300 2.300 2.300 2.200 1.000 1.900 1.900 1.500 1.300 1.300 1.300 1.300 1.300 1.300 1.300 1.300 0.000 0.5000 0.50000 0.5000 0.5000 0.5000 0.50000 0.50000 0.5000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.500000000				~

根入れ長に関する安定計算結果を図入りで確認することがで きます。最大で、永続状態(常時)、変動状態レベル1地震動(地 震時)の2ケースの扱いになります。

各ケース、フレーム解析結果の確認、印刷ができます。

構造モデル図

解析構造モデル図と構造データを数値表示します。

荷重

荷重図と荷重データを数値表示します。

反力 反力図と反力値を数値表示します。

変位

変位図と変位値を数値表示します。

BM

曲げモーメント図と断面力値を数値表示します。

SF

せん断力図と断面力値を数値表示します。

AF

軸力図と断面力値を数値表示します。

格点番号、部材番号

左側の図に格点番号、部材番号を表示します。

FRAMEの符号

計算結果 (変位、断面力など)のプラスの方向 は以下の通り です。

- a) 各点変位……全体座標系
- ・水平変位 : X軸(右)方向
- ・鉛直変位 : Y軸(上)方向
 ・回転変位 : 反時計回り
- b) 支点反力……全体座標系
- ・水平変位
 : X軸(右)方向

 ・鉛直変位
 : Y軸(上)方向

 ・回転変位
 : 反時計回り

4-3 たわみ曲線法

4-4 支保工

🧧 支保工:SI単位								- 0	×
■ タイ材 🔲 腹起し									
(1)使用断面									~
τ	Ā	B			2.0	債			
	▲ 用材質 隔	L			gA.	高限	力綱690 2.400(m)		
使用: 腐食後のタイ材 使用	タイ材径 至 φ44. 断面積	0 - 2× 0.9				φ 4 φ 4 1398	4.0 (mm) 2.2 (mm) .7 (mm ²)		
(2)最後計3限力									
検討ケース		چ × Td	イ材張力 10 ³ (N/本)						
永続状態 変動状態(レベル1地震動) 変動状態(牽引時))		21 21 23	0.98 6.86 5.98					
(3)応力照査結果									
検討ケース	γS	Sk	Sd	γR	Rk	Rd	m	判 定	
 永続状態 変動状態(レベル1地震動) 変動状態(牽引時) 	1.29 1.00 1.29	150.85 155.05 168.72	194.59 155.05 217.65	0.64 1.00 0.64	440.00 440.00 440.00	281.60 440.00 281.60	1.00 1.67 1.00	0.69 0.59 0.77	OK OK OK
									×
						E[1,B]	閉じる(0 ?~	ルブ(出)

各ケース、フレーム解析結果の確認、印刷ができます。

タイ材と腹起し材に関する断面照査結果を示します。 使用断面応力度が許容応力度を満足していない場合は赤色ボ タン表示になります。

4-5 控え工

総括表

控え杭に関する結果について一覧表形式で、結果確認、出力します。
詳細確認

必要設置距離に対する決定控え杭設置位置を確認できます。

Ldmax([形状]画面で入力した「控え杭設置検討範囲」)が、 Ldmin(必要設置距離)または決定設置距離に比べて、非常に 余裕がある場合は、Ldmaxを少し短く変更することで、描画バ ランスが改善される場合があります。

5 計算書作成

_ 「計算書作成」 をクリックします。

5-1 全印刷

設計条件、結果一覧表、全計算結果の詳細を全て作成しプレビューします。

F8 出力編集ツール

FORUM8製品から出力されたデータをプレビュー、印刷、他の ファイル形式への保存を行うことができます。また、ソースの 編集を行うことで文章を修正することができます。

F8出力編集ツールが起動し、結果一覧の報告書プレビューが 表示されます。

Cold 7) 編集ソール(76 PP) 万法) 印合) Cold 7) 編集ソール(76 PP) 万法) 印合) Cold 7) 編集ソール(76 PP) 万法) 印合) Cold 7) 高元(76 PP) (20 Cold 7) 高元(76 PP) Cold 7) 高元(76 PP) (20 Cold 7) 高元(76 PP) Cold 7) 高元(76 PP) (20 Cold 7) 高元(76 PP) Cold 7) 高元(76 PP) (20 Cold 7) 30 Cold 7) 高元(76 PP) (20 Cold 7) 30 Col	ルビュー × ブ(h) ・ ▶ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	ダイトル-Fi会達-3.5m陸襲の設計 コメント:粘土地盤の場合 (2)構造形式 構造 : 普通矢板式 耐用年数 : 30年 地工延長 : 120.000 (m) 前面置性種類 病質大板 (薬込め村あり、上部コンクリートあり) 控之形式 : 組成肝病 ダイ村間隔 : 2.400 (m) (3)適用基準 港湾の施設の技術上の基準・開解数 (平成30年5月) 社団法人 日本: 1.2 水位条件 (1)検討水位 病質平均濃病位面 H.*L.(m) 1.900

- 章番号と見出し文字列の編集

章番号と見出し文字列を編集するにはツーリーウインドウの見 出しをダブルクリックしてください。 ダブルクリックをすると章番号と見出しの編集画面が開きま す。

roll / line / - //(ro- / アイル(F) 表示(V) 電子I	F互換) 印刷ブレビュー 内品(C) ヘルプ(H)		1 ×
\$1.50 🖨 🖬 👪		1 0 4 5 70	2
日 1.1 法未完子 1.1 法未完子 1.1 法未完子 1.1 法未完子 1.1 法未完子 1.2 水冶金糸 1.3 形状 1.3 形状 1.4 形状 1.4 形状 1.5 形状 1.5 形成 1.6 部材 1.6 北部 1.7 報酬 1.7 地間 1.8 地画 1.8 北部 1.8 1.9 2.2 1.4 1.9 1.9 2.2 1.4 1.9 1.9 2.2 1.2 1.9 1.9 1.9	■ 291% ジェ	- □ - (1) 品名 林維 日付 フォント 体数 	
Comparison of the second			
-1 -1 -1)4 -(1)4 -(2)4 -(3)4 -1 -1 -1 -2 -3.4 gabtty -2.4 gabtty	スタイル設定 参照/保存先 ○ 金製品共通 で (合 株社)	1930年 1930 1930 1930 1930 1930 1930 1930 1930	ю]

_____ ファイル-スタイル設定

表紙、目次の追加、ページ情報の設定、文書全体の体裁を設定 するための機能があります。

	∧ プレビュー	ノース			
保存する場所(I):	Data		• + 6 d		
2170 POZZ	4 8	検索条件に一致する	更新日時 夏目はありません。	推測	9
デスクトップ					
51759					
PC					
*>>5-9					
	<				,
	ファイル名(N):			▼ 保存(\$	5
	ファイルの種類(T): PPF	files (*.ppf)		 キャンセ 	۱,
出力 範囲 (* すべて(A)		オプション 画像形式	Ŧ		
	1 1-1/105/1				

- ファイル-ファイル出力

F8出力編集ツールでは出力形式として、テキスト形式 (TXT)、 HTML形式 (HTM,HTML)、PPF形式 (PPF)、WORD形式 (DOC)、PDF形式 (PDF)、一太郎形式 (JTD、JTDC)に保存 できます。

*WORD形式 (DOC)に出力する際にはMicrosoft(R) Word97 以降がインストールされている必要があります。 ※推奨はMicrosoft(R) Word2000以降 ※Microsoft(R) Word97では、出力時にエラーとなる可能性が あります。

*PDF形式 (PDF)の出力は有償版で利用できます。

*一太郎形式 (JTD、JTDC)の出力は有償版で利用できます。

*一太郎形式 (JTD、JTDC)に出力する際には一太郎11以降が インストールされている必要があります。 ※推奨は一太郎13以降

掲載されている各社名および各社製品名は、一般に各社の商 標または登録商標です。

ファイル-印刷

現在表示している文書を印刷します。

5-2 結果一覧

📑 F8出力編集ツール(F8-PPF互換) 印刷プレビュー		– 🗆 🗙
ファイル(F) 表示(V) 電子納品(C) ヘルプ(H)		
開いる20 毎日 11 10 10 10	100 🚉 🚺 🤹 🦄	Q. 8 ? =
白.1.2 控え工計算結果一 1.2.1 タイ材 1.2.2 腹起し 1.2.3 控え秋		
<u></u>	1章 結果一覧表	
<u>%</u>	1.1 前面矢板計算結果一覧表	
20	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
<u> </u>	使用鋼材 使用材質	D500 t12 SKY400
	上部工天端高 前面矢板天端高 タイ材気(始置 構造水深	(G. L. 2. 700) m (G. L. 2. 000) m (G. L. 1. 200) m (G. L4. 000) m
	決定根入れ先端高 決定全壁長(上部工天端高-根入れ先端高) 決定全矢板長(前面矢板天端-根入れ先端高) 決定根入れ長 (講造木泽-根入れ先端高)	(G. L16.000)m 18.700 m 18.000 m 12.000 m
	(2)根入れ長に対する照査結果	
	項目	永続状態 変動れ レベル1
	フリーアース サポート法 判定(m×Sd/Rd < 1) 決定長 D (m) 満重項 Sd 抵抗項 Rd 調整保数 m 判定(m×Sd/Rd < 1)	$\begin{array}{ccccc} 1.750 & 12.\\ 10916.53 & 14525.\\ 13401.70 & 17404.\\ 1.000 & 1.\\ 0.81 \ 0\mathrm{K} & 1. \end{array}$
	計算根入れ長 D (m) たわみ曲線法 決定長当 ya 決定長当 安要長 判定(決定長当 必要長)	$\begin{array}{cccc} 2.432 & 5.\\ 1.00 & 1.\\ 12.000 & 2.432 & 0 \\ 0 \\ \end{array} \begin{array}{c} 5.\\ 12.000 & 0 \\ 0 \\ 0 \\ \end{array}$
	(3)断面力結果	
	「 項 目	永続状態 変動ね レベル1 ▲
スタイル設定	/ P P 210 x 23/mm	

結果一覧表を作成しプレビューします。

5-3 結果詳細

全計算結果の詳細を作成しプレビューします。

6 オプション 6-1 地層入力方式

地層入力方式-[層厚] 地層(土圧強度)の入力を層厚で行います。

地層入力方式-[標高] 地層(土圧強度)の入力を標高で行います。

表示項目の設定

描画や画面の状態、ツールバーなど表示に関する設定を行いま す。

Frameモデルの出力

出力の有無を切替えることができます。計算実行を押下いただ き、計算が終了した後に出力されます。出力先は、そのとき開い ているデータが保存されている箇所と同じか、データが未保存 の場合はプログラムインストール先に保存されます。

6-2 表示項目の設定

地層入力方式を層厚にするか標高にするかチェックします。

表示・描画タブ

主にメインウィンドウに表示される描画関連の設定を行いま す。

補助機能タブ

ファイル履歴の表示最大個数や表示方法、画面の保存方法を設定します。

ツールバータブ

メインウィンドウに表示するツールバーが設定できます。

7 ファイルの保存方法

メニューバーのファイル(F)より「名前を付けて保存(A)」を選択 します。

📔 名前を付けて	保存				
保存する場所	(I): Data		- + 🗈 📥		
4	名前		更新日時	種類	ŧ
רלתי העיה	Sample-Fish2015.F7B		2016/01/20 11:05	F8 矢板式係船岸の	
71777727	Sample-FishP331.F7B		2016/01/20 11:06	F8 矢板式係船岸の	
. <u> </u>	Sample-FishP349.F7B		2016/01/20 11:06	F8 矢板式係船岸の	
デスクトップ	Sample-PortH19Kumi.F7B		2018/11/28 15:36	F8 矢板式係船岸の	
	Sample-PortH19Pile.F7B		2018/11/28 15:39	F8 矢板式係船岸の	
	Sample-PortH19VerticalPile.	F7B	2018/11/28 15:36	F8 矢板式係船岸の	
ライブラリ	Sample-PortH30Kumi.F7B		2018/11/28 15:17	F8 矢板式係船岸の	
	Sample-PortH30Pile.F7B		2018/11/28 15:26	F8 矢板式係船岸の	
	Sample-PortH30VerticalPile.	F7B	2018/11/28 15:16	F8 矢板式係船岸の	
PC	Sample-Saigai1.F7B		2016/01/20 11:07	F8 矢板式係船岸の	
<u></u>	Hereit Sample-Saigai2.F7B		2016/01/20 11:07	F8 矢板式係船岸の	
S					
ネットリーク					
	<				>
	ファイル名(N):		•	· 保存(S)	
	ファイルの種類(T): 矢板式係船	i库の設計計算 XML	形式(*.F7B)	キャンセル	
- ファイル特報-					
製品名:	矢板式係船岸の設計計算 Ver.4				-
製品がージョン	4.0.0.0				-
ファイルバージョン:	4.0.0.0				-
作成日:	2018/11/30				-
会社名:	Forum8				-
部 署 名:	Forum8				-
作 成 者 名:	Forum8				-
コメント:	 港湾基準H30の組杭形式				-
	,				- /

任意のフォルダを指定して保存します。既存データを「上書き 保存」にて書きかえることも可能です。

第3章 操作ガイダンス - 漁港基準の直杭形式モデル-

1 モデル作成

漁港基準の直杭形式(普通矢板式)データを例題として作成します。(使用サンプルデータ: Sample-Fish2015.F7B) 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 新規作成

新規作成

初期入力をチェックして、確定ボタンを押します。

1-2 初期入力

設計条件を入力して、詳細設定ボタンを押します。 一般事項 名称設定

タイトル・コメント:設計条件の出力に使用します。

適用基準

適用基準を選択します。<漁港基準>を選択します。

適用基準-表示名称

適用基準が"漁港基準"の場合に、計算書に出力する基準名称 を以下のいずれとするかを選択してください。 旧基準 : 漁港・漁場の施設の設計の手引 2003年度版 社団法人 全国漁港漁場協会

新基準 : 漁港・漁場の施設の設計参考図書 2015年度版 水産庁

※本設定による計算部への影響はありません。

構造

設計対象が、普通矢板式か、自立矢板式かを指定します。 <普通矢板式>を選択します。

耐用年数

耐用年数を入力します。腐食計算時に使用します。<30>を入力 します。

施工延長

施工延長を入力します。印刷情報であり、設計計算には使用しておりません。<50.000>を入力します。

前面矢板壁-鋼材種類、鋼材No、上部エコンクリートを設ける 設計予定の壁体種類並びに使用鋼材番号を入力します。<鋼矢

設計予定の堅体裡類並びに使用鋼材番号を入力します。<鋼大板><鋼材:10>を選択、<上部工>にチェックします。

側面形状

前面上部工天端高 前面上部工天端高を入力します。 <G.L.:2.700>

前面矢板天端高

矢板壁の天端高を入力します。本プログラムでは、矢板全長を この矢板天端高から矢板先端高とします。 <G.L.:2.000>

計画水深

計画水深を入力します。印刷情報であり、設計計算には使用しません。<G.L.:-3.500>

構造水深

構造水深を入力します。本プログラムでは、海底面がこの位置にあるものとして、海側の受働土圧載荷開始位置とします。 <G.L.:-4.000>

朔望平均満潮位面(高水位)H.W.L. H.W.L.を入力します。<H.W.L.:1.800>

朔望平均干潮位面(低水位)L.W.L.

