ナショナル・レジリエンス・デザインソリューション

国土強靱化

設計支援ソリューション

国土強靭化政策大綱に基づく土木設計・IT関連の業務をサポート

鋼構造及びコンクリート、道路

都市及び地方計画、港湾及び空港、鉄道

土質及び基礎、河川、砂防及び海岸・海洋

電力土木・トンネル・施工計画・施工設備及び積算、建設環境

IT関連、その他

UC-win Road VR-GLouồ \$\iint\ Allplan Engineer's Studio 3DCAD Studio \$\int\ Allplan \text{Louon Allplan Engineer's Studio 3DCAD Studio

EXODUS XPSWMM

UC-1 シリーズ

構造解析 断面・橋梁上部工 橋梁下部工 基礎工 仮設工 道路土工 水工 地盤解析 地盤改良・港湾 CALS/CAD・維持管理・地震リスク・建築 / ブラント GIS システム開発 / カスタマイズシステム 3D·VR エンジニアリング サービス 解析支援サービス

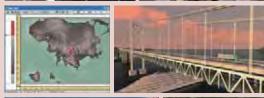
M FORUM 8

~ ナショナル・レジリエンス・デザインソリューション ~ R FORLING B 国土強靱化設計支援ソリューショ

鋼構造及びコンクリート、道路

都市及び地方計画 港湾及び空港、鉄道

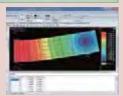
砂防及び流


土質及び

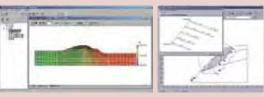
・道路(市町村道、農道、林道)の基盤整備

UC-win Road VR-GLOUD

- ・高架橋などの耐震対策
- ・長寿命化と耐震化のための新規構造材料や 補修技術などの研究開発
- ・インフラ長寿命化計画の策定の推進


Engineer's Studio FEMLEEG

□ C-1 構造解析 / 断面·橋梁上部工·橋梁下部工 基礎工・道路土工・維持管理・地震リスク・CAD/CIM



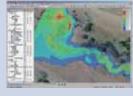
・道路の耐震補強や斜面・盛り土などの政策

解析支援サービス

3D・VR エンジニアリング サービス

- ・代替性の確保を目的とする道路ネットワークの整備
- ・緊急輸送道路の無電柱化

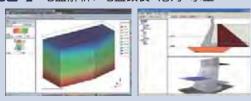
UC-win Road VR-GLOUD



- ・主要駅や空港施設、港湾施設の耐震・耐津波性能の強化
- ・避難・防災訓練や避難マップ
- ・災害現場での救助・救急活動高度化や訓練環境等の 充実強化・整備

EXODUS XDSWMM

- ・耐震・耐津波性能の強化/訓練環境等の充実強化・整備
- ・防波堤と防潮堤による多重防護などの津波対策
- ・漁港施設の地震・豪雨対策
- ・海岸堤防の整備、海岸保全施設の耐震・液状化対策


Engineer's Studio FEMLEEG

□□ 世盤解析 / 地盤改良·港湾·水工

解析支援サービス

3D・VR エンジニアリング サービス

- ・地すべり対策や治山対策
- ・火山の噴火や深層崩壊なる

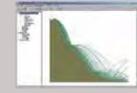
UC-win Road VR.

- ・ゲリラ豪雨対策としての河川
- ・海岸の浸食対策、粘り強い 水害発生時の減災対策

XPSWMM

・排水機や排水樋門などの

Engineer's Studio F


- ・管路や配水池、浄水施設/
- ・下水道施設の耐震化 / たる

ШС-1 港湾·水工

- ・津波被害リスクが高い河ノ 耐震・液状化対策
- ・史跡、名勝や天然記念物は

ШС−1 落石シミュレーシ

解析支援サービス

3D・VR エンジニアリン


'ョン

安心・安全なくらしの礎となる社会インフラの充実・強化や、防災・減災対策など、災害に強いしなやかな国土づくりを目的とした土木・建築分野における取組みを、トータルに支援します。

基礎、河川 毎岸・海洋

どの土砂災害に備えた施設整備

Crong)

川と下水道の一体的な施設整備 N海岸堤防の整備大規模な

整備による農地の豪雨対策 EMLEEG

などの水道施設の耐震化 が他の地震・豪雨対策

|堤防のかさ上げや

こ対する地盤の崩落防止措置

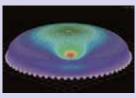
ョン/土石流シミュレーション

ノグ サービス

電力土木・トンネル・施工計画施工設備及び積算、建設環境

・ダムの建設などの治水対策

UC-win Road VR-chound XDSWMM


・非破壊検査技術やロボット技術など新技術を活用した インフラの維持管理・更新

- ・木材の積極的な利用と森林の適正な整備
- ・水力エネルギーの有効活用や小水力発電の推進

Engineer's Studio FEMLEEG

・インフラ維持管理など技術者の確保・育成体制

ШС-1 維持管理・地震リスク

・コンビナート災害の発生・拡大の防止 (高圧ガス設備の耐震基準見直し、津波対策)

UC-1 建築/プラント

解析支援サービス

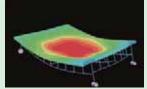
3D・VR エンジニアリング サービス

IT関連、その他

・ハザードマップの統合化、防災アセスメントの実施、 3次元地理空間情報の活用

UC-win Road VR-GLOUD

- ・三次元精密標高データとリアルタイム情報の 重ね合わせできる電子防災情報システム
- ・医療施設の耐震化、南海トラフ巨大地震における浸水予想



・E - ディフェンス震動実験研究等による 長時間・長周期地震動に対する構造安全性確保

Engineer's Studio

- ·BCP(緊急時企業存続計画又は事業継続計画)
- ・BCM(事業継続マネジメント)

□□□ 維持管理・地震リスク

- ・災害情報伝達、情報提供手段の多様化のための地理空間
- ・情報の高度利活用測量、ロボット施工、津波予報等に 貢献するGNSS観測システム

出版書籍・有償セミナー/体験セミナー

解析支援サービス

3D・VR エンジニアリング サービス

~ ナショナル・レジリエンス フォーラムエイトの国土強靱化設

国土強靭化政策大綱に基づく土木

鋼構造及びコンクリート、道路

都市及び地方計画、港湾及び空港、鉄道

土質及び基礎、河川、

UC-win Road VR-GLOUP

Engineer's Studio FEMLEEG

UC-1 シリーズ

構造解析/断面・橋梁上部工・橋梁下部工 基礎工・道路土工・維持管理・地震リスク CAD/CIM

解析支援サービス

3D・VR エンジニアリング サービス

UC-win Road VR-GLOUP

Engineer's Studio FEMLEEG

UC-1 シリーズ

地盤解析 / 地盤改良・港湾・水工 CAD/CIM

EXODUS XDSWMM

解析支援サービス

価格

3D・VR エンジニアリング サービス

PC単純桁の設計 Ver 4

落橋防止システムの設計計算 Ver.5

ポータルラーメン橋の設計計算 Ver.2

任意形格子桁の計算 Ver.7

橋梁上部工

UC-win Road

Engineer's Stud

UC-1 シリーズ

地盤解析 / 地盤改良 CAD/CIM

XDSWMM

解析支援サービス

3D・VR エンジニア

価格

¥78,000

¥860,000

¥420,000

¥284 000

UL	Win/	Koad

シミュレーション	価格
UC-win/Road Ver.11	¥630,000~
VR-Cloud® Ver.6	¥336,000~
OHPASS、UC-win/Road OHPASSプラグイン・オプション	¥550,000
VR-Cloud® Parking NAVI	_
VRまちづくりシステム	_
UC-win/Road 医療系VRシステム	_