L.W.L.を入力します。 <L.W.L.:0.000>

前面矢板壁に裏込材を設ける

前面矢板の背面側に裏込材を設けるか否かを指定します。 本プログラムでは、矢板式係船岸の主働崩壊面を計算するに は裏込材の影響を考慮することができます。 <チェック>を外します。

主働側常時上載荷重

常時扱いの上載荷重を入力します。<10.00>

地層

地表面天端GLを設定する

地表面天端GLを任意に設定する場合は選択します。設定でき る範囲は残留水位以上、上部工最上部高さ以下です。別途設 定しない場合は、上部工の最上部の高さが地表面となります。 普通矢板式の場合は、タイ材取付位置、控え杭最上部の高さ は地表面以深の設定となりますので注意してください。<チェッ ク>は外します。

地層

地層データを入力します。初期入力画面では、一旦、主働側(陸 側)、受働側(海側)の地層データを同じ条件で生成しますが、 [地層]画面にて、個別に変更することができます。

No.	層厚	土質種類	平均N值	γt	φ	Co
1	4.200	砂質土	10.0	18.0	30.00	0.0
2	12.500	砂質土	15.0	18.0	35.00	0.0

タイ材

取付位置 前面矢板におけるタイ材取付位置を標高で入力します。残留水 位近辺に設定される場合が多いのはないかと考えられます。 <1.200>

水平間隔

タイ材の水平間隔を入力します。<2.400>

控えエ タイプ

控え工のタイプを指定します。<直杭>を選択します。

種類、鋼材番号

控え工の断面種類、検討鋼材番号を指定します。<H形鋼><鋼 材:9>を選択します。

控え工に裏込材、上部コンクリートを設ける どちらも<チェック>を外します。

検討ケース

検討ケースを指定します。処理に都合上、牽引時を行いたい場合は、地震時を必ず選択して下さい。地震時と津波引き波時に <チェック>を入れます。

考え方

地盤反力係数の自動算定

土圧強度の直接指定 前面矢板に関する土圧強度を内部で自動計算せず、直接指定 を行いたい場合は選択してください。 <チェック>は外します。

17ル(F) 委押値	(K) 77939(0) AJU7(H)		AT IR COLD.	1100000000	100-		
₽ H	APRE-LOUGH	7.71	IT BLAIT	松井 1912	打具者作成	1 1 1 1 1 1		
		2619	*		0.705			
■ 横計水道	ĩ	1.800			2000		2.000	1,200
- 他状 		0.000			1.2000 No 1	0.0 Ø=\$0.00		
■上部工						10.000	-	
考え方						10.003	-3.000	
控え工	x .							
地層					N=1	5.0 Ø=35.00		
		N=15.0 ¢	= \$5.00					
 一〇 夕イ村 世紀1.41 					-11.400			
授え工材								
常時								
□ 地震時 □ 津波引き	波時	L						
		3D 🖣						
			-				4	
			_	-				
			10	- Notes	84			
				1				

検討水位			×						
▶ 残留水位を内部計算す	ెం								
	永続状態(常時)	変動状態(レベル1)	変動状態(引波時)						
朔望平均満瀬面 H.W.L	1.800	1.800	1.800						
朔望平均干潮面 L.W.L	0.000	0.000	0.000						
残留水位 R.W.L	1.200	1.200	1.200						
水の単位体積重量	水の単位体積重量 10.1 kN/m ³								
範囲:-99.999~999.999		✓ 確定 ¥	取消 🛛 🥐 ヘルブ(日)						

――― 検討水位を入力します。 ツリービュー 「検討水位」 をダブルクリックします。

朔望平均満潮面(高水位)H.W.L.

各検討ケースにおけるH.W.L.を入力します。<H.W.L.:1.800>

<mark>朔望平均干潮面(低水位)L.W.L.</mark> 各検討ケースにおけるL.W.L.を入力します。<L.W.L.:0.000>

残留水位-内部計算

内部計算時は、H.W.L.とL.W.Lの潮位差の2/3とします。 < チェック>を入れます。

残留水位-R.W.L.

内部計算に拠りがたい場合は、各状態におけるR.W.L.を直接 入力します。

水の単位体積重量

水の単位体積重量を入力します。残留水圧、動水圧の計算など に使用します。<10.1>

1-3 形状

H 83	モードの減択入	力 計算実行	結果確認 計1	tens ? 🖬 📼	
	2614		7		
水位条件	1	_	-	2,700	20.000
- ■ 検討水位 形状	*	100	12		2.000
日間面	*			Na 10 0 0 0 0 00 00	
 一 期込材 	-2	500		10.000	-3.000
 12ペエ 地層 任意荷重 部材 単一の方法(6.500) 		=15.0 <i>\$</i> =35.00		N=15.0 Ø=35.00	
● 少イ材 ● 単記し材 ● 提え工材			-11	400	
 ■ 常時 ■ 地震時 ■ 津波引き波時 	30	0 0 0 0 0			
			-		
		8			
		0	and the second	10	

側面

- ツリービュー「側面」をダブルクリックします。

側面形状を入力します。

前面矢板壁

上部工天端高

上部コンクリートの天端高を入力します。本プログラムでは、 上部工天端から矢板先端高までの長さを壁長として扱います。 また、この天端高は背面地盤高とみなし主働土圧の作用開始 高になります。<2.700>

矢板壁天端高

矢板壁の天端高を入力します。本プログラムでは、矢板壁天端から矢板先端高までの長さを矢板長として扱います。<2.000>

タイ材取付位置

タイ材の取付位置を入力します。基本的に矢板壁天端より下方 になるものと考えられます。<1.200>

タイ材傾角

タイ材の傾き角度を入力します。時計回り(右下がり)を+で入 力して下さい。<0.00>

計画水深

係船岸の計画用の水深を入力します。本情報は設計計算に使用せず、印刷情報としてのみ使用します。 <-3.500>

構造水深

本プログラムでは、本水深を海底面として設計計算を行いま す。<-4.000>

エプロン幅

エプロン幅を入力します。この幅情報は計算には使用しておりません。<10.000>勾配がある場合は、勾配ありにチェックマークをして下さい。勾配は1:nで入力します。この時、nが正(n>0)で、反時計回り(右上がり)になります。<チェック>なし

控え工

控え杭設置検討範囲 離れを見込んだ範囲を入力して下さい。<20.000>

控え杭、そのものの天端高を入力します。 <2.000>

前面矢板タブ

h1:上部コンクリートの前面高(m) <2.100>

h2:上部コンクリートの背面高 <2.100>

b1:上部コンクリートの全幅 <0.800>

b2:上部コンクリートの天端幅 <0.000>

b3:上部コンクリートの背面幅 <0.000>

b4:上部コンクリートの前面から矢板壁センターまでの距離<0.400>

1-4 考え方

― ツリービュー「前面矢板」 をダブルクリックします。

前面矢板

計算方法

フリーアースサポート法:<チェック>を入れます。

骨組構造計算ピッチ

変位、断面力計算を「仮想ばり法」で実施します。仮想ばり法は、構造骨組み解析(Frame計算)で行いますので、その際の骨 組構造計算ピッチ(節点間隔)を指定します。 <0.10>

たわみ曲線法:<チェック>を外します。

地盤の種類

前面矢板の地盤種類を選択します。選択方法につきましては、 港湾基準では「部分係数」の設定、漁港基準では「安全率」の 設定に使用します。 <砂質土地盤>を選択します。

タイ材より上の外力の扱い

フリーアースサポート法(仮想ばり法含む)、たわみ曲線法において、タイ材より上に作用する外力(土圧)を考慮するか否かの設定を行います。 <フリーアースサポート法:考慮> <たわみ曲線法:考慮>

土圧の考え方 裏込材を考慮する

裏込め材の物性値をそのまま使用して土圧計算を行う場合 は、チェックマークを付けます。この場合、[形状-裏込材]で入力 した物性値(砂質地盤扱い)で土圧計算を行います。この時、裏 込材は「砂質土」扱いとします。 <チェック>を外します。

エプロン勾配を考慮する

土圧計算に、エプロン勾配を考慮するか否かを設定します。地 表面が水平面となす角(β)考慮するか否かの設定になります。 <チェック>を入れます。

粘性土の最小主働土圧の扱い(漁港基準) 常時:K(Σrh+w) K0.500

地震時:K(Σrh+w) K0.500

海底面から-10.0m区間の地震時粘性層の扱い

震度の補正

[計算理論及び照査の方法-作用-土圧-地震時の粘性土主働土 圧の補正について]をご一読下さい。

また、適用基準が災害復旧工事の場合に直線補正を選択した 場合、換算載荷重の算出過程においては、すべり面の水平距離 算出のため震度は無補正の値を使用します。 土圧強度の算出過程に関しては、この限りではありません。 <無補正>にチェックを入れます。

土圧の補正

港湾基準P.337および漁港基準P.113に従って直線補正を行う 場合、各粘性土層の下面における土圧が、海底面の土圧よりも 小さい場合、海底面の土圧に補正する必要があります。

しかしながら、『港湾構造物設計事例集 平成30年改訂版』 の計算例では、各粘性土層の上面と比較し、各粘性土層の上面 における土圧に補正するようになっています。

実務上でもそのように行っているというご意見を頂戴している ため、土圧を比較する位置を選択できるようにしました。

・無補正:従来バージョン通り土圧の補正を行わない

・海底面基準:海底面の土圧と各粘性土層の下面における土 圧を比較する

・粘性土層上面基準:各粘性土層上面と下面の土圧を比較する

控え工	×
┌控え杭の計算に用いる横方向地盤反力(系数
平均N值 10.0 kh 15000.00	kN∕m³
┌杭頭条件────	
変位、断面力計算時	○ 固定 ④ 自由
設置位置における(Lm1)/3の計算時	○ 固定 ● 自由
杭頭許容変位量	
常時 地震	
許容変位量(mm) 30.0 30.0	1
」 「控え版の土圧算定に用いる壁面摩擦角・	
◎ 主働土圧は15度、受働土圧は0度と3	する
€ 入力値をそのまま用いる	
- 主働崩壊面の開始位置(たわみ曲線法)	
 構造水深から C M 	=0地点から
[[
	✓ 確定 📗 👗 取消 🔤 🥐 ヘルブ(日)

控え杭の計算に用いる横方向地盤反力係数

平均N値:10.0kh 15000.00kN/㎡

杭頭条件

変位、断面力計算時:自由 設置位置における(Lm1)/3の計算時:自由

杭頭許容変位量

常時:30.0 地震時:30.0

主働崩壊面の開始位置(たわみ曲線法)

たわみ曲線法を選択した場合に、控え工の設置位置検討時の 主働崩壊面開始位置(高さ)をモーメントゼロ点にするか、海底 面とするかを選択してください。

1-5 地層

初期入力で入力した地層データが初期値としてセットされま す。データを確認・修正します。 ツリービュー「地層」をダブルクリックします。

地層													
※地層	のデータの) 層厚⇔標高	a it.	ロブション	月-[地層)	(カ方式)	から切り	替えが可能	とです。				
主働側	受働側												
No.	<i>層厚</i> (m)	土質 種類	平均 N値	湿潤単 位重量 γt (kN/m³)	水中単 位重量 (kN/m ³)	飽和単 位重量 Ƴ sat (kN/m³)	内部 摩擦角 (度)	[常時] 壁面 摩擦角 (度)	[地震時] 「壁面 摩擦角	粘着力 Co (kN/m²)	粘着力 増分 (kN/m³)	^	⊐Ľ~©
1	4.200	砂質土	10.0	18.0	10.0	19.0	30.00	15.00	15.00	0.0	0.0		
2	12.500	砂質土	15.0	18.0	10.0	20.0	35.00	15.00	15.00	0.0	0.0		
3													
4													
5													
6													
7													
8													
9													
					_	γ'=γs	at-γw			1	御定	🗙 取消	? ヘルプ(H)

[コピー]ボタン

主働側、受働側、他方にその地層データをコピーします。

層厚(または標高)

地層は上から順番に入力します。最下層の下端位置は必ず壁 体先端位置よりも (余裕を見て) 深い位置まで入力してくださ い。また、層厚入力の際は、基準点を地表面天端G.L.(または 前面矢板最上部)として、基準点以深の層厚を入力してくださ い。

土質種類

土質種類を砂質土または粘性土とします。

平均N值

N値を入力します。土の硬軟判定、変形係数aEoの評価の計 算、地盤反力係数の自動算定等に使用します。

土の湿潤単位重量、水中単位重量、飽和単位重量

土の湿潤単位体積重量、水中単位体積重量、飽和単位体積重 量を入力します。

内部摩擦角

内部摩擦角を入力します。

壁面摩擦角

壁面摩擦角を入力します。受働側は符号を判定して土圧計算 を行います。

粘着力と粘着力増分

粘着力は、一定値だけでなく、深さ方向に強度が増す1次関数 として入力できます。 各層上端からの距離 Zの着目位置での粘 着力を C=Co+k・Z で表すこととします。 Coは各層上端での粘着力、kは各層における深度1m当たり の粘着力の増加分k(kN/m2/m)、Zは各層上端からの距離と します。

1-6 任意荷重

任意荷重							×
↓ v	常時 鉛直荷	地震時 重 0.0	00 kN∕m				
y1 (GL) H1	No.	荷重種類	載荷位置G.L. y1 (m)	載荷位置GL. y2(m)	水平荷 <u>重</u> H1 (※)	水平荷重 H2 (kN/m²)	î
<u> </u>	1						
¥2 (GL)	2						
H2	3						
	4						
y1 (GL)	5						
	6						
ļ				※ 集中	中荷重:kN/m	分布荷重:kl	 V/m ²
				~ *		75 10 10 ± 1 KI	
				🖌 確定] 🛛 🗙 取消	<u>ぎ_?</u> へル	ブ(田)

常時、地震時タブともに鉛直荷重は0.00kN/mです。

※地層のデータの 主働側 受働側

No.