Engineer's Studio / FEMLEEG / FEM 地盤解析

Engineer's Suite

動的非線形解析	価格
Engineer's Studio® Ver.5	¥369,000~
WCOMD Studio	¥1,200,000
FEMLEEG Ver.6	¥550,000~
GeoFEAS Flow3D	¥1,550,000
3次元弾塑性地盤解析(GeoFEAS3D) Ver.2	¥1,050,000
弹塑性地盤解析(GeoFEAS2D) Ver.3	¥650,000
地盤の動的有効応力解析(UWLC) Ver.2	¥630,000
3次元地すべり斜面安定解析(LEM3D) Ver.2	¥336,000
3次元浸透流解析(VGFlow) Ver.2	¥790,000
2次元浸透流解析(VGFlow2D) Ver.2	¥284,000
FEMエンジニアスイート	¥940,000~

山仁-1 シリーズ

構造解析上部エスイート	¥960,000~
下部工基礎スイート	¥1,390,000~
仮設土エスイート	¥1,290,000~
CALS/CADスイート	¥730,000~
水エスイート	¥960,000~
建築プラントスイート	¥570,000~
港湾スイート	¥730,000
SaaSスイート	¥130,000~
Engineer's Suite積算	¥600,000
構造解析/断面	価格
Engineer's Studio® 面内 Ver.2	¥232,000
FRAMEマネージャ Ver.4	¥316,000
FRAME(面内)Ver.4	¥192,000
RC断面計算 Ver.7	¥143,000
鋼断面の計算 Ver.3	¥173,000
鋼断面の計算(限界状態設計法)	¥320,000
設計成果チェック支援システム Ver.3	¥1,050,000
橋梁上部工	価格
UC-BRIDGE Ver.10(分割施工対応)	¥650,000
UC-BRIDGE Ver.10	¥550,000

CAD	PC単純桁の設計 Ver.4	¥284,000
	床版打設時の計算	¥284,000
	鋼板桁橋自動設計ツール	¥200,000
	非合成鈑桁箱桁の概略設計計算	¥359,000
	連続合成析の概略設計計算	¥420,000
	鋼床版桁の概略設計計算	¥420,000
	橋梁下部工	価格
CAD 結合	橋台の設計 Ver.14	¥389,000
	箱式橋台の設計計算 Ver.8	¥284,000
	ラーメン式橋台の設計計算 Ver.8	¥284,000
CAD	橋脚の設計 Ver.13	¥440,000
CAR	ラーメン橋脚の設計 Ver.2	¥550,000
	震度算出(支承設計)Ver.10	¥274,000
	フーチングの設計計算Ver.2	¥78,000
	橋脚の復元設計計算 Ver.3	¥173,000
	PCウェル式橋脚の設計計算	¥760,000
	PC橋脚の設計計算	¥232,000
	二柱式橋脚の設計計算	¥380,000
CAD	RC下部工の設計 Ver.2	¥810,000
	基礎工	価格
CAD 結合	基礎の設計	¥284,000~
	3次元鋼管矢板基礎の設計計算(連結鋼管矢板対応) Ver.4	¥760,000
	深礎フレーム Ver.9	¥470,000
CAD 結合	プラント基礎の設計Ver.2	¥500,000
	仮設工	価格
CAD 結合	土留め工の設計 Ver.13	¥264,000~
	土留め工の性能設計計算(弾塑性解析II+) Ver.2	¥212,000
	たて込み簡易土留めの設計計算 Ver.2	¥118,000
	耐候性大型土のうの設計計算 Ver.2	¥173,000
CAD 結合	仮設構台の設計 Ver.7	¥284,000~
CAD 結合	二重締切工の設計 Ver.3	¥232,000
CAD 結合	切梁式二重締切工の設計	¥232,000
	型枠支保工の設計計算	¥163,000
	ライナープレートの設計計算 Ver.4	¥157,000
	クライミングクレーンの設計計算	¥254,000
	道路土工	価格
CAD 結合	BOXカルバートの設計 Ver.14	¥232,000~
	PCボックスカルバートの設計計算 Ver.2	¥163,000
	アーチカルバートの設計計算	¥143,000
CAD 結合	擁壁の設計 Ver.15	¥232,000~
	控え壁式擁壁の設計計算 Ver.4	¥143,000

第3回 ナショナル・レジリエンス・デザイン アワード 設計・解析・耐震をテーマとしたコンペティション

作品応募締め切り:2016年10月11日(火) 対象:構造解析(土木・建築)、地盤、水工

:2016年11月18日(金) 審査委員長:吉川弘道氏(東京都市大学 都市工学科総合研究所 教授) 表彰式

・デザインソリューション~ 計支援ソリューション 対応製品

、設計・IT 関連の業務をサポート

砂防及び海岸・海洋

電力土木、トンネル、施工計画、施工設備及び積算、建設環境

IT関連、その他

VR-CLOUP

lio® FEMLEEG

!・港湾・水工

リング サービス

UC-win Road VR-GLOUP

Engineer's Studio FEMLEEG

UC-1 シリーズ

仮設工・維持管理・地震リスク・ 建築・プラント・CAD/CIM

XDSWMM

解析支援サービス

3D・VR エンジニアリング サービス

UC-win Road VR-GLOUP **Engineer's Studio**

UC-1 シリーズ

維持管理・地震リスク CAD/CIM

GIS システム開発 / カスタマイズシステム

解析支援サービス

3D・VR エンジニアリング サービス

	道路土工	
	遮音壁の設計計算 Ver.4	¥143,000
	ロックシェッドの設計計算	¥212,000
	管の断面計算 Ver.2	¥98,000
	斜面の安定計算 Ver.12	¥284,000~
	共同溝の耐震計算	¥192,000
	トンネル断面算定	¥212,000
	防護柵の設計計算 Ver.2	¥80,000
	道路標識柱の設計計算	¥173,000
		価格
	矢板式係船岸の設計計算 Ver.3	¥336,000
	直杭式横桟橋の設計計算	¥389,000
	重力式係船岸の設計計算	¥284,000
	防潮堤・護岸の設計計算 Ver.2	¥336,000
	水工	価格
CAD 結合	BOXカルバートの設計(下水道耐震) Ver.10	¥306,000
CAD 結合	マンホールの設計 Ver.5	¥264,000
-	調節池・調整池の計算 Ver.6	¥254,000
	下水道管の耐震計算 Ver.2	¥222,000
	ハニカムボックスの設計計算	¥550,000
	大型ハニカムボックスの設計計算	¥550,000
	更生管の計算 Ver.2	¥173,000
	耐震性貯水槽の計算	¥88,000
	配水池の耐震設計計算 Ver.6	¥550,000
	パイプラインの計算 Ver.2	¥98,000
	ポンプ容量の計算	¥78,000
CAD 結合	管網の設計	¥359,000
	水路橋の設計計算	¥98,000
	水道管の計算	¥100,000
CAD 結合	柔構造樋門の設計 Ver.9	¥470,000
	水門の設計計算 Ver.4	¥359,000
	水門ゲートの設計計算	¥100,000
	等流の計算 Ver.4	¥66,000
	等流・不等流の計算 Ver.5	¥163,000
	落差工の設計計算 Ver.3	¥118,000
	洪水吐の設計計算 Ver.2	¥98,000
	揚排水機場の設計計算 Ver.3	¥550,000
	砂防堰堤の設計計算 Ver.2	¥202,000
	ため池の設計計算 Ver.2	¥173,000
	かごマットの設計計算	¥143,000
CAD 結合	開水路の設計 Ver.2	¥153,000
	矢板式河川護岸の設計計算	¥200,000
	RC特殊堤の設計計算	¥380,000
	xpswmm	¥660,000~

	地盤解析/地盤改良	価格
	落石シミュレーション	¥296,000
	土石流シミュレーション Ver.2	¥336,000
	置換基礎の設計計算 Ver.2	¥118,000
	圧密沈下の計算 Ver.10	¥284,000
	補強土壁の設計計算 Ver.4	¥284,000
	地盤改良の設計計算 Ver.4	¥163,000
	ウェルポイント・ディープウェル工法の設計計算 Ver.2	¥212,000
	CAD/CIM	価格
CAD	3DCAD Studio®	¥180,000
CAD	3D配筋CAD Ver.2	¥118,000
CAD	UC-Draw Ver.8	¥143,000
CAD	UC-Drawツールズ	¥46,000~
CAD	車両軌跡作図システム Ver.3	¥173,000
CAD	駐車場作図システム	¥143,000
	電子納品支援ツール Ver.14	¥98,000
	維持管理・地震リスク	価格
	コンクリートの維持管理支援ツール(ひび割れ調査編) Ver.3	¥143,000
	コンクリートの維持管理支援ツール(維持管理編) Ver.3	¥143,000
	地震リスク解析 FrameRisk	¥118,000
CAD	橋梁点検支援システム Ver.2	¥389,000
CAD 結合	橋梁点検支援システム(国総研版)	¥284,000
	橋梁長寿命化修繕計画策定支援システム Ver.3	¥232,000
	道路損傷情報システム	¥500,000
	BCP作成支援ツール	¥98,000
	建築	価格
	建築杭基礎の設計計算 Ver.4	¥173,000
	地下車庫の計算 Ver.2	¥118,000
	Design Builder	¥187,000~
CAD	Allplan2016	¥640,000~
	Multiframe	¥679,000~
	bulidingEXODUS	¥390,000~
	SMARTFIRE	¥750,000~

技術サービス・サホート		
Engineer's Studio®解析支援サービス	地盤解析支援サービス	
EXODUS/SMARTFIRE解析支援サービス	JCMAC3解析支援サービス	
FEMLEEG解析支援サービス	xpswmm解析支援サービス	
建物エネルギーシミュレーション支援サービス	設計成果チェック支援サービス	
UC-win/Roadサポートシステム	交通解析VRサービス	
3D·VRエンジニアリングサービス	スパコンクラウド®	
BCP策定・BCMS構築支援サービス	FORUM8受託開発サービス	
UC-win/Road カスタマイズシステム	Android受託開発サービス	
GISシステム開発/GSSグループウェア・サポートシステム		
アカデミーライセンス	レンタルライセンス/フローティングライセンス	

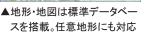
・道路(市町村道、農道、林道)の基盤整備

UC-win Road

3次元リアルタイムVR

切り土盛り土小段などののり面工の評価などに移動速度に応じた内部景観、外部 景観のシミュレーションが行えます。豊富な道路機能により、立体交差、トンネル・橋 梁に加えて、平面交差点が簡単に作成でき、複雑な交差点の形状、テクスチャ、走 行ルート、交通制御がビジュアルに定義できます。

▲大規模な空間をリアルタイム表示



▲切土・盛土、小段ラウンディング機能

▲複雑な道路構造を簡単、精緻に作成

▲橋梁形式や橋梁の彩色検討。 構造物の日影の影響検討が可能

▲高速道路の高架橋撤去イメージ表現 Before(左) / After(右) (日本橋川)

道路CADとのデータ連携

道路CADとUC-win/Roadを連携 することで、道路・造成など土木設 計、VRシミュレーション、プレゼン テーションまでもトータルで提供す るシステム。

UC-win/Road変換例▶

UC-win Road OHPASSプラグイン・オプション

道路最適線形探索システム

▲OHPASS:世代表示と最適線形

▲UC-win/Road変換後

3D·VRをクラウドで!

VR-Cloud® Collaboration機能の活用例

大阪大学 大学院工学研究科 環境・エネルギー工学 福田知弘研究室

- メイン画面での手書きデザイン デザイン入力
- ・ビデオ会議システム(Skype)を 利用した協議シーン

- 自在に選定
- **◀** ディスカッション、 注釈の3Dアイコン 表示

▲Androidクライアント操作画面/ディスカッション機能

3D・VRエンジニアリングサービス

3Dレーザスキャナ、3Dプリンタ、 BIM対応CADを活用した総合ソリューション

3Dレーザスキャン・モデリングサービス

3D図面オプション 報告書・図面ト--タルサービス

▲配水池モデル

▲3D/2D配筋図

3D模型サービス

▲渋谷風解析モデル

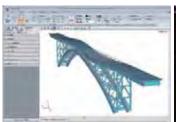
▲3Dスキャン出来形管理 VRモデリングサービス

点群モデリングプラグイン

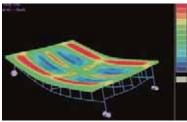
▲UC-win/Road SfMプラグイン・オプション

▲3D配筋CAD

▲3D配筋CAD for SaaS 干渉・かぶり厚チェック ▲大師ジャンクションモデル ▲品川インターシティモデル


・高架橋などの耐震対策

- ・長寿命化と耐震化のための新規構造材料や補修技術などの研究開発
- ・道路の耐震補強や斜面・盛り土などの政策
- ・インフラ長寿命化計画の策定の推進


Engineer's Studio

3次元積層プレート・ケーブルの 動的非線形解析

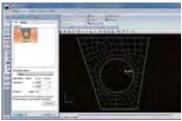
3次元有限要素法(FEM)解析プログラム。土木・建築構造物の部位を1本棒に見 立てたはり要素や平板要素でモデル化して、構造物の非線形挙動を解析するツー ル。道路橋示方書に準拠したRC断面に対する許容曲げ応力度照査、曲げ耐力照 査、平均せん断応力度照査等、せん断耐力照査、最小鉄筋量の照査が可能。

▲床版曲げモーメントコンタ・

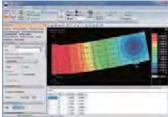
Engineer's Studi[®] 解析支援サービス

「道路橋示方書 耐震設計編」(平成24年3月)における動的照査法により設計す る初期モデル作成をサポート。コンサルタント登録(鋼構造及びコンクリート、土質 及び基礎)を行い、サービス品質の確保を図っています。