層厚 (m)

10.000

土質 種類 平均 N値

砂質土

18.0

湿潤単 位重量 (k,N/m³)
(k,N/m

35.00

15.00

[地震時] 壁面 摩擦角 Co 増分

(kN/m²) (kN/m³

0.0 0.0

ô (度)

^

【 ✔ 確定 🛛 🗶 取消 🦿 ヘルブ(出)

1-7 部材

前面矢板壁材

100						
iπ .				腐食		
SY295	C SY390			■ 低減係数		
矢板の有	効率α			 自動計算 	直接指定	
1 to all t	前一冊 ふるな山田	1.00	-			
001013	BICUM OF BUDU	1.00	-	席貫代		
1面力、 3	町に用いるの算出用	1.00	-	耐用年数	30	(年)
1面2次モ	ミーメント 口に対して	1.00	-	腐合速度(海側)	0.300	(mm/年)
而係料フ	71.7881.77	1.00	-	/m 25/d5/26 (744181)		
1001/4922		1.00	<u>.</u>	席食速度(陸側)	0.015	(mm/年)
M				電気防食効率	0.90	
明調材	番号 10			□ 直接指定する	,	
No.	鋼材名称	I(cm4)	Z(cm ³)	腐食代(海側)	0.90	(mm)
No.	鋼材名称	I(cm ⁴) 8740	Z(cm ³) 874	腐食代(海側)	0.90	(mm)
No. 1	鋼材名称 1型 1型	I(cm ⁴) 8740 16800	Z(cm ³) 874 1340	席食代(海側) 席食代(陸側)	0.90	(mm) (mm)
No. 1 2 3	鋼材名称 I型 I型 N型	I(cm ⁴) 8740 16800 38600	Z(cm ³) 874 1340 2270	腐食代(海側) 腐食代(陸側) t2とt1の比 α	0.90	(mm) (mm) OK (
No. 1 2 3 4	鋼材名称 型 型型 N型 VL型	I(cm ⁴) 8740 16800 88600 63000	Z(cm ³) 874 1340 2270 3150	席食代G毎創) 席食代G種創) 12と11の比 α	0.90	(mm) (mm) OK (
No. 1 2 3 4 5	鋼材名称 型 型型 M型 VL型 VL型 VL型	I(cm ⁴) 8740 16800 38600 63000 86000	Z(cm ³) 874 1340 2270 3150 3820	席食代(海側) 席食代(陸側) t2とt1の比 α 低減係数	0.90	(mm) (mm) OK (
No. 1 2 3 4 5 6	鋼材名称 型 型型 V型 VL型 VL型 UL型 Iw型	I(cm ⁴) 8740 16800 38600 63000 86000 13000	Z(cm ³) 874 1340 2270 3150 3820 1000	席食代(海側) 席食代(陸側) 12とt1の比 & 低減係数 11に関して	0.90	(mm) (mm) OK (
No. 1 2 3 4 5 6 7	鋼材名称 IT型 IT型 IV型 VI型 VI型 IVN型 IW型 IW型	I(cm ⁴) 8740 16800 38600 63000 86000 13000 32400	Z(cm ³) 874 1340 2270 3150 3820 1000 1800	席食代(6篇個) 席食代(陸側) t2とt1の比 α 低減(係数 11に関して	0.90	(mm) (mm) OK (
No. 1 2 3 4 5 6 7 8	鋼材名称 正型 正型 「A型 VL型 VL型 IIIN型 IIIN型 IIIN型 IIVN型	I(cm ⁴) 8740 16800 38600 63000 86000 13000 32400 56700	Z(cm ³) 874 1340 2270 3150 3820 1000 1800 2700	席食代(写想) 席食代(塚伊) t2とt1の比 α 低減係数 11に関して 2に関して	0.90 0.45 0.50 0.88 0.88	(mm) (mm) ・・・・OK (結果発
No. 1 2 3 4 5 6 7 8 9	編林名称 正型 II型 IV型 VI型 VI型 IIV型 IIV型 IIV型 SP-10H	I(cm4) 8740 16800 38600 63000 86000 13000 32400 56700 10500	Z(cm ³) 874 1340 2270 3150 3820 1000 1800 2700 902	席食代(写順) 席食代(珍順) セ2と1(の)比 & 低減係数 11に周して 2)に開して	0.90 0.45 0.50 0.88 0.88	(mm) (mm) ・・・・ OK (結果額
No. 1 2 3 4 5 6 7 8 9 10	鋼材名称 型型 加型 VL型 VL型 画の型 IIVの型 SP-10H SP-25H	I(cm4) 8740 16800 38600 63000 86000 13000 32400 56700 10500 24400	Z(cm ³) 874 1340 2270 3150 3820 1000 1800 2700 902 1610	 席食代(写側) 席食代(登側) セ2と1の比 α 低減係数 1に関して 2に関して 計算項目への影響 	0.90	(mm) (mm) ・・・・OK (結果領
No. 1 2 3 4 5 6 7 8 9 10	鋼材名称 正型 N型 VL型 VL型 UL型 国ッ型 国ッ型 R/v型 SP-10H SP-26H	I(cm4) 8740 16800 38600 63000 86000 32400 56700 10500 24400	Z(cm ³) 874 1340 2270 8150 3820 1000 1800 2700 902 1610	席食代(写順) 席食代(珍順) せ2と1の比 α 低減係数 1に開して 2に開して 2に開して 目に買っの影響 根入れ長さ	0.90	(mm) (mm) ・・・・ OK (詰黒硝
No. 1 2 3 4 5 6 7 8 9 10	御林名称 [1] [2] [1] 전발 [1] 전발 [1] 전발 [1] 전발 [1] 전발 [1] 전발 [1] 전발 [2] 전 [2] (2] 전 [2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (I(cm4) 8740 16800 38600 63000 86000 13000 32400 56700 10500 24400	Z(cm ³) 874 1340 2270 8150 3820 1000 1800 2700 902 1610	 席食代(5箇件) 席食代(5箇件) 席食代(5億件) けと1(5)比 α 代(高橋) 1(5週)して 2(5週)して 計算消目への参響 祝入れ長さ 案(加,新西力) 	0.90 0.45 0.50 0.88 0.88 0.88	(mm) (mm) ・・・・ OK (詰果發
No. 1 2 3 4 5 6 7 8 9 10	御村之称 世史 미원 시엔 시엔 지엔 지엔 지엔 지에 지역 지역 지역 지역 지역 지역 지역 지역 지역 지역 지역 지역 지역	I(cm4) 8740 16800 38600 63000 86000 13000 32400 56700 10500 24400	Z(cm ³) 874 1340 2270 3150 3820 1000 1800 2700 902 1610	備食代(5酒俳) 備食代(5酒俳) 信食代(5課時) はと1/0)比 α 低減(新載) 1:12間して 2:5週して ● 計算項目への参選 根入れ長さ 変位、新面力 広力権	0.90 0.45 0.50 0.88 0.88 0.88 0.88	(mm) (mm) … OK (這里發

ツリービュー「前面矢板鋼材」をダブルクリックします。

材質

材質を指定します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル]をご覧下さい。<SY295>

鋼矢板の有効率 α

根入れ計算に用いるβ算出用:1.00 断面力、変位計算に用いるβ算出用:1.00 断面2次モーメント1について:1.00 断面係数Zに関して:1.00

使用鋼材番号

鋼材番号を指定します。鋼材テーブルは[基準値-鋼材-矢板壁] で確認、修正することができます。<10>

腐食-低減係数

腐食低減係数を直接指定するか、自動計算するかを選択してく ださい。<自動計算>を選択します。

腐食代-低減係数-腐食代-腐食速度

海側、陸側の腐食速度を入力して下さい。耐用年数は[初期入 力]で設定している値を表示しています。 <海側0.300><陸側0.015>を入力します。

腐食-低減係数-腐食代-電気防食効率

前面矢板の電気防食を行っている場合は値を設定してください。電気防食を行っていない場合や、考慮しない場合は、値を0.00としてください。

腐食-低減係数-腐食代-直接指定する

腐食代を直接指定する場合はここにチェックをしてください。 以下の「腐食代」の項目が設定可能になります。

腐食-低減係数-腐食代-腐食代(海側)(陸側)

腐食代を直接指定する場合は値を設定してください。自動計算 する場合は、それぞれ以下のように計算した値が表示されてい ます。

(海側) 耐用年数×腐食速度×(1.00-電気防食効率)
 (陸側) 耐用年数×腐食速度

腐食-低減係数-腐食代-t1とt2の比 a

腐食代(海側)と、(陸側)を比較し、大きいほうの値をt1、小 さい方の値をt2として、*a*=t2/t1 より腐食代の比率を計算 します。低減係数を自動計算する場合は、この比率が[0.00、 0.25、0.50、0.75、1.00]のいずれかの値と一致している必要 があります。

※ a の値が上記のいずれとも一致しない場合は、お手数ですが低減係数は直接指定してご利用ください。

腐食-低減係数-低減係数

自動計算する場合 → 指定された鋼材名と、腐食代を変更 すると、自動的に低減係数を計算します。計算に使用した断面 性能算定図のグラフは、右側のボタンより結果確認できます。 このとき、使用鋼材に該当する鋼材が存在しない場合は、低減 係数の自動計算を行うことが出来ません。

直接指定する場合 → 断面二次モーメント用、断面係数用 (断面積Aも含む)の低減率を入力して下さい。詳細はメーカー にご確認下さい。

腐食-計算項目への影響

本プログラムでは、各計算項目毎に腐食前の断面諸元を用いる のか、腐食を考慮した腐食後の断面諸元を用いるのかを指定 することができます。

矢板壁では、フリーアースサポートによる根入れ長計算には、 本計算スイッチは使用しておりません。

項目	フリーアース法	たわみ曲線法	ロウの式
前面矢板			
根入れ長の計算	未使用	使用	使用
変位、断面力の計算	使用	未使用	使用

応力度照査については、腐食後の断面を用いることで安全側 の設計計算になるものと考えられますが、根入れ長計算、断面 力計算、設置位置計算 (Lm1)などでは、どちらが大きくなるの かは不明な点もあります。そのため、プログラム側で設定する ことが難しいと判断し、設計者にて設定して頂く仕様とさせて 頂きました。

タイ材

		許容応さ]度 (N/mm²)	
lo.	種類	常時	地震時	^
1	SS400(<40mm)	94	141	
2	SS400(>40mm)	86	129	
3	SS490(<40mm)	110	165	
4	SS490(>40mm)	102	153	
5	高張力綱490	130	195	¥
 応力度に 耐用年数 腐食速度 「直接推 	腐食代を考慮する 30 (年) 0.015 (mm/年) 第定する			

使用材質番号

使用する材質番号を入力します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル]をご覧下さい。 <8>

使用鋼材直径

使用するタイ材の直径(腐食前)を入力します。断面積などは円 断面としてプログラム内部で計算します。<42.0>

腐食-応力度に腐食代を考慮する チェックを入れます。

直接指定する チェックを入れます。<0.20>

腹起し材

腹起し				×
材質 ● SS400 ○ SM490	使用鋼林 _ 鋼材一	才番号 10		
「腹起しタイプーーーーーー	No.	鋼材名称	Zx(cm ³)	^
 ○ 溝形鋼 ○ H形鋼 	1	[150×75×6.5×10	115	
	2	[150×75×9×12.5	140	
	3	[180×75×7×10.5	153	
• 1L/10 C 1L/4	4	[200×80×7.5×11	195	
腐食	5	$[200 \times 90 \times 8 \times 13.5]$	249	
□ 広力度に低減係数を考慮する	6	[250×90×9×13	334	
	7	[250×90×11×14.5	374	
届良速度 ※参考10 0.030 mm/平	8	[300×90×9×13	429	¥
腐食低減係数(Zに関して) 1.00				
		🖌 確定 🔰 取消	? ~ル	ј(П)

材質

材質を指定します。<SS400>

腹起しタイプ

腹起し材が溝形鋼かH形鋼かを指定します。<溝形鋼>

腹起し照査式

曲げ照査式を選択します。<TL/10>

腐食-腐食速度

腐食速度を入力します。耐用年数は[初期入力]で設定していま す。腐食速度は、計算には使用せず、印刷用に使用するだけで す。腐食後の断面諸元は腐食低減係数で計算します。<0.030>

腐食-腐食低減係数

断面係数用(断面積Aも含む)の低減率を入力します。<1.00>

使用鋼材番号

使用する鋼材番号を指定します。<10>

控え工材

₹ SHK∢	100 C SHK490			□届良 ■ 腐食の影響		
1				 席食後の断面諸量 	を自動計算 〇	低減係数で考慮
田綱	() () () () () () () () () () () () () (萨金 伊		
				AND PAIL A		(20)
				时用牛奴	30	(年)
0.	獨材名称	I(cm ⁴)	Z(cm ³)	席食速度	0.020	(mm/年)
1	H-100×100×6×8	378	76	□ 直接指定する		
2	H-125×125× 6× 9	839	134			
3	H-150×150× 7×10	1620	216	腐食代	0.60	(mm)
1	H-175×175×7×11	2900	331	10.20015.000		
5	H-200×200× 8×12	4720	472	15.1版1未受1		
5	$H = 250 \times 250 \times 9 \times 14$	10700	860	Iに開して	0.91	
7	$H - 300 \times 300 \times 10 \times 15$	20200	1350		0.01	
3	$H - 350 \times 350 \times 12 \times 19$	39800	2280	21.000 C	0.31	
3	$H - 400 \times 400 \times 13 \times 21$	66600	3330			
0	$H - 400 \times 400 \times 18 \times 28$	92800	4480	■ 計算項目への影響		
1	$H = 400 \times 400 \times 20 \times 35$	119000	5570	設置位置	v	
2	$H = 400 \times 400 \times 30 \times 50$	187000	8170	根入れ長さ		
3	$H = 400 \times 400 \times 45 \times 70$	298000	12000	10/01 (360)		
4	$H = 500 \times 500 \times 25 \times 25$	157000	6270	》2.111、87080/J		
5	$H = 500 \times 500 \times 25 \times 25$	163000	6520	応力度	V	
				支持力	v	🔂 On/Off

材質

材質を指定します。指定した材質の詳細につきましては、[基準値-設計用設定値-材質テーブル]をご覧下さい。<SHK490>

鋼材 使田鋼材悉

使用鋼材番号<9>

<mark>腐食</mark> ■腐食の影響

腐食後の断面諸量を自動計算にチェックを入れます。

■計算項目への影響

全てにチェックを入れます。

1-8 検討ケース

ツリービュー「常時」をダブルクリックします。

常時 ×
上載荷重
前面矢板壁用 主働側 10.00 kN/m ² 受働側 0.00 kN/m ²
控え工用 10.00 kN/m ²
□ [仮想支持点を直接与える G.L.] 0.000 m
▲ 【 【 】 【 】 【 】 【 】 【 】 【 】 】 【 】 【 】 】 【 】 】 【 】 】 【 】 】 【 】 】 【 】 】 】 【 】 】 】 】 【 】

上載荷重

上載荷重を入力します。 <主働側:10.00><受働側:0.00> <控え工用:10.00>

前面矢板の扱い

仮想支持点を直接与える(普通矢板式の場合)

仮想ばり法で変位、断面力計算する際の下方の支点(仮想支持 点)を直接指定する場合はチェックマークをしてその標高を入 力します。直接指定しない場合(内部設定)は、港湾基準は構造 水深(海底面)、漁港基準で砂質土の場合は構造水深、漁港基 準で粘性土の場合は、主働側圧と受働側圧が等しくなる位置 となります。

地震時

上載荷重

上載荷重を入力します。通常は、常時の1/2程度と考えられま す。 <主働側:5.00><受働側:0.00> <控え工用:5.00>

前面矢板の扱い-仮想支持点を直接与える チェックを外します。

<u>震度の扱い-照査用震度</u> 震度を入力します。<0.14>

るかを指定します。<水中>

震度の扱い-R.W.L.下面の扱い R.W.L.直下の震度を空中震度にするか水中(見掛け)震度にす

震度の扱い-見かけの震度の計算式

荒井・横井の提案式にチェックを入れます。

震度の扱い-見かけの震度の取扱い 層ごとにチェックを入れます。

その他の荷重-動水圧を考慮する

動水圧を考慮する場合は、チェックマークを入れます。 今回は チェックを外します。

津波引き波時

海水が最も低くなった水位 G.L 津波引き波時の場合は、ここで設定された水位をL.W.Lとして 設計計算を行います。<0.00>を入力します。

漁港参考図書 (p.553) には以下のような記載がありますが、 適宜設計者判断にて適切な数値を設定してください。

"引き波時に前面の水位が最も低くなり、かつ、係船岸背後の 残留水位が埋立地地盤高と同等となる状態を想定し、…(中略)…。津波伝播シミュレーションの結果を利用する場合に は、L.W.L時として潮位を考慮することを基本とする…"