WEB見積サービス: http://www2.forum8.co.jp/f3d_estimate/input/


5 径間連続桁橋 ¥298,658

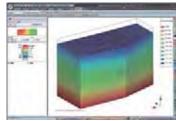
・非線形解析、M-φ要素を使用 ・節点数=63 ・断面要素数=24 ・平板要素数=0・支承および基礎のバネ定数は与えられている ・節点・要素データが無く、設計図・設計計算書からデータを作成



WCOMD Studio


▲自動メッシュ分割機能による入力

RC構造の2次元動的非線形解析


▲変位図と変位のコンタを同時表示

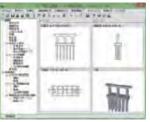
FEMLEEG

▲鋼上路式アーチ橋の応力照査

地盤FEM解析

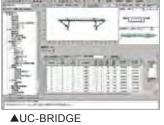
▲変位図(GeoFEAS Flow3D)

構造解析/断面・橋梁上部工・橋梁下部工・基礎工・道路土工・維持管理・地震リスク・CALS/CAD

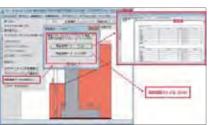

フォーラムエイトは、プログラムによる高度な解析技術の提供や省力化の積極的な推進を通して、設計に携わるすべてのエンジニアの皆様に、よりよい環境で仕事をしていた だくことを願っています。先進の技術、最高水準のソリューションを集めた統合的なシステム、サービスを提案します。

▲Engineer's Studio®(面内) 任意形平面骨組みの面内荷重計算

▲斜面の安定計算 斜面安定解析システム


▲RC断面計算 許容応力度法、限界状態設計法による 鉄筋コンクリート断面計算プログラム

コンクリート道路橋の 上部工設計計算プログラム


▲3D配筋CAD/3D配筋CAD for SaaS 3次元配筋ビューワ、新規作成、干渉チェックに対応。SaaS版はAndroid™に対応

▲橋梁長寿命化修繕計画策定支援システム ▲橋梁点検支援システム 道路橋の長寿命化修繕計画の作成を 行うプログラム

橋梁の損傷状況を記録し、各種点検 調書と、部材図・損傷図の作画システム

▲Engineer's Suite積算 UC-1エンジニアスイート構成製品と連携

▲Engineer's Suite(UC1/FEM) 各製品のセット版、クラウド機能、 2D·3D配筋、CIM機能等に対応

都市及び地方計画、港湾及び空港、鉄道

- ・代替性の確保を目的とする道路ネットワークの整備
- 緊急輸送道路の無電柱化
- ・主要駅や空港施設、港湾施設の耐震・耐津波性能の強化
- ・避難・防災訓練や避難マップ
- ・災害現場での救助・救急活動高度化や訓練環境等の充実

UC-win Road

3次元リアルタイムVR

港湾、空港のモデルでは航空写真を利用することで広範囲のシミュレーションが可 能です。鉄道や軌道走行の新交通システムなどでは道路シミュレーションと同様な 活用が可能です。街路の改良や駅前再開発では、3次元交通流や3D人間モデル を利用した動きのある都市空間の表現も可能です。

▲景観シミュレーション

▲電柱地中化

▲地震災害シミュレ

▲列車走行シミュレーション

▲神戸港サンプルモデル

XDSWMM

河川・下水道・汚水・氾濫・津波解析

様々なバリエーションのアニメーション表示により解析結果の解釈、第三者への事 業内容・事業効果のプレゼンテーション、ハザードマップの作成が行えます。任意の 避難経路が浸水するまでの時間を解析できます。これを活用して効果的な救助隊 の行動計画や避難設備の配置検討が可能となります。

▲1D/2D統合解析-モデル例

▲1D/2D統合解析結果(UC-win/Road)

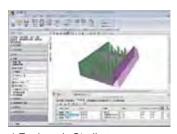
xpswmm解析支援WEB見積: https://www2.forum8.co.jp/xpswmm/

EXODUS/SMARTFIRE

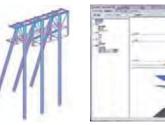
英国グリニッジ大学の火災安全工学グループ(FSEG)により開発された避難シミュ レーションソフト「EXODUS」および火災シミュレーションソフト「SMARTFIRE」。高精 度な設計を行う技術者にとって、ローコストで優れたツールとして活用いただけます。

▲ビル・避難シミュレーション

▲飛行機事故・避難シミュレーション

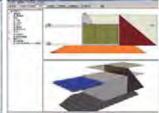

EXODUS/SMARTFIRE解析支援WEB見積サービス:

https://www2.forum8.co.jp/EXODUS_estimate/


- ・耐震・耐津波性能の強化/訓練環境等の充実強化・整備
- ・防波堤と防潮堤による多重防護などの津波対策
- ・漁港施設の地震・豪雨対策

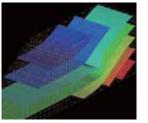
Engineer's Studio FEMLEEG **LIC-1** 港湾

港湾基準、漁港基準に準拠した港湾シリーズ。FEM地盤解析を利 用した性能設計への対応も予定しています。

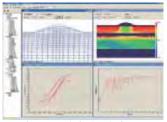

▲Engineer's Studio® 解析モデル例(左:RC配水池、右:桟橋)

▲防潮堤・護岸の設計計算 重力式、扶壁式、突形式に対応

▲直杭式横桟橋の設計計算 桟橋の性能照査解析をサポート



▲重力式係船岸の設計計算 滑動、転倒、支持力照査をサポート


・海岸堤防の整備、海岸保全施設の耐震・液状化対策

山厂-1 地盤解析/地盤改良

地震による液状化の影響(地中構造物の浮上り、液状化に伴う残留変位量の評価 等)や対策工の検討・設計、集中豪雨による地下水の上昇やそれに伴う地盤の安 定性の低下等の評価・対策、斜面の安定性の評価や対策工後の安定性向上の定 量的評価、基礎の支持力評価や3次元的対策工の検討・設計などが可能。

▲GeoFEAS Flow3D 等値面(浸透流解析)

▲地盤の動的有効応力解析(UWLC) 堤防の液状化時の検討

土質及び基礎、河川、砂防及び海岸・海洋

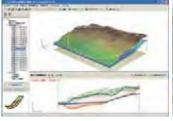
- ・地すべり対策や治山対策
- ・火山の噴火や深層崩壊などの土砂災害に備えた 施設整備
- ・ゲリラ豪雨対策としての河川と下水道の一体的な施設整備
- ・海岸の浸食対策、粘り強い海岸堤防の整備大規模な水害 発生時の減災対策

UC-win Road

3次元リアルタイムVR

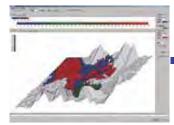
河川の改良、整備計画などは河川コマンド(流れ表示)やリフレクション機能が活用 できます。また、水位変化機能による「洪水」シミュレーションなど防災のためのプレ ゼンテーションの3次元災害表現が可能です。

▲河川シミュレーション



▲火と煙の表現

▲「岩屑なだれシミュレーション」 群馬大学 工学部建設工学科地盤工学専攻



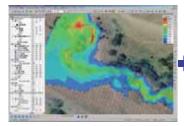
▲3次元地すべり斜面安定解析(LEM)3Dモデル出力とUC-win/Road読込