2 基準値

2-1 設計用設定値

材質テーブル

賃									
岡矢板(前面壁、控え工)	調管矢板	前面壁、控	えエ) H	形綱(控え工)	綱管杭(控え工) 腓	記し材(溝用	ど潤、H形鋼>	タイ材
ヤング係数 📃 💴 🗙	10 ⁵ N/mm²								
港湾基準									
設計用値(N/mm ²)	SY295	SY390	٦						
曲If降伏応力度σyk	295	390	-						
17 18 88 244									
「思想を準				r					
許容曲げ応力度♂a(N	/mm ²) S	Y295 :	SY390						
常時		180	285						
地震時		270	353						
範囲:0.01~9.99				標	準値 📗	✓ 確定	× 1	取消 🦷 🥐	~µプ(B)
									_

鋼矢板(前面壁、控え工)タブ 鋼管矢板(前面壁、控え工)タブ

副 単大板(前面室、セスエ) シン 前面壁並びに控え工のタイプが矢板の場合に参照します。 [標準値]ボタン 表示しているタブのデータについて、プログラムが定めている 標準値を自動的にセットします。

[ヤング係数] 検討される鋼材のヤング係数を設定します。

[港湾基準] 港湾基準を選択された場合に参照します。降伏応力度を入力 して下さい。

[漁港基準] 漁港基準を選択された場合に参照します。許容応力度を入力 して下さい。

H形鋼(控え工)タブ

控え工のタイプが直杭、組杭の場合に参照します。

安全率

安全率	×
普通矢板 自立矢板	
港湾基準 漁港基準	
~控え直杭、矢板	
必要根入れ長算定係数 1.50 Lm1	
	2

安全率

安全	率							×
普	●矢板 自立的	天板						
港	湾基準 漁港	基準						
*	(津波引き波明	射ま、常時の?	安全率を使用	します。				
Γ	前面矢板壁一				一控ス組杭	(許容支持力	用安全率)	
	フリーアースち	†ポート法に。	たる根入れ長ろ	安全率(漁港基準P.431より)	押込側の	杭に対するま	全率	
	地盤種別	常時	地震時		状態	杭の区別	安全率	
	砂質土地盤	1.50	1.20		常時		2.50 以上	:
	粘性土地盤	1.20	1.20		14-The B	支持杭	1.50 以上	
	たわみ曲線法	による根入れ	長安全率〈漁	港基準P.447より)	地震時	摩擦杭	2.00 以上	:
	地盤種別	常時	地震時		引抜側の	枋に対するま	全率	
	砂質土地盤	1.20	1.20		状態	安全事	Ξ	
	粘性土地整	1.20	1.20		常時	3.00 L:	1 F	
	按え直杭 矢材	6			地震時	2.50 L	1 <u>1</u>	
	心面想入れ巨	… ☆宋孫新 □	3.00 ZA		- 6.64- 1	1		
	ALTSCHOT OF COR	JEACINSK I	1		控え版			
					安定性の	検討用安全≤	¥	
					状態	安全率	Ξ	
					常時	2.50		
					地震時	2.00		
					L			
					/ w=	V 100-	* 2 out-	
1				1	♥ 唯化	HXJ		~

普通矢板式-港湾基準タブ

[必要根入れ長算定係数 [#.##]Lm1以上] 港湾基準では、P.623に根入れ長さがLm1の1.5倍を超えれば、 長杭とみなし得るとあり、さらに、Lm1を超えれば、その杭の挙 動は長杭と殆ど変わらないという記載があります。デフォルト は1.50にしています。

普通矢板式-漁港基準タブ

[前面矢板壁-フリーアースサポート法] 漁港基準のP.431に安全率が提示されています。

[前面矢板壁-たわみ曲線法] 漁港基準のP.447で算定された長さの1.2倍を根入れ長とする という記述があります。 本プログラムでは、フリーアースサポート法と同じように地盤種 類別、検討ケース別に設定が出来るように配慮していますが、 全て同じ安全率としています。

[控え直杭、矢板-必要根入れ長算定係数 [#.##]/β以上] 漁港基準では、P.216に半無限長の杭として、杭の突出の有無 や杭頭条件(自由、固定)によらず、L≧3/βを満足するものとす るということが記載されています。設定値 (デフォルト) は3.00 にしています。

[控え組杭-許容支持力用安全率] 押込杭については、漁港基準のP.207、引抜杭はP.211に記載 があります。

[控え版-安定性の検討用安全率] 控え矢板で長杭とみなし得ない場合の版の計算に用いる安全 率で、漁港基準P.442に記載があります。

自立矢板式-港湾基準タブ

[必要根入れ長算定係数 [#.##]Lm1以上] 港湾基準では、P.623に根入れ長さがLm1の1.5倍を超えれば、 長杭とみなし得るとあり、さらに、Lm1を超えれば、その杭の挙 動は長杭と殆ど変わらないという記載があります。デフォルト は1.50にしています。

自立矢板式-漁港基準タブ

[必要根入れ長算定係数 [#.##]/β以上] 漁港基準では、P.216に半無限長の杭として、杭の突出の有無 や杭頭条件(自由、固定)によらず、L≧3/βを満足するものとす るということが記載されています。デフォルトは3.00にしてい ます。

2-2 鋼材

鋼材テーブル初期値

重類	部材	初期テーブルファイル	^
も板壁	鋼矢板	SSP.ssw	
	鋼管矢板	SPSP.spw	
記し	H形綱	Support.htw	
	溝形綱	Channel.ctw	
窒え工	H鋼杭	SP.htw	
	鋼矢板	SSP.ssw	~
≋ ⊢ の ч	フトより初期言	ーブルファイルを変更したい部材を選択し、下の参照ボ	タッより変更してください。
<mark>終上のリ</mark> 神明テー SSP.ssw	リストより初期う ・ブルファイルの変更 v	ーブルファイルを変更したい部材を選択し、下の参照ボ	> タンより変更してください。

矢板壁

<鋼矢板>

鋼矢板	<u>z</u>								
No.	鋼材名称	(mm/枚)	h (mm)	₩ (k∉/m)	A (cm²/m)	I (cm4/m)	Z (cm³/m)	^	
1	型	400	100	48.0	153.00	8740	874		
2	型	400	125	60.0	191.00	16800	1340		
3	IV型	400	170	76.1	242.50	38600	2270		
4	VL型	500	200	105.0	267.60	63000	3150		
5	VIL型	500	225	120.0	306.00	86000	3820		
6	I₩型	600	130	61.8	131.20	13000	1000		
7	目を見	600	180	81.6	173.20	32400	1800		
8	IVw型	600	210	106.0	225.50	56700	2700		
9	SP-10H	900	230	86.4	122.20	10500	902		
10	SP-25H	900	300	113.0	160.40	24400	1610		
11									
12									
13									
14									
15									
10								~	
			Mas	terLoad	(🖌 確)	2	取消	? ~JV:	ブ(<u>H</u>

初期状態、および初期入力を新たなデータで作成した場合に 読込まれる鋼材ファイルの設定を行います。

w:鋼矢板1本当たりの幅を設定します。
 H:鋼矢板の高さを設定します。
 W:鋼矢板1本当たりの単位質量を設定します
 A:鋼矢板1m当たりの断面積を設定します。
 I:鋼矢板1m当たりの断面2次モーメントを設定します。
 Z:鋼矢板1m当たりの断面係数を設定します

[Master Load]ボタン

鋼矢板用鋼材のテーブルを指定したマスターファイルから読込みます。

<鋼管矢板>

鋼管矢	云板							×
No.	鋼材名称	D (mm)	t (mm)	A (cm ²)	W (kg/m)	I (cm4)	Z (cm ³)	^
1	D400 t9	400.0	9.0	110.6	86.8	21100	1057	
2	D400 t12	400.0	12.0	146.3	115.0	27600	1378	
3	D500 t9	500.0	9.0	138.8	109.0	41800	1670	
4	D500 t12	500.0	12.0	184.0	144.0	54800	2190	
5	D500 t14	500.0	14.0	213.8	168.0	63200	2530	
6	D600 t9	600.0	9.0	167.1	131.0	73000	2430	
7	D600 t12	600.0	12.0	221.7	174.0	95800	8190	
8	D600 t14	600.0	14.0	257.7	202.0	111000	3690	
9	D600 t16	600.0	16.0	293.6	230.0	125000	4170	
10	D700 t9	700.0	9.0	195.4	153.0	117000	3330	
11	D700 t12	700.0	12.0	259.4	204.0	154000	4390	
12	D700 t14	700.0	14.0	301.7	237.0	178000	5070	
13	D700 t16	700.0	16.0	343.8	270.0	201000	5750	
14	D800 t9	800.0	9.0	223.6	176.0	175000	4370	
15	D800 t12	800.0	12.0	297.1	233.0	231000	5770	
10	D000 +14	000.0	14.0	045.7	971.0	962000	6600	¥
			Master	Load	🗸 確	定 🗙	取消	へルゴ(出)

- D:鋼管杭1本当たりの外径を設定します。
- t:鋼管杭1本当たりの厚さを設定します。
- A:鋼管杭1本当たりの断面積を設定します。
- W:鋼管杭1本当たりの単位質量を設定します
- 1:鋼管杭1本当たりの断面2次モーメントを設定します。
- Z:鋼管杭1本当たりの断面係数を設定します

腹起し

<H形鋼>

No.	鋼材名称	H (mm)	(mm)	tw (mm)	tf (mm)	A (cm ²)	W (kg/m)	[x (cm4)	(cm4)	Zx (cm ³)	Zy (cm³)	ix (cm)	iy (cm)
1	H-100×100× 6× 8	100	100	6.0	8	21.59	16.9	378	134	76	27	4.18	2.4
2	H-125×125× 6× 9	125	125	6.5	9	30.00	23.6	839	293	134	47	5.29	3.1
3	H-150×150×7×10	150	150	7.0	10	39.65	31.1	1620	563	216	75	6.40	3.7
4	H-175×175×7×11	175	175	7.5	11	51.42	40.4	2900	984	331	112	7.50	4.3
5	H-200×200× 8×12	200	200	8.0	12	63.53	49.9	4720	1600	472	160	8.62	5.0
6	$H=250\times250\times~9\times14$	250	250	9.0	14	91.43	71.8	10700	3650	860	292	10.80	6.3
7	$H\!=\!300\!\times\!300\!\times\!10\!\times\!15$	300	300	10.0	15	118.40	93.0	20200	6750	1350	450	13.10	7.5
8	H-350×350×12×19	350	350	12.0	19	171.90	135.0	39800	13600	2280	776	15.20	8.8
9	H-400×400×13×21	400	400	13.0	21	218.70	172.0	66600	22400	3330	1120	17.50	10.1
10	$H = 400 \times 400 \times 18 \times 28$	414	405	18.0	28	295.40	232.0	92800	31000	4480	1530	17.70	10.2
11	$H\!=\!400\!\times\!400\!\times\!20\!\times\!35$	428	407	20.0	35	360.70	283.0	119000	39400	5570	1930	18.20	10.4
12	$H\!=\!400\!\times\!400\!\times\!30\!\times\!50$	458	417	30.0	50	528.60	415.0	187000	60500	8170	2900	18.80	10.7
13	$H = 400 \times 400 \times 45 \times 70$	498	432	45.0	70	770.10	605.0	298000	94400	12000	4370	19.70	11.1
14	$H = 500 \times 500 \times 25 \times 25$	502	475	25.0	25	356.30	280.0	157000	44700	6270	1880	21.00	11.2
15	$H = 500 \times 500 \times 25 \times 25$	500	500	25.0	25	368.30	289.0	163000	52200	6520	2090	21.00	11.9
10	11 000~000~ 0~107	000	000	0.0	10	6160		neen	010	nee	0.0	0.10	10

- H:H鋼1本当たりの高さを設定します。
- B:H鋼1本当たりの幅を設定します。
- tw:H鋼ウェブの厚さを設定します。
- tf:H鋼フランジの厚さを設定します。
- A:H鋼1本当たりの断面積を設定します。
- W:H鋼1本当たりの単位質量を設定します。
- lx:H鋼1本当たりのx軸回り断面2次モーメントを設定します。
- ly: H鋼1本当たりのy軸回り断面2次モーメントを設定します (腹起し材用。ただし、未使用)。
- Zx:H鋼1本当たりのx軸回り断面係数を設定します。
- Zy: H鋼1本当たりのy軸回り断面係数を設定します(腹起し材用。ただし、未使用)。
- Ⅰx:H鋼1本当たりのx軸回り断面2次半径を設定します(腹起し材用。ただし、未使用)。
- ly: H鋼1本当たりのy軸回り断面2次半径を設定します(腹起し材用。ただし、未使用)。
- 1: H鋼1本当たりの横座屈用断面2次半径を設定します(腹起し材用。ただし、未使用)。

<溝形鋼>

支保工	(溝形鋼)							×
No.	鋼材名称	H (mm)	B (mm)	t1 (mm)	t2 (mm)	W (kg/m)	Zx (cm [:])	^
1	[150×75×6.5×10	150	75	6.5	10.0	18.6	115	
2	[150×75×9×12.5	150	75	9.0	12.5	24.0	140	
3	[180×75×7×10.5	180	75	7.0	10.5	21.4	153	
4	[200×80×7.5×11	200	80	7.5	11.0	24.6	195	
5	[200×90×8×13.5	200	90	8.0	13.5	30.3	249	
6	[250×90×9×13	250	90	9.0	13.0	34.6	334	
7	[250×90×11×14.5	250	90	11.0	14.5	40.2	374	
8	[300×90×9×13	300	90	9.0	13.0	38.1	429	
9	[300×90×10×15.5	300	90	10.0	15.5	43.8	494	
10	[300×90×12×16	300	90	12.0	16.0	48.6	525	
11	[380×100×10.5×16	380	100	10.5	16.0	54.5	763	
12	[380×100×13×16.5	380	100	13.0	16.5	62.0	823	
13	[380×100×13×20	380	100	13.0	20.0	67.3	926	
14								
15								
								~
	Ma	ister Loa	d [🗸 確定		🗙 取	ji ji	? ~117(H)

- H:溝形鋼1本当たりの高さを設定します。
- B: 溝形鋼1本当たりの幅を設定します。
- t1:溝形鋼ウェブの厚さを設定します。
- t2: 溝形鋼フランジの厚さを設定します。
- W: 溝形鋼1本当たりの単位質量を設定します。

Zx:溝形鋼1本当たりのx軸回り断面係数を設定します。なお、 この係数は、腹起し材応力度照査に使用するものであり、応力 度を計算する際には、内部的に2枚一組扱いとして、2倍の値 で計算します。必ず、1枚分の断面係数としてください。