UC-win Road 土石流シミュレーション

土石流シミュレーションと解析結果を可視化するUC-win/Roadプラグイン 京都大学大学院農学研究科で開発された『土石流シミュレータ(Kanako)』をソル バーとした「UC-1土石流シミュレーション」と、解析用データの作成および解析結果 を可視化するための「UC-win/ Road 土石流プラグイン」を統合したシステム

▲土石流解析結果

▲UC-win/Roadによる解析結果の可視化


UC-win Road 津波プラグイン・オプション

市販の津波解析ソフトの結果などの可視化に対応した汎用プラグイン

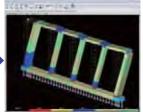
LIC-win Road for xpswmm

氾濫解析結果の動的3Dシミュレーション

xpswmm氾濫解析結果をインポートし、氾濫水面の上昇・下降の時刻歴変化、氾 濫水面の流速ベクトルの時刻歴変化、地中管路と管内水位の時刻歴変化を3次元 VR上で表現するプラグイン。

▲最大浸水域、浸水深アニメーション (xpswmm)

▲解析結果の津波シミュレーション


- ・排水機や排水樋門などの整備による農地の豪雨対策
- ・管路や配水池、浄水施設などの水道施設の耐震化
- ・下水道施設の耐震化 / ため池の地震・豪雨対策
- ・津波被害リスクが高い河川堤防のかさ上げや耐震・液状化対策

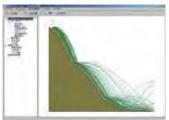
UC-1水エシリーズでは、各種基準に準拠した上水道、下水道、河川

▲配水池の耐震設計計算 2池併設タイプのRC構造に対応

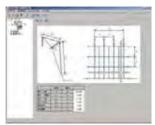
▲Engineer's Studio® 解析モデル例(配水池)

▲RC特殊堤の設計計算 RC擁壁式の2次元1体解析

▲管網の設計 複数地区での解析可能


▲柔構造樋門の設計 本体縱方向、門柱、胸壁、翼壁、 しゃ水工をサポート

・史跡、名勝や天然記念物に対する地盤の崩落防止措置


山厂-1 地盤解析/地盤改良

落石シミュレーション

「落石対策便覧に関する参考資料ー落石シミュレーション手法の調査研究資料 一」の中で紹介されている質点系シミュレーション手法に基づき、斜面を落下する落 石運動の軌道予測と統計解析を行う数値シミュレーションプログラム。

▲落石シミュレーション

▲落石対策工の設計計算

・ダムの建設などの治水対策

・非破壊検査技術やロボット技術など新技術を活用したインフラの維持管理・更新

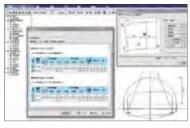
UC-win Road

3次元リアルタイムVR

トンネル空間の照明の色と強さを設定。トンネルに入る交通車両、道路の附属物に 適用。造成や架設、仮設計画などでの3次元施工計画シミュレーションも可能。

▲ダム

橋梁付替えにおける施工工程および ▲「鉄道桁単線区間における 施工VRシミュレーション計画」 株式会社創造技術 第13回 3D・VRシミュレーションコンテスト



架設工法の提案」 株式会社 ノダエンジニアリング 第12回 3D・VRシミュレーションコンテスト エンジニアリング賞

LJC-1 道路土工

トンネル断面算定

「設計要領 第三集 トンネル編」を主 たる適用基準としており、NATMトンネ ルの設計業務において幾何学的要素 で決定される項目の計算を支援する プログラム。建築限界座標計算、内空 断面トライアル、決定断面計算、本坑 数量計算が可能。

▲トンネル断面算定

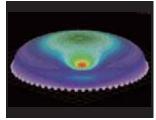
ロボット分野開発技術

RoboCar®の連携により、カメラ画像や超音波センサの情報を元に運転操作を車 が自動で行うシステムや、危険区域等の遠隔監視・確認作業に活用できる、マイクロ コプターをカスタマイズした自動飛行モニタリングシステムなどを提供。

▲マイクロ無人航空機(Drone) スキャニングシステム(MAPs)

▲VRと連携したスケールカーによる 自律走行システム(Lilv Car)

・木材の積極的な利用と森林の適正な整備

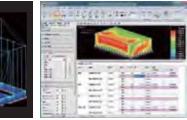

アカウンタビリティ賞

・水力エネルギーの有効活用や小水力発電の推進

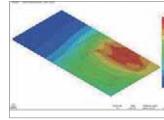
Engineer's Studio

FEMLEEG

総合有限要素法解析システム。定常熱伝導解析、非定常熱伝導解析、伝熱・熱応力連 動解析などが可能です。各種解析支援サービスを提供しています。

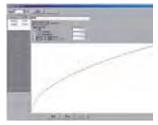


▲平板要素のコンタ図



▲鉄塔モデル ▲木造軸組モデル

▲グループ単位でのコンタ図

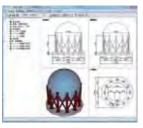

▲発熱体の非定常熱伝導解析

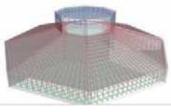
- ・インフラ維持管理など技術者の確保・育成体制
- ・コンビナート災害の発生・拡大の防止(高圧ガス設備の耐震基準見直し、津波対策)

【【【一】維持管理・地震リスク

コンクリートの維持管理支援ツール(ひび割れ調査編) ひび割れの原因推定、補修要否判定、工法選定プログラム

コンクリートの維持管理支援ツール(維持管理編) コンクリート構造物の劣化過程判定、劣化進行予測プログラム


▲入力画面(回帰分析ツール)


▲「電子国土」による設定

【」【−1 基礎エ・建築/プラント

高圧ガス設備等耐震設計指針を参考としたプラント基礎の設計・図面作成プログ ラム。高圧ガス設備等耐震設計指針を参考に、塔類(スカート支持)、塔類(レグ支 持)、球形貯槽、横置円筒形貯槽(地中梁無しモデルも可)、平底円筒形貯槽の5つ の耐震設計設備をサポート。3D配筋に対応。

▲メイン画面

▲3D配筋

- ・ハザードマップの統合化、防災アセスメントの実施、 3次元地理空間情報の活用
- ・三 次 元 精 密 標 高 デ ー タとリアル タイム 情 報 の <u>重ね合わせできる電子防災情報</u>システム
- ・医療施設の耐震化、南海トラフ巨大地震における浸水予想
- ・災害情報伝達、情報提供手段の多様化のための地理空間
- ・情報の高度利活用測量、ロボット施工、津波予報等に 貢献するGNSS観測システム

UC-win Road

3次元リアルタイムVR

3次元GIS・災害シミュレーションシステム

UC-win/Road for GISの活用により、GIS標準ファイルShapeファイルを3次元都市、道路としてインポート可能です。洪水・避難・津波・建築計画などのGISと連携した3Dシミュレーションが行えます。

▲道路損傷情報システム

▲GISと連携した3Dシミュレーション

各種VRシミュレーションテム

3次元地理空間情報の活用により、災害や施工などさまざまなVRシミュレーションが行えます。3次元ハザードマップ等への利用も可能。

▲災害・防災シミュレーション

▲施エシミュレーション

UC-win Road GISプラグイン

道路CAD、GISソフト、各種3次元CADソフトからデータをインポートして、3次元GISシステムを構築します。

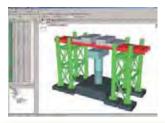
UC-win Road 医療VR

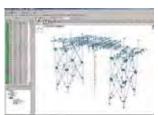
3DVRを用いた病院・医療現場で活用できるソリューション提案 これまでに培った土木・建築・解析のノウハウに基づく3D・VRの技術を用いて、これらの課題を解決するソリューションを提供していきます。今後、病院や医療現場に関わるさまざまな方々が活用可能な、VRを用いたソリューションを提案します。

▲病院の外観の構造等の検討

▲病院内イメージ検討・確認

海洋津波解析サービス


東北大学 今村文彦教授 提供の津波解 析ソルバーを使用し、主に南海トラフの 巨大地震による津波を想定したシミュ レーションを行うサービス



▲解析可能範囲

·E - ディフェンス震動実験研究等による長時間・長周期地震動に対する構造安全性確保

Engineer's Studio® 実大三次元震動破壊実験施設(E-ディフェンス)を用いた橋梁耐震実験研究実行部会 解析WGにてEngineer's Studio® およびUC-win/FRAME(3D)を用いて実験挙動シミュレーションを実施。

破壊解析コンテスト優勝!

平成22年7月8日(独)防災科学技術研究所主催の「高じん性モルタルを用いた実大橋梁耐震実験の破壊解析ブラインド解析コンテスト」において、当社解析支援チームメンバーがEngineer's Studio®を用いて優勝致しました。

・BCP(緊急時企業存続計画又は事業継続計画)

·BCM(事業継続マネジメント)

【【【一】維持管理・地震リスク

BCP作成支援ツール

プロジェクトリスクの想定、災害時の社員の帰宅支援、BCP発動後の予定行動の表示などの機能を備え、BCPの作成をサポート。

BCP策定・BCMS構築支援サービス

(株)ヒルベット・ソリューション社(http://www.hillvet.co.jp/)と提携し、BCP作成支援ツールや道路損傷情報システムなどのITサービスも合わせてご提供。

BCP演習支援ツール

BCP(事業継続計画)作成のサポートツール。

ISMS構築支援サービス

ISMS(情報セキュリティシステム)の策定および提案をサポート

▲BCP作成支援ツール 地図上でスタッフを選択すると、 所属プロジェクトなどを確認可能。 プロジェクトや勤務先単位で切り替え可能。

▲地震シミュレーションサービス 地震による被害や影響のUC-win/Road シミュレーションデータ作成サービス

第1回 ナショナル・レジリエンス・デザインアワード

National Resilience Design Award

「表彰式 開催期日/開催場所:2014年11月21日 品川インターシティホール]

構造解析(土木・建築)から地盤工学、水工学、防災に至る分野を対象として国土強靭化をテーマとする優れた事例・成果を集 め、その取り組みを顕彰すると同時に、最新情報の提供と技術研鑽の貴重な機会となることを目指して2014年に創設。第1回の 各賞発表と表彰式は、「フォーラムエイトデザインフェスティバル2014」のプログラムの一環として開催されました。

審査員は、吉川弘道氏(審査委員長、東京都市大学災害軽減工学研究室教授)、鵜飼恵三氏(群馬大学大学院工学研究科名誉 教授/当社監査役)、守田優氏(芝浦工業大学工学部土木工学科都市環境工学研究室教授)が務め、エントリーから予選選考 を経て2014年10月にノミネート作品10点を選定、11月17日の最終審査で各賞決定に至りました。

ここでは、第1回の受賞ユーザ様への取材に基づき、受賞作品とコメントを掲載いたします。ぜひともご活用ください。

最終審査会の様子

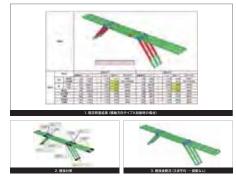
▲審査員の皆様

▲表彰式会場・品川インターシティホール

▲受賞者の皆様

Grand Prix

竣工40年を経過した鋼方杖ラーメン橋に対し、 新道路橋示方書を適用した耐震照査と補強検討


- 免震ダンパー、座屈拘束ブレース等 の中から効果面・経済面として最適工法の適用 -

東日設計コンサルタント株式会社

使用プログラム Engineer's Studio

受賞者コメント:「本橋は、リアス式海岸内の急峻な地形に架橋された鋼方 杖ラーメン橋です。鋼アーチ系の耐震補強は、ひずみ照査となりMーφモデルか ら逸脱するため補強工法が確立されていません。本橋は、昭和48年度の竣工 年度で材料ミニマムを図った橋梁であることから当板工法のような直接的な耐 力補強より、エネルギーの吸収を考慮した工法が最適と判断しました。粘性ダン パーや座屈拘束ブレースを採用した鋼橋の動的解析では、減衰やファイバー要 素によるモデル化が必要となることから「FORUM8のEngineer's Studio®」を 選定しました。FORUM8の解析サポートは、依頼者と同レベルで解析方法の検 討やアドバイスを頂きました。本橋の解析では、免制震デバイスの採用により橋 軸方向は、期待した結果となりましたが、直角方向は耐力不足となったため、対 傾構や横構、横桁の増設を検討しました。解析サポートの担当者には、適切な 横桁の効果と配置を検証して頂き感謝しています。」

Excellent Award

橋軸直角方向加震時における

座屈拘束ブレースの設置効果検討

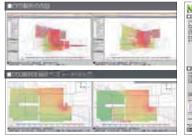
- 桁橋に対する制震ダンパーを用いた補強対策の一提案 -

株式会社横河住金ブリッジ

使用プログラム Engineer's Studio

受賞者コメント:「このたびは栄えある優秀賞を頂き誠にありがとうございました。出展作品は、連続桁橋の耐震性向上策として、SUB(座屈拘束ブレース)を橋台部にカップリング配置し、 その設置効果を現況解析との比較で示したものです。橋台部に設置する際、橋台の真ん中に固定柱を新設するので、段差防止、落橋防止構造を兼ね備えることができる合理的な補強工法 であると考えています。鋼橋のみならず、RC橋、PC橋にも容易に適用できる工法なので、この工法で国土強靭化を推進できればと思います。」

Honorable Judge Award


環境サスティナブル解析賞 吉川弘道氏(審査委員長)鵜飼恵三氏、守田優氏 N邸CFDシミュレーション(N project CFD simulation)

- 住宅設計におけるスマートな

熱・風環境流体解析による空調検討とBIM&VR連携 -

アトリエ・ドン

受賞者コメント:「対象は茨城県潮来市郊外に計画中の住宅である。特徴として、3重の入れ子状になっている。リビングを家の中心に配置し、周りに回廊、さらに外側に、各居室や水回り、 テラスを配置する計画である。回廊や各居室につながった、大きな吹抜空間であるリビングを中心にCFD解析を行った。解析結果から、エアコンの位置・容量、窓面や間仕切りの位置の設 計検討が行われ、快適で利便性の高い室内環境計画、省エネルギー化を実現した。」