控え工

No.	鋼材名称	D (mm)	t (mm)	Д (cm²)	W (kg/m)	I (cm4)	Z (cm ³)	^
1	D400 t9	400.0	9.0	110.6	86.8	21100	1057	
2	D400 t12	400.0	12.0	146.3	115.0	27600	1378	
3	D500 t9	500.0	9.0	138.8	109.0	41800	1670	
4	D500 t12	500.0	12.0	184.0	144.0	54800	2190	
5	D500 t14	500.0	14.0	213.8	168.0	63200	2530	
6	D600 t9	600.0	9.0	167.1	131.0	73000	2430	
7	D600 t12	600.0	12.0	221.7	174.0	95800	8190	
8	D600 t14	600.0	14.0	257.7	202.0	111000	3690	
9	D600 t16	600.0	16.0	293.6	230.0	125000	4170	
10	D700 t9	700.0	9.0	195.4	153.0	117000	3330	
11	D700 t12	700.0	12.0	259.4	204.0	154000	4390	
12	D700 t14	700.0	14.0	301.7	237.0	178000	5070	
13	D700 t16	700.0	16.0	343.8	270.0	201000	5750	
14	D800 t9	800.0	9.0	223.6	176.0	175000	4370	
15	D800 t12	800.0	12.0	297.1	233.0	231000	5770	
10	D000 +14	000.0	14.0	045.7	071.0	007000		*

<鋼管矢板>(その他の鋼材情報は、前述と同様です。)

- D:鋼管杭1本当たりの外径を設定します。
- T:鋼管杭1本当たりの厚さを設定します。
- A:鋼管杭1本当たりの断面積を設定します。
- ₩:鋼管杭1本当たりの単位質量を設定します。
- I:鋼管杭1本当たりの断面2次モーメントを設定します。
- Z:鋼管杭1本当たりの断面係数を設定します。

3 計算実行

3-1 計算実行

「計算実行」をクリックします。

3-2 形状決定

形状決定								×
構造条件					計算続行に関す	るコメント		
構造条件	標高				決定員に対する	照査が可能です。		^
上部工天瑞高	GL. 2.700							
前面矢板天端高	G.L. 2.000							
構造水深	G.L4.000	※必要壁	長は上部工	天端からの長さ				
必要根入れ長の表	示	】 ※必要矢i	仮長は矢板	天曜からの長さ				
フリーアースサポ 状態	・ト法 必要根入 先端高()	れ n) 必要根入れま (m)	毛 必要壁長 (m)	必要矢板長 (m)				
常時	G.L6.6	50 2.660	9.360	8.660				
地震時	G.L7.3	30 3.380	10.080	9.380				
津波引き波り	時 G.L7.2	30 3.230	9.930	9.230				
たわみ曲線 状態	法 必要根入 先端高()	れ n) 必要根入れま (m)	長 (m)	必要矢板長 (m)				
常時								
地震時								
津波引き波り	時							
ロウの方法 状態	: ・ 必要根入 売端高()	れ n) 必要根入れま (m)	長 必要壁長 (m)	必要矢板長 (m)				
常時								
地震時		·						~
1								
- □前面矢板長(上部)	「考除<`)の決定──							
		3	《決定矢板	長は矢板天端から	の長さ			
対象構造物	使用綱材	使用	財費 矢	板長(m) 先端;	តj(m)			
前面矢板壁	SP-25H	SY2	95	11.000 G.L	9.000			
						✔ 確定	🗙 取消 孝	ヘルプ(田)

矢板長を入力して、確定ボタンを押します。

矢板長

必要矢板長などを参考に、前面矢板の長さ(矢板天端から矢板 先端までの長さ)を決定し入力します。 【注意】上部工天端からの長さ(壁の長さ)ではありません。 <18.00>を入力します。

[先端高]

決定した前面矢板の長さから、「矢板天端 – 決定矢板長」で矢板先端高を表示します。

3-3 タイ材反力

5	47材反力					×		
	反力(計算値)(kN/m)	仮想ばり法	たわみ	曲線法	ロウの方法			
	常時	75.136						
	地震時	89.075						
	牽引時							
	津波引き波時	109.271						
ľ		· · · · · · · ·		ĩ				
	検討ケース	反力(採用値)	(kN/m)					
	常時	75.14	75.14					
	地震時	89.08						
	津波引き波時	109.27						
	計算値採用(仮想ばり法)	計算値採用(たわみ曲	線法〉				
	計算値採用(ロウの方法)	計算値採用〈最大値〉						
		☑₩	定 _	🗙 取消	í ? ~ルナ	Έ		

タイ材、腹起しの計算に使用するタイ材反力を入力して、確定 ボタンを押します。

反力(採用值)

各種の計算で得られた反力(計算値)の値を参考にして、タイ 材、腹起しの計算に使用するタイ材反力を入力します。 牽引時は、ここで入力した反力に、[検討ケース-牽引時]で与え られた条件で牽引力を内部計算し加算します。 通常は、永続状態(常時)の反力を入力して頂ければよいものと 考えられます。

計算値採用(仮想ばり法] ボタン 計算値採用(たわみ曲線法)ボタン 計算値採用(ロウの方法)ボタン 計算値採用(最大値)ボタン

計算により算出された支保工反力でタイ材、控え工などの計算 を行いたい場合にクリックします。複数の計算方法で計算して いる場合は、適切と考えられる計算方法を選択するか、最大値 を設定するかを選択することができます。牽引時は、永続状態 (常時)の反力をセットします。

<計算値採用(最大値)>をクリックします。

3-4 控え杭の設置位置

3-5 形状決定(控え杭)

3	8状決定 (控え杭))	×
		常	†	地	震時	津波	引き波時	1	
	控え杭天端高	G.L. 2.0	100(m)	G.L.	2.000(m)	G.L.	2.000(m)		
	控え杭タイ材取付位置	G.L. 1.2	200(m)	G.L.	1.200(m)	G.L.	1.200(m)		
	控え杭仮想地盤面	G.L. 1.2	200(m)	G.L.	1.200(m)	G.L.	1.200(m)		
	控え杭必要根入れ長	9.063	(m)	9.0	163(m)	9	.063(m)		
	控え杭先端標高	G.L7.8	363(m)	G.L	7.863(m)	G.L.	-7.863(m)		
	控え杭必要全長	9.863	3(m)	9.8	63(m)	9.	863(m)		
	使用鋼材		使用材質	決定招	Wえ杭全長(n	n)			
	H-400×400×1	3×21	SM490		10.000	-			
									ľ
	範囲: 0.001 ~	999.999	āt	算値採	Ħ	算続行	X #	図消 🥂 ヘルブ(上)	Ð

永続状態、変動状態の設置距離を入力して、計算続行ボタンを 押します。

決定設置距離

前面矢板から控え杭までの設置距離を決定します。基本的には、必要設置距離を満足する距離(より遠くに離す)になると考えられます。

計算値採用ボタン

決定設置距離の欄に、内部計算した必要設置距離の内、最大 値をセットします。

控え杭の決定全長を入力して、計算実行ボタンを押します。

控え杭決定全長

本プログラムでは、控え杭必要根入れ長(全長)の計算を行 い、本画面にてその結果を表示し、これを参考に設計者の判 断で、実際に設計箇所で採用する控え杭決定壁長(全長)を入 力する仕組みになっています。

<10.000>を入力します。

4 結果確認

結果確認が出来ます。

4-1 前面矢板

総括表

転転法 新振装: 新振装:	総括表:SI単位							-	- U	×
新福誌元 月 秋 個 (日月日秋) (月月日秋) (月月日秋) (日日、2000m (前面矢板									
市 日 数 信 使用時間 57-251 57-251 57-251 57-251 57-251 57-251 57-251 57-251 57-2555 57-2555 57-2555 57-2555 57-2555 57-2555 57-25555 57-2555 57-25)断面諸元									_
小田 小田 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)10000 (1)100000 (1)10000 (1)100000 (1)10000 (1)10000000 (1)100000 (1)100000000 (1)100000 (1)10000000000 (1)1000000 (1)100000000000000000000000000000000000		Ĩ	B			法有	値			
使用状質 51255 上部工業構築 時間気化を実現構築 94月47月11日金 (GL 2-2000m (GL		使用鋼材					SP	-25H		
正式上表示 (1)		使用材質					S (01.22	Y295		
ごうけいない (CL 1.200m (CL 4.000m) 決定量が見くは至え来幕連邦入れ気構造) 決定量がの気向調味を完味単入れな構造) (CL -9.000m) はたったののののののののののののののののののののののののののののののののののの		上部上大幅筒 前面矢板天端高					(G.L. 2.) (G.L. 2.0	00)m 00)m		
決定会換入れ先端高 決定会失規長範囲気使天場、暴入れた場高) 決定使大規長(補助大規一規) (GL = 0000m 11.000 m 11.000 m 11.0000 m 11.000 m 11.000 m 11.000 m 11.000 m 11.000 m 1		構造水深					(G.L. 1.2 (G.L4.0	00)m 00)m		
法定金化局点前需先使完整 構入れた場面) 11000 m 建立根入れる」(病急水浸根入れ後場面) 3.000 m 増入れる」(病急水浸根入れ後場面) 3.000 m 増入れる」(病急水浸根入れ後場面) 3.000 m 増入れる」(前急水浸根入れ後場面) 3.000 m ガレーン 第200 m 2.660 ブレーアース 安全半 5 3.50 ジモルトル 3.000 m 1.50 ガレーン 安全半 5 3.50 ジモルシン 3.000 m 0.000 サイモーン 安全半 5 3.50 ジモルシン 3.000 m 0.000 サイモーン 安全半 5 3.50 ジモルシン 0.000 0.000 ウス 4000000000000000000000000000000000000	沖完全(決定根入れ先端高 株長(上部工芸編高線	入れ先端高)				(G.L9.0	00)m		
加速のパキルグくりとの細点// 1000 円 建築入れ見に打する温度結果 計算方法 フリーフース 文安全年 Fa お店屋に扱う 支援展の安全年 Fa お店屋にならす CEFa のK 150 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	決定全外	その長(前面矢板天端・根)	入れ先端高)				11.0	00 m		
様式14月に1915年至1915年 単位の1915年 1917年7日、 1917年7日、 1917年1日、 1917	·天准服	(111272 (1147)23()未引民	(()()()()()()()()()()()()()()()()()()(5.0	oo m		
計算方法 項目 第34 地震時 注決引法法執句 フリーアース 安全事 54 安全事 54 2.660 3.350 3.230 支援業長の安全率 13.0 1.30 1.20 1.50 支援業長の安全率 13.0 1.48 1.44 2.69 支援業長の安全率 13.0 3.48 1.94 2.69 支援業長の安全率 14.87 5.8 0.00 0.00 防力活集 第12万法 項目 7839 北京街 2.69 防潤力法 項目 7839 北京街 2.66 116.15 原間通び法 最大モーンドトManatkin Nam) 2.64 6.1.1.500 0.1.1.500 0.1.1.500 0.1.1.500 北市に気気Nmmm 9.2.66 0.00 0.00 0.00 1107.21 北市に気気Nmm 9.2.66 0.00 0.00 0.00 1107.21 北部目で決断 116.15 0.00 0.00 0.00 0.00 0.00 北部目で決断 116.15 0.00 0.00 0.00 0.00 0.00 北部目で決断 5.0 2.00 0.00 0.00 0.00 <td>)根入れ長に対する!!</td> <td>紧查結果</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>)根入れ長に対する!!	紧查結果								
オリーテーズ サポート法 安全年 安全年 実業長の安全年 調査 2.60 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	計算方法	項	8		常時		地震時	津	波引き波時	٦
シーキーによります。 シーキロののます。 1.48 1.44 <td>フリーアース</td> <td>安全率Facなる</td> <td>長さ D (m)</td> <td></td> <td>2.660</td> <td></td> <td>3.380</td> <td></td> <td>3.23</td> <td>0</td>	フリーアース	安全率Facなる	長さ D (m)		2.660		3.380		3.23	0
	リホート法	安全半 決定長の安全	ra 率 F		3.48		1.20		2.6	9
HE型力結果 計量力法 項目 7434 取得のには、 取得のには、 からし、 やった、 からし、 やった、 からし、 やった、 やった、 からし、 やった、		利定	(r≦ra)		UK		UK		0	<u>.</u>
	断面力結果									
使用まり法 単元モーンとトAmmed(20 km m) 3 分子44限行(五反力) Ru(20 km m) 3 分子44限行(五反力) Ru(20 km m) 3 分子44限行(五反力) Ru(20 km m) 3 分子44限行(五反力) Ru(20 km m) 10927 1	計算方法	項	B		常時		地震時	津	波引き波時	
タイ材類付点反力 Rub(X)m) 75.14 89.08 109.27 応力服査結果 #約7 - ス モージート 第1.0° (X)mm) 0.00 常時 注於目空:20 第2.66 0.00 0.00 常時 注於目空:21 0.00 0.00 0.00 #2017 - ス 近ったり度 計容(万)度 112:12 0.00 #2017 - ス 広力度 計容(万)度 112:12 0.00 #2017 - ス 広力度 計容(万)度 112:12 0.00 #2017 - ス 広力度 119:00 0.00 0.00 #2018 - 20 20:00 0.00 0.00 0.00 第10:00 0.00 0.00 0.00 0.00 0.00 第2018 - 20 27:00 0.00 0	仮想ずり法	最大モーメント Mr 発生位	nax(kN.m/m) T		92.66 G.L1.500		116.15 G.L1.500		127.2 G L -1 50	1
AG7)留査結果		タイ材取付点反力) Ra(kN/m)		75.14		89.08		109.2	7
株計ケース	応力照査結果									
*#317 - 人 *******************************										
常時 地間約 注意引き。原時 92.66 116.15 0.00 0.00 建築目言。原時 加加2 応力度 下の加2 詳容成功度 下の加2 判定 での Nmm2 判定 での Nmm2 常時 小問約 注意時 65.4 85.5 180.0 270.0 OK OK OK OK PERF 第5.4 270.0 OK	10-11- 7	T	5.4	2+	+					
注意可能時 (注注) 0,00 検討ケース 応力度 詳容応力度 判定 Nmm2 Nmm2 常時 65.4 180.0 OK 地質時 85.3 180.0 OK 地質時 85.4 180.0 OK のK との OK のK	検討ケース	€-× M×10^6(N	ント mm/m)	軸 N×10个	力 3(N/m)					
	検討ケース	€-× M×10^6(N:	215 mm/m) 92.66	軸 N×10^	力 3(N/m) 0.00					
Nmm2 Nmm2 常時書 65.4 180.0 OK 建築時書 82.0 2700 OK 建築書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書	検討ケース 常時 地震時 津波引き波時	₹~× M×10^6(N:	92.66 116.15 127.21	軸 N×10^	力 3(N/m) 0.00 0.00 0.00					
で時 地震時 注意引き流時 第9.5 1800 のK のK のK のK のK のK のK のK のK のK	検討ケース	モーメ M×10~6(N)	ント mmm/m) 92.66 116.15 127.21 許容応力度 ga	軸 N×10^	力 3(N/m) 0.00 0.00 0.00					
第2505 127 JAPF 99.5 150.0 OK	検討ケース	モーメ M×10^6(N: で力度 の N/mm2	ント mm/m) 92.66 116.15 127.21 許容応力度 ca N/mm2	軸 N×10个 判 定	カ 3(N/m) 0.00 0.00 0.00					
印刷 💌 開ける(C) 💙 ヘルプ(検討ケース *結時 地震時 津波引き波時 検討ケース *結時 地震時	モーメ M×10°6(N: で Nimm2 65.4 8.2 0	ント mm/m) 92.66 116.15 127.21 許容応力度 ca N/mm2 180.0 270.0	軸 N×10^ 判 定	7) 3(N/m) 0.00 0.00 0.00 0.00 0.00					
	検討ケース *時 地震時 達波引き波時 検討ケース *時 地震時 連波引き波時	モーメ M×10^6(N: の N/mm2 65.4 82.0 89.8	ント mm'm) 92.66 116.15 127.21 許容応力度 ca N/mm2 180.0 270.0 180.0	軸 N×10^ 判定 0 (0 0 (0	7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00					