Honorable Judge Award

アーチ橋における動的解析での耐震性能照査

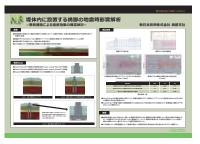
- 多点入力機能を利用した動的解析事例 -

日中コンサルタント株式会社 名古屋支店

使用プログラム Engineer's Studio

受賞者コメント:「この度は、第一回ナショナル・レジリエンス・デザインアワードにおきまして、ノミネート賞・耐震性能賞を頂き、誠にありがとうございました。関係者の皆様に心よりお礼申し 上げます。弊社が発表しました「アーチ橋における動的解析での耐震性能照査」は、Engineer's Studio®の多点入力機能を使用し、より現実的な構造物の設計・解析を可能にしたいという 試みからスタートしました。まだまだ研究途中ではありますが、今後も大規模地震への備えとして、耐震化率向上に少しでも貢献できるよう、社員一同邁進して行きたいと思います。」

Honorable Judge Award


地盤工法アセスメント賞 鵜飼恵三氏 群馬大学大学院工学研究科名誉教授 堤体内に設置する橋脚の地震時影響解析

- 鞘管構造による遮蔽効果の確認検討 -

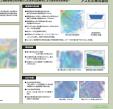
新日本技研株式会社 西部支社

使用プログラム 動的有効応力解析(UWLC)

解析対象地域は、神奈川県伊勢原市鈴川の中語(環境美化センター付近)から下流方向へ、小田急線を経って4回川と探いするがにまった部分と、「下原寺鈴が公・東西南北に約3km原方)

受賞者コメント:「地盤解析は、私自身これまで携わった業務の中でも、あまりなじみが無く、初めての経験でした。橋の構造解析とは異なるものの、地震を対象とした構造物の性能評価 という面では何か通ずるものを感じたとともに、地盤解析に関する新たな知見が得られたものと思っております。この度の受賞は、ひとえに、ご協力いただいた皆様のおかげと思っておりま す。この場をお借りして御礼申し上げます。」

解析対象地域


Honorable Judge Award

洪水リスクマネジメント賞 守田優氏 芝浦工業大学工学部土木工学科 都市環境工学研究室 教授 河川堤防の決壊を考慮した工場敷地氾濫解析

- 降雨による河川増水時の堤防決壊を想定し工場敷地周辺を 対象とした浸水氾濫解析により浸水状況を把握 -

アズビル株式会社

使用プログラム XDSWMM

受賞者コメント:「この度は、第一回ナショナル・レジリエンス・デザインアワードにおきまして「審査員特別賞 洪水リスクマネジメント賞」を頂き、誠にありがとうございました。関係者の皆様に心 よりお礼申し上げます。弊社が発表しました「河川堤防の決壊を考慮した工場敷地氾濫解析」の結果を踏まえて、当社工場のBCP対策に活用しています。今後もリスク管理の行き届いた経営を目 指し、お客様の期待に応え、社会的責任を果たすことにより地域・社会に貢献してまいります。」

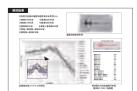
Nomination Award

防潮樋門の耐震性能照査

- 地震時保有水平耐力法と 動的解析手法との比較検討事例 -

株式会社RATECH

使用プログラム Engineer's Studio


UWLCを用いた地盤応答解析 における影響検討

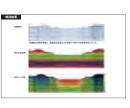
中央防災会議の加速度波形を 使用した設計水平震度算定事例 -

若鈴コンサルタンツ株式会社

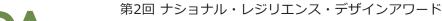
使用プログラム 動的有効応力解析(UWLC)

液状化を考慮した河川堤防の 地震時変形解析

- 樋門承休の耐雲性能昭杏を 目的とした自重沈下量計算 -


九州工営株式会社

使用プログラム 2次元弾塑性解析(GeoFEAS 2D)


大断面ボックスカルバート における斜角の影響検討

FEMLEEGを使用したFEM解析事例 -昭和コンクリート工業株式会社

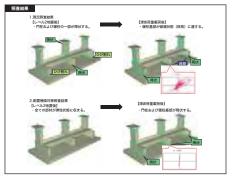
National Resilience Design Award

[表彰式 開催期日/開催場所:2015年11月20日 品川インターシティホール]

▲審査員の皆様

▲表彰式会場:品川インターシティホール ▲受賞者の皆様

Grand Prix

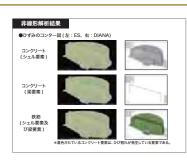

レベル2地震動および津波荷重を考慮した耐震性能照査 - 防潮水門に対する地震動と津波の一連解析 -

株式会社RATECH

使用プログラム Engineer's Studio

既設防潮樋門に対して、レベル2地震動および津波荷重を考慮した耐震性能照査を Engineers Studio®により実施した。L2地震動により変形(損傷)した状態で津波が来襲した 場合の耐震性能照査を検証することを目的とする。ここでは、道路橋示方書に示されたL2-1波 形と想定津波高から作成した津波の波形データを外力として、動的解析を実施した。また、現 況と耐震補強対策後の検討結果を比較し、対策効果を検証した。

Excellent Award


国土強靭化に資するための下水道施設 の合理的な耐震補強設計手法

- 汚泥濃縮タンクの非線形有限要素解析 -

株式会社エーバイシー

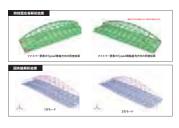
使用プログラム Engineer's Studio

従来、下水道分野における耐震補強設計は、構造物特性 係数Csを考慮した線形解析により行われてきた。しかし、 このような線形解析による照査では、補強箇所が多くな り、経済性との関係で補強工事ができない事例も見受け られるようになった。本稿では、このような背景を踏ま え、下水道施設のハード対策としての「耐震補強設計」に 着目し、国土強靭化に資するための下水道施設の合理的 な耐震補強設計について述べる。

構造物特性係数(Cs)を 考慮し、レベル2地震時 満水ケースに対して、限 界状態設計法による耐震 性の照査を行った。

・以上より、線形解析によ る照査では所要の耐震性 を満足しておらず、補強 が必要との判定であった。

Honorable Judge Award


Seismic Resilience Design Award

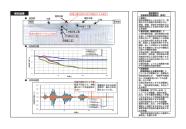
吉川 弘道 氏(審査委員長) 東京都市大学 災害軽減工学研究室 教授 昭和28年供用の鋼ランガートラス橋の 複合非線形解析による現況照査

- 最適な補修・補強方法を経済的かつ 合理的に選定することを目指して -

株式会社土木技研

使用プログラム Engineer's Studio

Coastal Resilience Award


积码 心二 穴 群馬大学大学院工学研究科 名誉教授 海岸干拓堤防の

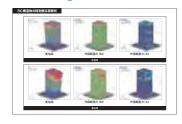
動的有効応力解析耐震照査

- 海成軟弱土層の地震時剛性低下を考慮して -

株式会社三祐コンサルタンツ

使用プログラム 動的有効応力解析(UWLC)