断面諸元、根入れ長に対する照査、断面力、反力、応力度照査 結果について一覧表形式で、結果確認、出力ができます。

根入れ長に対する照査

【普通矢板式の場合】

港湾と漁港基準で判断方法は異なりますが、基本的に決定長における力の釣り合いが安全率を満足しておればOKと評価しています。

【自立矢板式の場合】

港湾と漁港基準で判断方法は異なりますが、基本的に必要根入れ長より決定根入れ長が長ければ判定はOKと評価しています。

断面力、反力

断面力、反力を表示します。なお、断面力、反力は単位幅(1. 0m)当たりの値です。

印刷

一覧表形式の印刷もしくは、HTMLファイル保存します。

土圧分布表

🎦 土圧強度分布表							
● 扱入わ長計算用 ● 広力度計算用	常時	地震時	津波引き波明	9			
 no crisical aprili - cui manal aprili 	主働	側受働	191				
地表面天端 GL. 2.700 HWL. GL. 1.800 10.77	No.	層厚 (m)	土圧強度 層上面 (kN/m ²)	土圧強度 層下面 (kN/m ²)			
14.27	1	1.500	2.91	10.77			
18.63	2	1.200	10.77	14.27			
15.32	3	1.500	14.27	18.63			
構造水深 GL4.000 🚬 21.30	4	2.500	15.32	21.30			
E	5	10.000	21.30	45.23			
46.23							
CSVファイルに出力					BC3(0)	? ^л	чШ

各検討ケースにおける主働側、受働側の土圧強度と、分布図を 確認できます。

常時・牽引時、地震時 ボタン

初期入力で指定した検討ケースが表示されています。 [常時・牽引時]、[地震時]のボタン切り替えでデータを確認でき ます。

主働側、受働側 ボタン

[主働側]、[受働側]のボタン切り替えでデータを確認・修正できます。

根入れ長用、応力度用

港湾基準選択時のみ使用可能です。 ここで切り替えを行うことでそれぞれの算出結果の土圧分布 図を表示できます。

CSVファイルに出力

計算結果の土圧強度を、CSVファイルに出力します。 また、データ入力時に土圧強度の直接指定を選択した際、土 圧強度の入力画面で読込みを行ったり、各数値をコピー&ペー ストして利用できます。

フリーアースサポート法

根入れ長に関する安定計算結果を図入りで確認することがで きます。最大で、永続状態(常時)、変動状態レベル1地震動(地 震時)の2ケースの扱いになります。

4-2 仮想ばり法

🎽 フレーム解析結果				-	- 0	×
常時	モーメント	最大 ≥ 構造1	EFル 荷重 反:	り変位目	BM SF	AF
////	構造モテ	デル				^
	格点番号	X座標 (m)	Y座標 (m)			
	1 2 3	0.0000 0.0000 0.0000	2.7000 2.6000 2.5000			
	4 5 6 7	0.0000 0.0000 0.0000 0.0000	2.4000 2.3000 2.2000 2.1000			
	8 9 10	0.0000 0.0000 0.0000	2.0000 1.9000 1.8000			
778	11 12 13 14	0.0000 0.0000 0.0000 0.0000	1.6000 1.6000 1.5000 1.4000			
	15 16	0.0000	1.3000			~
			EDBI	▼ [閉じる(g	2 ?~	ルプ(出)

各ケース、フレーム解析結果の確認、印刷ができます。

構造モデル図

解析構造モデル図と構造データを数値表示します。

荷重

荷重図と荷重データを数値表示します。

反力

反力図と反力値を数値表示します。

変位

変位図と変位値を数値表示します。

BM

曲げモーメント図と断面力値を数値表示します。

SF

せん断力図と断面力値を数値表示します。

AF

軸力図と断面力値を数値表示します。

格点番号、部材番号

左側の図に格点番号、部材番号を表示します。

FRAMEの符号

計算結果 (変位、断面力など) のプラスの方向 は以下の通り です。

- a) 各点変位 ······全体座標系
- ・水平変位
 : X軸(右)方向

 ・鉛直変位
 : Y軸(上)方向

 ・回転変位
 : 反時計回り
 b) 支点反力……全体座標系
 ・水平変位
 : X軸(右)方向

 ・鉛直変位
 : Y軸(上)方向

 ・回転変位
 : 反時計回り

4-3 支保工

🚽 支保工:SI単位							
 タイ材 ります 							
(1)使用断面							~
項	B		数	値			
使用材質 タイ材間隔	L			高張力 2:) 御 740 400(m)		
使用タイ材指 腐食後のタイ材作 の 使用断面積	2.0 - 2× 0.2			φ 42. φ 41. 1359.2	0 (mm) 6 (mm) (mm ²)		
(2)藏發計分長力							
検討ケース	タイ材張 T×10 ³ (N/)力 本)					
**時 地震時 津波引き波時		180.34 213.79 262.25					
(3)応力照査結果							
検討ケース の N/mm2	許容応力度 ca N/mm2	判 定					
常時 133 地震時 155 津波引き波時 192	1.7 216.0 1.3 324.0 1.9 216.0	OK OK OK					
							~
			E	161 -	閉じる(©)	? ^,	N7(A)

タイ材と腹起し材に関する断面照査結果を示します。 使用断面応力度が許容応力度を満足していない場合は赤色ボ タン表示になります。

4-4 控え工

総括表

🎦 総括表:SI単位				-	□ ×
■ 控え杭					
(1)町面諸元					~
項	B		数 値		
使用鋼材 使用網灯			H-400×40	0×13×21 SM490	
控え工夫端高	1		(G.L.	2.000)m	
決定杭長 (杭先)			(G.L. 10.000m (G.L.	-8.000)m	
(2)設置位置に対する照査結果					
検討ケース	必要設置距離 Ldmin (m)	決定設置距離 Ld (m)	判	定	
	11.736 14.244 11.736	14.500 14.500 14.500	十分 十分 十分 十分	確保されている 確保されている 確保されている	
(3)根入れ長に対する照査結果					
検討ケース	仮想 地盤面 G.L.(m)	要 決定 れ長 根入れ長 (m) (m)	判定		
茶時 地震時 津波引き波時	1.200 1.200 1.200	9.063 9.200 9.063 9.200 9.063 9.200	OK OK OK		
(4)最大値(曲げ、せん断、変位)一覧					
検討ケース 取付位 GL.(r	f 仮想 置 地盤面 a) GL.(m)	最大モーメント 発生位置 (kN.m/m)	タイ材 取付位置 変位量(m)	同左 許容変位量	同左 判定
	200 1.200 200 1.200 200 1.200	175.65 (G.L1. 208.24 (G.L1. 255.44 (G.L1.	173m) 0.020 173m) 0.024 173m) 0.025	0.030	OK OK OK
(5)控え杭斯面照査結果一覧					
検討ケース 応力度 σ N/mm2	許容応力度 ca N/mm2	判定			
	1 315.0 5 185.0 5 315.0	OK OK OK			\sim
1			ED.BI V	閉じる(©)	? ~~JUJ(H)

控え杭に関する結果について一覧表形式で、結果確認、出力します。

詳細確認

必要設置距離に対する決定控え杭設置位置を確認できます。

Ldmax([形状]画面で入力した「控え杭設置検討範囲」)が、 Ldmin(必要設置距離)または決定設置距離に比べて、非常に 余裕がある場合は、Ldmaxを少し短く変更することで、描画バ ランスが改善される場合があります。

5 計算書作成

「計算書作成」をクリックします。

5-1 全印刷

設計条件、結果一覧表、全計算結果の詳細を全て作成しプレ ビューします。

F8 出力編集ツール

FORUM8製品から出力されたデータをプレビュー、印刷、他の ファイル形式への保存を行うことができます。また、ソースの 編集を行うことで文章を修正することができます。

F8出力編集ツールが起動し、結果一覧の報告書プレビューが 表示されます。

章番号と見出し文字列の編集

章番号と見出し文字列を編集するにはツーリーウインドウの見 出しをダブルクリックしてください。 ダブルクリックをすると章番号と見出しの編集画面が開きま す。

E F	8出力	■集ツール(F8-PPF互換) 印刷プレビュー ー	-	×
771	↓(F)	表示(V) 電子納品(C) ヘルプ(H)	1. E	
閉じ	300	<u>⊜ ⊟ 18 </u>	? 🖻	
	⊡·13	■ 797L97 X		
		「用紙サイズ」 表紙 目次 ページ番号 社名 製品名 枠線 日付 フォント 体裁		-
		■##±+/_7 ▲4 (210×297mm)		
1				- 1
豪	Ē	matr./)ioi		
98		0.検		
120	E-23			
-	É			
	E 81			
B				
			・トあり)	
	Ę	FORME		
		スタイル設定参照/保存先 〇 全製品共通 ④ 起動製品固有		
		读読込 日書込 求政消 ? 447(H)		
		3.5 津波引き波時 我留水位 乱 1.200		
		- 3.5.1 外力の計3 - 3.5.2 ブリーアー		-1
	<	→ 17155, 5, 2, 2, 2 → III → 1 → III → 1, W.L. + 2/3 (H. W.L. + L. W.L.)		•
		スタイル設定		

ファイル-スタイル設定 表紙、目次の追加、ページ情報の設定、文書全体の体裁を設定 するための機能があります。

■ F8出力編集ツール(F8-PPF互換)印刷	リプレビュー	– 🗆 🗙
ファイル(5) 表示(4) 示子(4)(5) A	1.7(H)	
		N 1 8 📼
	プレビュー リース	
	KTITLEI PRINT TOP_PAGE CHAPTER_NO_DISP CHAPTER_NO=' A	🗟 😂 🖾
	設計条件 ·	
	<pre><title2 chapter_no="1" chapter_no_disp="" print="" tag="0"></title2></pre>	
1.6 部材		
·····································	(SUB_TITLE)	
-1.8.1 設計用設定		TD 1
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		101
2.1 前面矢板計算結		-
□ 2.2 投入上計具結果 2.2.1 タイ材	SUB_TITES	CHANNER -
<u>-2.2.2 腹起し</u>	(2)構造形式。	
	▲	ID 2
18 - 3.1 席食	□ 前用年数 □ □: 30年 · · · · · · · · · · · · · · · · · · ·	TO 2
	- 魔工延長 · 50,000(m)→ 前面壁体種類:綱矢板(裏込め材なし、上部コンクリート	
- 3.3.1 外力の計3		
白 3.3.2 フリーアー	(NULL_LINE)+	
-1)必要根	(3)演用基准。	ID 3
	SAUG TITLE	
- 3)外力数(- (2)断面力の	漁港・漁場の施設の設計参考図書 2015年度版。	-
	<titlez chapter="" disp="" no="2" print="" tag="0"></titlez>	
3.4.1 外力の計3	(SUB_TITLE)	ID 4
日 3.4.2 フリーアー 白 (1)根入れ長(VSUB_TITLE>+	
1)必要根	STABLES -	
	🗖 🗆 数値 🗆 🖡	
□-(2)断面力の#	□ 朝望平均満潮位面□H.W.L.(m) □ 1.800 ÷	
1)結果要1 2)外力表	朔望平均千潮位面 L.W.L.(n) 0.000 -	ID 5
□ 3.5 津波弓[き波時]	25 m // 12	
- 3.5.1 外力の計3	KATABLES.	
S	< >>	
2行 (P1) 総計		
19/9/		

ソースの編集

ソースを編集することができます。

(ル(F) 表示(V) 電子	PF互換) 印刷プレビュ - 納品(C) ヘルプ(H)	-			- 0	×
	1 ▶ ▶		100 🕄 📔 1 🤤	ଅକ୍	8 ? 📼	
📲 名前を付けて保	17				×	H
保存する場所(1):	Data		- + 🗈 c	* 🔳 •		1
21-27 FOZA	名前	へ 検索条件に一致	更新日時 はする項目はありません。	權順	4	
デスクトップ						
51750						
PC						
ネットワーク						
	<				>	
				-	保存(5)	
	7ァイル名(N):	1				
	ファイル-る(N): ファイルの種類(T):	PPF files (*.ppf)		•	キャンセル	
出力範囲	ファイル-名(N): ファイルの憧頼(T):	PPF files (*.ppf) オプション		J	キャンセル	
出力戦国	ファイルる(N): ファイルの憧瑣(T):	PPF files (*.ppf) オプション 画像形式	~	•	キャンセル	

- ファイル-ファイル出力

F8出力編集ツールでは出力形式として、テキスト形式 (TXT)、 HTML形式 (HTM,HTML)、PPF形式 (PPF)、WORD形式 (DOC)、PDF形式 (PDF)、一太郎形式 (JTD、JTDC)に保存 できます。

*WORD形式 (DOC)に出力する際にはMicrosoft(R) Word97 以降がインストールされている必要があります。 ※推奨はMicrosoft(R) Word2000以降 ※Microsoft(R) Word97では、出力時にエラーとなる可能性が あります。

*PDF形式 (PDF) の出力は有償版で利用できます。

*一太郎形式 (JTD、JTDC)の出力は有償版で利用できます。

*一太郎形式 (JTD、JTDC)に出力する際には一太郎11以降が インストールされている必要があります。 ※推奨は一太郎13以降

掲載されている各社名および各社製品名は、一般に各社の商 標または登録商標です。

■ F8出力編集ツール(F8-PPF互換) 印刷ブレビュー	- 🗆 ×
ファイル(F) 表示(V) 電子納品(C) ヘルプ(H)	
	😫 🤶 📼
● □ 1章 設計条件 ▲ ブレビュー ソース	
- 1.1 & 本ケナウ - 1.2 水位条件	
	<u>×</u>
□ 2章 結果- □ 2章 結果- □ 10/テ-1(P) ブリンター名(N): DocuCentre-V C2276 ▼ブロパテ-1(P)	
□□ D-2.2 招 状態: 準備完了	
□ 3章 前面 □-3章 前面	
日 3.3 2% 印刷範囲 印刷部数	
C ページ指定(G) 1 ページから(F) 反 部単位で印刷(0)	
81 ページまで(T)	
□ C 選択した部分(S) 12 ³ 12 ³	
OK ++>>セル	
□ (3)計算結果 □ \\xx/☆	
2) SN47	
日·5.4 近期AA思いレベル - 8.4.1 外力の計算	
- 3.4.2 外刀の計3 日-3.4.3 フリーアー	
白·(1)根入れ長(1)必要根:∨	-
< 1/81 ► ► 210 × 297mm	•
実際の大きさ	6

_ ファイル-印刷

現在表示している文書を印刷します。

5-2 結果一覧

結果一覧表を作成しプレビューします。

5-3 結果詳細

全計算結果の詳細を作成しプレビューします。

6 オプション 6-1 地層入力方式

地層入力方式-[層厚] 地層(土圧強度)の入力を層厚で行います。

地層入力方式-[標高]

地層(土圧強度)の入力を標高で行います。

表示項目の設定

描画や画面の状態、ツールバーなど表示に関する設定を行いま す。

Frameモデルの出力

出力の有無を切替えることができます。計算実行を押下いただ き、計算が終了した後に出力されます。出力先は、そのとき開い ているデータが保存されている箇所と同じか、データが未保存 の場合はプログラムインストール先に保存されます。

6-2 表示項目の設定

地層入力方式を層厚にするか標高にするかチェックします。

表示・描画タブ

主にメインウィンドウに表示される描画関連の設定を行いま す。

補助機能タブ

ファイル履歴の表示最大個数や表示方法、画面の保存方法を設定します。

ツールバータブ

メインウィンドウに表示するツールバーが設定できます。
7 ファイルの保存方法

メニューバーのファイル(F)より「名前を付けて保存(A)」を選択 します。

📔 名前を付けて	保存			×
保存する場所	(I): Data		.	
74у9 7947 77947 77947 77791 77791 РС 79797	名前 Sample-Fisb2015.F78 Sample-Fisb231.F78 Sample-Fisb234.F78 Sample-PortH19Kumi.F78 Sample-PortH19Fite.F78 Sample-PortH30Kumi.F78 Sample-PortH30Kumi.F78 Sample-PortH30Fite.F78 Sample-PortH30Fite.F78 Sample-PortH30Fite.F78 Sample-Satigai1.F78	更新日時 2016/01/20 11:05 2016/01/20 11:06 2018/01/20 11:06 2018/11/28 15:36 2018/11/28 15:36 2018/11/28 15:17 2018/11/28 15:17 2018/11/28 15:17 2018/11/28 15:16 2018/01/20 11:07 2016/01/20 11:07	 伊須 F8 矢板式係船岸の… F8 矢板式係船岸の… 	ų
	< ファイル名(N): <mark>1578</mark> ファイルの種類(T): 矢坂式係船庫の設計書	+算 XML形式(*.F7B)	 ✔ 保存(S) ★ キャンセル 	>
ファイル情報 製品パージョン: アァルパージョン: 作成日: 会社名: 部署名: 作成者名: コメント:	矢板式係船岸の設計計算 Ver.4 4.0.0.0 4.0.0.0 2018/11/30 Form® Form® Form® Form® Form8 Form8 Form8			-

任意のフォルダを指定して保存します。既存データを「上書き 保存」にて書きかえることも可能です。

第4章 Q&A

- Q1 前面矢板の腹起しについては応力度照査を行えますが、控え工の腹起しについても同様に照査はできるのでしょうか?
- A1 誠に申し訳ございませんが、控え工の腹起しについては照査を行っておりません。恐れ入りますが、別途、お客様側で検討して頂く必要があります。

Q2 災害復旧工事の控え杭対応には対応していますか?

A2 対応しています。 しかしながら、本基準に控え工についての記載がないため、計算理論は、港湾基準もしくは漁港基準のものを使用しま す。

Q3 矢板の天端に任意で集中荷重を設定することは可能でしょうか?

A3 Ver.2.02では、水平荷重の直接指定に対応しましたので、この機能でも対応は可能になります。鉛直方向には前面矢板壁 に鉛直荷重を設定できます。

Q4 盛土部の荷重を換算する場合に、載荷範囲を直接指定することは可能でしょうか?

- A4 誠に申し訳ありませんが、載荷範囲の直接指定は行えません。現在盛土寸法において入力可能な項目は、前面矢板と盛土 までの距離、盛土高さ、盛土勾配幅となっております。
- Q5 初期入力の耐用年数のデフォルトで30年になっておりますが、根拠はあるのでしょうか? 耐用年数は基準に明記されているのでしょうか?
- A5 漁港・漁場の施設の設計の手引 2003年度 P166には腐食代に関する記述があり、防食期間は、30年を標準とするとあります。本記述を参考に、デフォルトは30年としています。

Q6 腐食率は自動計算でしょうか?

A6 ■ 鋼矢板の場合
 形状からの腐食断面の内部計算には対応しておりません。
 腐食の考慮は、I,Zの低減係数を入力していただくことで可能となっております。
 この場合、腐食速度は参考値扱いとなりますのでご注意ください。
 ン Ver.3より、鋼矢板の低減係数の自動計算に対応しました。
 「鋼矢板-設計から施工まで-(2014年版) 社団法人 鋼管杭・鋼矢板技術協会」に記載されている断面性能算定図
 に準拠し、指定された腐食代から低減率を読み取って計算に使用することができます。
 ■ 鋼管矢板の場合
 形状から腐食断面を自動計算します。
 計算手法の詳細については、製品ヘルプの[計算理論及び照査の方法|腐食の扱い|内部計算]をご参考ください。

Q7 漁港基準で照査することになるが、液状化時における照査を行う事は可能でしょうか?

- A7 大変申し訳ございませんが、現行製品において液状化の検討には対応しておりません。
- Q8 斜め控え杭式の矢板係船岸の計算ができるでしょうか?
- A8 申し訳ありませんが、斜め控え杭式には対応していません。

Q9 鋼矢板 (ハット型) に対応できますか?

A9 ハット型の断面性能を、基準値-鋼矢板の画面で追加し、初期入力の鋼材Noでその追加した番号を設定する事で対応は 可能です。

Q10 内部摩擦角と壁面摩擦角について入力した摩擦角と、土圧係数算出に使用している摩擦角が異なるのはなぜでしょうか

 A10 サンプルのSample-PortKumi.F7Bにおいて、港湾基準の組杭形式の場合だと、プログラムは内部摩擦角、壁面摩擦角に 部分係数を考慮して以下のように計算しています。
 内部摩擦角30°:tan-1(tan30°×0.80)=24.79°
 壁面摩擦角15°:15°×0.95=14.25°
 部分係数の値は[考え方-前面矢板]画面の地盤種類によって[基準値-設計用設定値-部分係数]画面の入力値を使って います。

Q11 必要根入れ長算定係数が3.0/βである根拠は何ですか?

A11 自立矢板の場合、漁港基準のP.216に半無限長の杭として、杭の突出の有無や杭頭条件(自由、固定)によらず、L≧3/βを 満足するものとするということが記載されています。この記述を参考に設定値 (デフォルト) は3.00にしています。

Q12 見かけの震度の算出手法を教えてほしい

A12 漁港基準、港湾基準共に「荒井・横井の提案式」としています。 他の式への変更、または直接入力には対応しておりません。 ⇒ Ver.3より、漁港基準、港湾基準の場合に「荒井・横井の提案式」「二建の提案式」「災害復旧の標準式」より選択が 可能になりました。

Q13 設計矢板長はどこで設定するのか

A13 本製品では、最終的な矢板長(決定値)を計算実行時に表示されます[形状決定]ダイアログにてユーザー様ご自身で入力 していただく仕組みとしております。[形状決定]ダウアログ下方にございます「矢板長」にお考えの数値を入力してください。

Q14 頭部コンクリートの重量計算に対応していますか

A14 現行製品(Ver.2.0.2)では対応しておりません。代用機能として、矢板天端に対し任意の鉛直荷重を設定することができます。こちらの鉛直荷重は、断面照査の際に利用しています。

Q15 矢板を断面変化させることは可能でしょうか

- A15 申し訳ございませんが、現行製品(Ver2.0.2)では対応しておりません。
- Q16 控え杭の検討位置の計算において、構造水深の位置から主働崩壊角の計算を行いたいが方法はあるか
- A16 入力画面 [考え方 | 前面矢板]、[前面矢板壁] [計算方法] 内の □ 主働崩壊面開始位置をM=0地点とする」のチェックを外していただければご希望の計算を行うことができます。

Q17 タイ材の設計に用いられている反力の数値が計算結果と異なるようだがなぜか

A17 タイ材の設計において用いる反力は、計算過程の画面においてお客様に設定していただく仕様となっております。データ を計算実行し、2つ目に表示される [タイ材反力] の画面において、採用する計算値のボタンを押下していただくと、「反力 (採用値)」の値が更新されます。用いたい反力と値が異なっている場合は、上記の設定が誤っている可能性が高いですの で、こちらを一度ご確認ください。

Q18 控え杭を突出杭として設計することは可能か

A18 可能です。たとえば、製品のサンプルデータを例にとりますと、「Sample-FishP331.F7B」のデータでは、計算を実行し、 控え杭の設置位置画面でLdminより小さい値を設定することができます。ただし、常時、地震時のLaの大きい方の値より 短く設置距離を設定することはできません。(Sample-FishP331.F7Bですと、常時=3.201、地震時=4.771ですので、4.771 より小さい値を設定することはできません。)製品ヘルプの「検索」機能で、"突出杭"と検索していただくと、製品内での扱 いをご覧いただけるかと思います。

Q19 控え杭の設置位置を決定する画面で、設置距離Ldがある数値以下になると入力できないがなぜか

A19

常時、地震時のLaの大きい方の値より短く設置距離を設定することはできません。 製品が準拠している漁港基準では、 「控え杭式構造において、背後地に余裕がなく、…(中略)…控え杭式でやむを得ず設計しなければならない場合には、矢 板の主働崩壊面と控え杭の受働崩壊面の交点を含む水平面を仮想地表面として、それより上には土がない杭頭自由の杭 として設計してもよい。(P.443)」 と記述があります。(港湾基準においても、P.1019に同じような内容の表記があります。)

主働崩壊面Laより短い距離にLdを設置した場合、受働崩壊面との交点の計算が行えない場合があるため、製品では最小 値を常時・地震時の主働崩壊面位置の最大値としています。

現場の施工状況によっては、「設置距離Ld<地震時La」となるような構造もあるかとは思いますが、製品が準拠している 基準類に取り扱いについての記載が無いため、対応していないというのが現状です。

Q20 設計震度の計算プログラムはあるか?

A20 国土交通省 国土技術政策総合研究所 港湾研究部 港湾施設研究室 http://www.ysk.nilim.go.jp/kakubu/kouwan/sisetu/で紹介されているツールがあります。

Q21 常時と地震時で残留水位の値を変えて計算を行いたいが、可能か

A21 朔望平均満潮面 H.W.L、朔望平均干潮面 L.W.L、残留水位 R.W.Lは、検討ケース毎に直接入力することができます。 残留水位 R.W.Lを直接入力する場合は、[□残留水位を内部計算する]にチェックを入れてください。

Q22 普通矢板式係船岸に換算載荷重を考慮することは可能か

A22 現行製品では、普通矢板式の場合盛土の入力を行うことはできません。 恐れ入りますが、一度「自立式」の状態で盛土部分の換算載荷重の値を計算していただき、得られた換算載荷重を [検討 ケース]の各ケースにおいて [前面矢板用上載荷重] として設定いただければ、考慮自体は可能です。

Q23 土圧の直接指定を行った場合、一から荷重値を設定しないといけないのか。 集中荷重を土圧に追加して設定したい場合、どのように入力したらよいか教えてほしい。

A23 自動計算した土圧強度に、任意の値を追加したい場合の手順は以下のようになります。

- (1) まずは直接指定を設定せずに、解析を行ってください
- (2) 解析が終了したら、[結果確認 | 土圧分布表] から土圧強度分布表の画面を開きます
- (3) 左下の「CSVファイルに出力」を押下し、任意の名称でファイルを保存します(4) (1)のデータについて、今度は土圧強度の直接指定を行う設定に変更します
- (5) [入力|土圧強度]の画面で、左下の「読込」を押下し、(3)で保存したCSVファイルを読み込みます
- (6) 読込みが終了したら、各ケースごとに集中荷重を追加してください

Q24 土圧計算時の最上層の上載荷重が換算載荷重の値と異なるようだが、何故か

A24 土圧計算時に用いる上載荷重の値は、換算載荷重+前面矢板用上載荷重の値となります。[前面矢板用上載荷重]は、各 [検討ケース] 画面にて設定できますので、こちらの値を一度ご確認ください。

Q25 電気防食工法の計算に対応しているか

A25 試片の質量減などからの自動計算には対応しておりませんが、港湾基準(H19)上巻のp.439において、 『⑤ 平均干潮面以下の防食率としては、一般に90%が用いられることが多い』 との記載がございますので、[部材]-[前面矢板壁材]において、[腐食低減係数]を0.90と設定いただければ適用は可能と考 えます。 ⇒ Ver.3より、前面矢板壁への電気防食効率の入力に対応しました。

Q26 矢板式の河川護岸の計算は行えるか?

- A26
 矢板式河川護岸につきましては「矢板式河川護岸の設計計算」(http://www.forum8.co.jp/product/uc1/douro/ya-gogan. htm)という製品がありますので、そちらでご検討ください。
- Q27 動水圧があるピッチで計算されているが、このピッチは変更できないか。また、動水圧を考慮しないことはできるか。
- A27 [検討ケース]-[変動状態]画面より変更可能です。動水圧の考慮するか否かの設定も同画面で可能です。
- Q28 動水圧の水深はL.W.Lからか、それともH.W.Lからか
- A28
 L.W.Lからの水深となります。

 (「港湾構造物設計事例集(平成19年 改訂版)」の計算例ではL.W.Lからの水深となっております)
- Q29 [初期入力]にある「施工延長」は計算に影響するか
- A29 印刷情報であり、設計計算には使用しておりません。

Q30 残留水位R.W.LがH.W.LとL.W.Lから内部計算されているが、直接入力することはできないか

- A30 [水位条件]-[検討水位]に内部計算とするか直接入力するかのスイッチがありますので、そちらで設定して下さい。(関連 Q21)
- Q31 壁面摩擦角を検討ケース毎に設定したいが、可能か
- A31 基準値- 「部分係数」にて検討ケース毎の係数を設定いただくことである程度は可能です。 ⇒ Ver.3より、常時・地震時ごとに壁面摩擦角を設定していただくことが可能になりました。
- Q32 地震時の上載荷重が5.0 (kN/m) となっているが、何かの基準に記載があるのか
- A32 港湾構造物設計事例集(上巻:1-5)の記述により、初期値を常時の1/2程度としています。 また、災害復旧工事の設計要領の設計事例でも、常時を10.0、地震時を5.0として計算されています。 道路橋示方書などでは地震時を0.00としていますので、適宜設計者様のご判断でお願いします。
- Q33 港湾基準適用時の、許容変位量の根拠を教えてほしい
- A33 港湾基準には許容変位量の具体的な数値が記載されておりませんので、漁港基準の値を初期値として設定しております。 漁港基準p.454をご覧ください。

Q34 任意荷重を設定したが計算結果に反映されない

- A34 任意荷重の下端位置が、入力されている地層の最下層よりも下で設定されている場合、正常に計算できません。 任意荷重の範囲は入力されている地層の範囲内に収まるように入力してください
- Q35 横方向地盤反力係数を自動計算したいが有効にするには?
- A35 控え工の種類を「組杭」以外にしてください。
- Q36 港湾基準H11年度を適用しての設計は可能か
- A36 製品としては港湾基準のH19、H30に対応しており、H11の港湾基準には対応しておりません。 H19、H30とH11の最も大きな違いは、「部分係数法」の適用の有無と考えますが、これについては [基準値] -[設計用設計値]-[部分係数]画面よりすべての部分係数を1.00としていただければ、部分係数を考慮しない設計を行うことは可能です。

Q37	部材断面力の最大値、最小値はどこで確認できるか
A37	計算書における形式ごとの出力箇所を以下に記載します。 ○普通矢板式○ 1) フリーアースサポート法 最大曲げモーメントのみ表示しています。
	2) たわみ曲線法 フレーム解析の結果から、最大曲げモーメント、最小曲げモーメントを抽出して計算書に出力しております。
	○自立矢板式○ 慣用法で計算を行い、地中部最大、仮想海底面の曲げモーメントを出力しております。
Q38	タイロッド式鋼矢板壁の控え杭の設置位置は、鋼矢板壁からの主働崩壊面と控え杭からの受働崩壊面がタイロッド位置よ り上で交わるように決めますが、土地の形状の制約によりそのようにできないケースの場合、 前面矢板の主働崩壊面と控え杭の受働崩壊面の交点を含む水平面を仮想地表面として、それより上には土がないと考え て、杭頭自由の杭として設計を行うことはできますか?
A38	 可能でございます。 計算実行ボタンを押して頂きますと、いくつかのダイアログを経て、計算実行となります。 下記の2つのダイアログにおいて、お客様がお考えの設定が可能でございます。 「控え杭の設置位置」ダイアログ 控え杭の設置位置を設定することができます。 内部計算した必要配置距離を表示していますが、この位置より前面側に設置することが可能でございます。 「控え杭用仮想地盤面」ダイアログ 「控え杭の設置位置」ダイアログにて内部計算値と異なる設定をした場合、控え杭用の仮想地盤面G.L.を任意の値に 設定することができます。
	設計に用いる仮想地盤面G.L.を入力してくたさい。
Q39	永続状態/変動状態の2ケースの「外力の計算」で、根入れ長計算用と応力計算用の計算がされていますが、どうして2つ に分けて計算しているのでしょうか? それぞれ何が違うのでしょうか?
A39	平成19年港湾基準では、材料係数アプローチによる部分係数法となっています。 本製品の[基準値]-[設計用設定値]-[部分係数]画面にありますように、「根入れ長計算」「応力計算」 で部分係数の扱いが 異なることから、2つに分けて計算しています。
Q40	土の単重γ、摩擦角(φ、δ)が、それぞれのケースにより値が異なる箇所があるのですが、どのような計算で求めているので しょうか? φについては、有効土圧σ'νを考慮したとしても同じ値になっていました。 どの式で求めているのでしょうか?
A40	平成19年港湾基準では、材料係数アプローチによる部分係数法により求めています。
Q41	ロウの方法を用いて根入れ長を検討する際に、シミラリティナンバーωを計算していますが、その計算に用いるlhは、どの 図表から値を持ってきているのでしょうか?

A41 [考え方]-[前面矢板]画面にて、入力できるようにしています。

Q42 水平方向地盤反力係数の算出方法を教えてください。道路橋示方書の算出方法と異なるのでしょうか。

A42

043

A43

044

A44

045

A45

046

A46

各適用基準における算出方法は以下の通りです。 【港湾基準】 S型地盤: ks= 592N 0.654 (kN/m2.5) C型地盤: kc= 540N^0.648 (kN/m3.5) (港湾の施設の技術上の基準・同解説 下巻 (平成19年9月) p.629 より) 【漁港基準】 kh=3900N^0.733 (kN/m3) (港湾の施設の技術上の基準・同解説 下巻 (平成19年9月) p.629 より) 【災害復旧工事】 kh=69101N^0.406 (kN/m3) (災害復旧工事の設計要領 (平成20年版) p.918 より) Nは地層入力画面における平均N値です。 【道示IV(H14.H24)】 kh=kh0(BH/0.3)^(-3/4) (kN/m3) ここに、 kh0:直径0.3mの剛体円盤による平板載荷試験の値に相当する水平方向地盤反力係数(kN/m3)で、 各種土質試験又は調査により求めた変形係数から推定する場合は、式(解9.6.5)により求める。 $kh0 = (1/0.3) \alpha E0$ ここに、 a:換算係数 E0: 変形係数 永続時:E0=1、 変動時:E0=2 BH:荷重作用方向に直交する基礎の換算載荷幅(m) (道路橋示方書・同解説 (平成24年) IV下部構造編 p.285などより) Ver.4.0.0の改訂内容において、港湾基準H30対応となっているが、旧基準(H19)での計算はできるか? 可能でございます。 組杭の軸力式の出典を教えてください 『漁港・漁場の施設の設計の手引 2003年度版』社団法人全国漁港漁場協会のP.76にございます。 横方向地盤反力係数のヘルプにおいて、下記のような記述がありますが、漁港基準の根拠が港湾基準P629で見当たりま せん。 >【港湾基準】 >S型地盤: ks= 592N^{0.654} (kN/m2.5) >C型地盤: kc= 540N^0.648 (kN/m3.5) >(港湾の施設の技術上の基準・同解説下巻 (平成19年9月) p.629 より) 漁港基準 P.214に漁港基準における横方向地盤反力係数の決定方法が記載されており、続くP.215に図4-3-4「杭の水平 載荷実験から逆算したkh値」がございます。 漁港基準においては、その図4-3-4に従ってkhを導出する必要がございます。 しかしながら、この図だけでは、詳細な値を導出することができません。 そこで、港湾基準P.628から始まる「(b)横山の提案」 にある図が同等であったため、続くP.629 表2.4.12の上から3つ目の 項目にある当該相関式を採用した次第でございます。 港湾基準P.377や漁港基準P.113に 「海底面下における粘性土の地震時の土圧を算出する場合、海底面における見かけの震度k'を用いて土圧を求めるが、海 底面下10m以下においては、震度を0として土圧を求めてよい。 ただし、海底面下10.0mにおける土圧が海底面における値より小さい場合は、海底面における値を用いる。」 と記述されていますが、海底面における値を用いるのではなく、粘性土層の上面における値を用いるのが一般的と考えま す。 『港湾構造物設計事例集 平成30年改訂版』の計算例でも粘性土層の上面における値を用いていますが、矢板式係船岸 の設計計算は、このような計算方法に対応していませんか。 上記の計算方法は、Ver.5にて対応しました。 港湾基準P.377や漁港基準P.113に記載されている方法が誤りである可能性や、その方法を求められる可能性を否定でき ないため、弊社製品では、港湾基準および漁港基準に記載の方法と、港湾構造物設計事例集の方法を選択できるように いたしました。

入力方法や詳細な仕様につきましては、製品ヘルプをご覧ください。

Q47 検討ケース毎に水位を変更したいが可能か

- A47 Ver.5.0.0より検討水位画面におきまして、各ケース毎に水位を設定できるようになりました。
- Q48 本製品において、骨組解析結果を見たことがあるが、今回の業務のために作成したデータでは、骨組解析結果が出力され なかった。なぜか。
- A48 骨組解析結果が出力されるのは、たわみ曲線法にて計算した場合のみとなります。 フリーアースサポート法のみで計算した場合は、骨組解析結果が出力されません。 ご了承ください。
- Q49 計算実行を行うと下記のメッセージが出ますが、仮想支持点はどのように設定するのでしょうか?対処法について教えてください。
 >エラー:検討ケース[地震時]にて、仮想支持点>構造水深となっております。
 >対策:仮想支持点は構造水深以深として下さい。
- A49 [検討ケース]-[常時]画面および[検討ケース]-[地震時]画面におきまして、[前面矢板の扱い]という項目がございます。
 こちらの中の[□仮想支持点を直接与える]という入力項目にチェックを入れますと、その右の入力欄に入力されている標高に仮想支持点を設けます。
 上記の入力が構造水深を上回っている場合、エラーが発生いたします。
 仮想支持点を適切な標高に設定して頂くか、[□仮想支持点を直接与える]のチェックを外して内部計算とすれば、エラー無く計算ができます。

Q50 計算書の方で支点反力の計算結果が出力されているが、どのように計算を行っているか。

- A50 仮想ばり法の計算結果(矢板の骨組モデルを作成して骨組解析を行った結果)から最大曲げモーメントやせん断力を抽出 して出力いたします。 仮想ばり法の計算結果は、計算結果確認モードで仮想ばり法の結果画面を開くことで確認して頂けますが、計算書上に 出力されません。改善して参ります。 一方、たわみ曲線法の結果につきましては、骨組解析結果の計算書出力に対応しています。
- Q51 道路橋示方書・同解説 IV下部構造編における横方向地盤反力係数の算出に対応していますか。
- A51 はい、対応しています。
- Q52 矢板式係船岸の設計計算と矢板式河川護岸の設計計算を比較した際に前面矢板長および根入れ長が大きく異なる場合 があるが、原因として何が考えられるでしょうか。
- A52 根入れ長の計算方法が異なるため、あくまで同一の入力状態における一例となりますが、水平震度の取り扱い方が考えられます。
 矢板式河川護岸の方ではChangの式を用いて根入れ長を求めているため、水平震度が根入れ長の計算結果に影響を及ぼしません。
 矢板式係船岸の方では、タイ材取り付け点に関する主働側と受働側のモーメントのつり合いや、主働側と受働側の土圧及び水圧の合力から根入れ長を求めているため、水平震度が計算結果に影響を及ぼします。
- Q53 矢板天端位置に水平方向の集中荷重を入力していますが、結果を見る限り反映されておりません。何か入力に問題があるのでしょうか。
- A53 普通矢板におきましては、[考え方]-[前面矢板]画面に、[タイ材より上の外力の扱い]という入力項目がございます。
 上記の「フリーアースサポート法」と「たわみ曲線法」がいずれも「●無視」となっておりましたため、タイ材の取り付け位置以深にのみ任意荷重が載荷できる状態となっておりました。
 従いまして、上記の入力を「●考慮」として頂くことで、矢板の天端に水平方向の任意荷重を載荷することが出来るようになります。
- Q54 矢板の耐用年数として100年以上を設定したい。
- A54 現状、2桁 (~99) まで入力できるようになっておりますので、腐食速度を調整して頂ければと存じます。

- Q55 荷重抵抗アプローチを用いた部分係数法に対応しているかと思いますが、設計内容を安全側にするためにその部分係数 を変更することは可能でしょうか。
- A55 [基準値(K)]-[設計用設定値(D)...]-[部分係数(港湾基準・H30荷重抵抗アプローチ)]にて変更することが可能でございま す。

Q56 牽引時の計算は、可能でしょうか。

- A56 はい、可能でございます。 [初期入力]画面におきまして、[検討ケース]-[□牽引時]にチェックを入れてください。
- Q57 計算のために作成した骨組モデルをエクスポートできませんか。
- A57 [オプション(O)]-[Frameモデルの出力]を『出力する』として頂くと可能でございます。 出力先は、現在のデータが保存されている場所となりますが、デフォルトのインストール先にあるサンプルデータ(C:\ Program Files (x86)\FORUM 8\SheetPileQuaywall5\Data)のようにアクセス権が必要な場所にある場合、正常に生成 されない場合がございますので、デスクトップなどアクセス権の必要のない場所にデータを置いてご使用ください。
- Q58 地層の入力画面で[y'=ysat-yw]ボタンの「yw」は、どこの値が計算に用いられていますか。
- A58 [水位条件]-[検討水位]画面の「水の単位体積重量」が計算に用いられています。
- Q59 津波引き波時の「朔望平均干潮面 L.W.L」は、どこで設定できるか。
- A59 [検討ケース]-[津波引き波時]画面の「海水が最も低くなった水位 G.L.」が「朔望平均干潮面 L.W.L」と同等で、そこで設定できます。
- Q60 前面矢板壁の鋼材の断面性能を編集することは可能でしょうか。
- A60 はい、可能です。 [基準値]-[鋼材]-[矢板壁]の各画面より、鋼材の編集や追加を行うことができます。
- Q61 仮想海底面はどのように算出していますか。
- A61 矢板背面に働く主働土圧強度と残留水圧強度の和が矢板前面に働く受働土圧強度と等しくなる位置として算出しています。
- Q62 変位量の算出方法が「港湾構造物設計事例集(平成30年改訂版)」と違いますが出典はありますか。
- A62 変位量の算出は、「港湾構造物設計事例集(平成30年改訂版)」を出典としています。 しかし、仮想海底面から上の片持梁としてのたわみ量の算出方法が異なるため、本製品と設計事例集で違いが生じていま す。 どちらも「構造力学公式集」を参照していますが、本製品では三角形荷重による算出、設計事例集では集中荷重による算 出としています。
- Q63 漁港基準の場合に、旧基準(2003)と新基準(2015)で計算に影響はありますか。
- A63 本設定による計算部への影響はありません。計算書の出力内容が変更されます。
- Q64 控え杭設置検討範囲とは、どのような値ですか。
- A64 この値は設計計算には関係ありません。しかし、控え杭の設置位置を検討する上で、制限範囲を設ける必要があるため、 この範囲を指定していただいています。 設計される控え杭の設置位置が、かなり後方になることが予想される場合は、その距離を見込んだ範囲を入力して下さい。

- Q65 基準値:鋼矢板の調整係数mが1.2, 1.0となっていますが事例集では降伏応力度/許容応力度で1.64, 1.09ではないでしょうか。
- A65 本製品では、「港湾の施設の技術上の基準・同解説 平成30年5月」のp.1124 表-2.4.1 「矢板壁の応力照査に用いる部分 係数」をもとに、調整係数mが設定されています。 変更の際は、[基準値]-[設計用設定値]-[部分係数(港湾基準H30・荷重抵抗アプローチ)]画面より、変更いただくこととな ります。

Q66 牽引時で控え工の検討は可能でしょうか。

- A66 牽引時での控え工の検討には対応していません。 永続状態で牽引力を考慮した反力を入力することで、「永続状態」を「牽引時」として検討できるものと思われます。
- Q67 地表面天端高を任意に設定することは可能ですか。
- A67 [初期入力]画面の「地層」にて、「地表面天端G.L.を設定する」をチェックしていただき、任意のG.L.(m)を入力していただ くことで可能です。 ※「地表面天端G.L.を設定する」のチェックを外した場合、「地表面天端=前面上部工天端高」となります。
- Q68 自立矢板式の止水矢板の設定は可能ですか。
- A68 大変申し訳ございませんが、対象構造物は係船岸ですので、背面側(矢板を挟んで陸側)に矢板天端まで土がある護岸形 状が必須になります。
- Q69 各部材のヤング係数は、どこで入力するのでしょうか。
- A69 [基準値(K)]-[設計用設定値(D)]-[材質テーブル]画面における各材質のタブに入力をご用意しております。
- Q70 前面矢板壁のタイ材の傾角はどのように入力するのでしょうか。
- A70 タイ材の傾角は時計回り(右下がり)を+として入力して下さい。
- Q71 牽引時の水位はどこで入力するのでしょうか。
- A71 牽引時の検討水位は永続状態(常時)と同値としているため、永続状態(常時)で値を入力して下さい。
- Q72 港湾基準の自立矢板式でエプロン勾配をありにした場合、勾配の途中から水平地盤とすることは可能でしょうか。
- A72 エプロン勾配を任意の高さで水平地盤にすることはできません。 設定した勾配を固定のまま控え工設置検討範囲まで伸ばした形状となります。
- Q73 メイン画面に表示されている2D描画モデル図や3Dモデル図の描画色は変更できるか。
- A73 画面上部にあります[オプション]-[表示項目の設定]画面で変更することができます。
- Q74 メイン画面に表示されている3Dモデルを、ファイルに保存できるか。
- A74 メイン画面の3D形状でマウス右クリックを行い、メニューより「3Dデータファイル保存」から保存することができます。

※Q&Aはホームページ (http://www.forum8.co.jp/faq/win/ya-keisengan-qa.htm)にも掲載しております。

矢板式係船岸の設計計算 Ver.5 操作ガイダンス

2024年 7月 第2版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて 本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へ お問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。 https://www.forum8.co.jp/faq/qa-index.htm

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

矢板式係船岸の設計計算 Ver.5 操作ガイダンス