Integrated Design Award

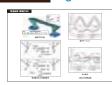

守田 優 氏 芝浦工業大学工学部副学長 土木工学科 都市環境工学研究室 教授

RC水槽構造物FEM解析

液状化を考慮したレベル2地震動を用いた 3次元平板要素モデル時刻歴応答解析事例 株式会社ブルドジオテクノ

使用プログラム 動的有効応力解析(UWLC)

Engineer's Studio


Nomination Award

地震時の挙動が複雑な 型ラーメン における動的耐震性能照査

> 斜材を有する3径間連続 PC中空ラーメン橋に対する レベル2動的非線形解析照査・

株式会社ナビ設計

使用プログラム Engineer's Studio

台付管における 構造検討モデルの 妥当性検討

> 円形複合形状に対する 梁 - バネモデル適用に関する 妥当性の検証 -

> > アーボ株式会社

使用プログラム Engineer's Studio

鋼上路式アーチ橋の 耐震性能照査と 補強対策に対する検討

動的解析による全体系としての 耐震性能の検証と効果的な 補強対策方法を提案 -若鈴コンサルタンツ株式会社

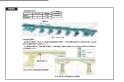
使用プログラム **Engineer's Studi**o

銀子一年日にいては、「ウザル市会内」 ・ 京都市区 ・ 京都市区、大学市区大いで開発されたご開発的大力的も6年の開発が ・ 京都市区、大学市区大いで開発されたが ・ 京都市の開発、「新田市会社」 ・ 京都市(開発している社) ・ 新田舎会立(くれる。) ・ 京都市(開発したの業) ・ 新田舎会立(くれる。)

静的載荷試験による PC単純T桁橋の荷重改善と 補修・補強について 損傷を受けている橋梁

における不具合構造特性と その改善策の提案 -九州テクノリサーチ株式会社

使用プログラム PC単純桁の設計



橋梁形式が混在する橋梁に 対する新道路橋示方書(H24) を適用した耐震性能照査

3径間連続RCラーメンT桁橋 および6径間連続RC開腹 アーチ橋の動的解析事例

株式会社修成建設コンサルタント

使用プログラム **Engineer's Studi**o

DesignFestival 2015特別講演レポート(設計解析セッション / CIMセッション)

そうだったのか!!「国土強靭化と地域創生は車の両輪」 ~国土強靱化の様々な施策と地方版強靭化計画を解説~

元初代国土強靱化担当大臣 衆議院議員 古屋 圭司 氏まず、「国土強靭化」の考え方や地域による対応のあり方を概説。その上で「国土強靭化基本計画」において設定された12の個別施策分野のうち、平時と有事共に威力を発揮する具体策として明記されたメタンハイドレート、リニア中央新幹線およびCLT(直交集成板)について概説。さらに国土強靭化に向けた具体例として、

- 1.平時と有事の両用設計(街角情報ステーション、津波避難シェルター、 命を守る防風林および海からの災害医療の提供)
- 2.全国の道路、橋梁および港湾の総点検
- 3.国際競争力の強化による日本経済の強靭化
- 4.民間の参画による国土強靭化施策
- 5.森林資源の活用による国土の強靭化(CLT関連施策を中心とする)
- 6.企業の本社機能の地方移転促進

といった項目を挙げ、それらの狙いや意図、関連施策などについて説明 しました。

メンテナンスからの情報が構造物の長寿命化を可能とする

ジェイアール東日本コンサルタンツ 取締役会長、東日本旅客鉄道(株)顧問、早稲田大学客員教授 石橋 忠良 氏

明治時代以降に建設され、今日なお使われているJR在来線の鉄道橋やトンネルなど複数の鉄道構造物を列挙。それらの経年と、時代を反映して使われている鋼材やレンガ、コンクリートなど各種材料に触れながら、変状の原因はそれらよりもむしろ施工時の管理や建設時の技術的な問題が大きいとの見方を提示。それを受けて、検査に関する基準の変遷に触れます。その上で、近年問題になっているコンクリート片の剥落に焦点を当てその原因、既設構造物への補修や新設構造物の品質向上策を整理。さらにアルカリ骨材反応、塩害、凍害などによる損傷と各種補修対策、地震災害と対策などに言及。これらを基に、1)維持管理におけるトラブルの情報から設計・施工の技術基準などを速やかに変更する必要、2)多くの変状構造物を扱い続けると見るだけで原因や対策が判断可能、3)建設年の施工方法や設計基準からその時代の欠点を想定可能 — と位置づけ。したがって、設計から維持管理までの情報の連携が構造物の長寿命化に重要と説きます。

VR技術を援用した走行型計測車両によるトンネルマネジメント

パシフィックコンサルタンツ株式会社事業統括本部 品質・技術統括センター 技師長 主席研究員 安田 亨氏

初めにICT(情報通信技術)とそれによるインフラ維持管理の現状を概説。次いで、山岳トンネルを例にトンネル施工法の歴史的変遷に触れた後、トンネルの各種変状現象を例示する一方、トンネル維持管理における課題を踏まえ、効率的な点検手法へのニーズを述べます。その上で、そうした背景から開発された走行型計測技術(MIMM-R)の概念や開発の経緯を紹介。さらにMIMM-Rの、1)高精度な地形測量、2)トンネルレーザ計測と変形解析、3)トンネル画像計測と損傷度評価、4)トンネルレーダ計測と空洞評価 — といった4つの計測機能について、実際の計測シーンの動画を交えて説明。これらを受け、トンネルマネジメントのプロセスにMIMM-Rに加えUC-win/Roadの3D・VRなど新技術を応用して開発した各種アセットマネジメント支援システム、それらの利用イメージとメリット、現状の課題を解説。色付き点群による3Dマッピング、それのCIMへの活用を含め今後求められる多様な維持管理技術にも言及しました。

UC-win/Roadをベースとした3次元CIM開発設計支援システム

株式会社竹中土木 生産本部 技術部長 平井 卓 氏

まず、表題のシステム開発に至った背景として、自身らが造成事業を多く手がける中で地盤や属性の変化を可視化できるCIMの効果に注目し、その具体化に向けて取り組んできた経緯を整理。依頼主との合意形成を図るためのツール構築を目指した狙いを述べます。次いで当社担当者が、その意図を反映して開発してきた同システムにおける、区画や盛土・切土の作成、区画や道路、変更前の地形状態との差などの土量計算について手順を追って解説。点群を地形パッチとして読み込み重ね合わせる改善機能、DWG/DXFファイルから道路断面や3Dモデルを読み込む機能、UC-win/Roadのモデルを道路や地形、レイヤに分類して描き出す機能にも言及。その上で、同システムを使って実際に区画を作成・編集する作業のデモを行いました。これを受けて平井氏は、CIMの将来像と同システムの活用も含む同社の今後のCIM展開について描きました。

事例から見るCIM&VR活用法

株式会社岩崎 企画調査部 企画開発グループ CIM・情報化施工チーム 課長代理 真柄 毅氏

ICTを活用する技術商社として情報化施工、CIMや3Dデータの活用などを支援する自社のプロフィールに触れた後、CIMの浸透状況やそのポイント、建設業界を取り巻く現状、ICTや CIMによる業務効率改善の要求などについて解説。その上で、事前に様々な危険を想定した交通規制の検討、交通シミュレーションを通じた夜間の交通規制の検討、ダンブカーによる土砂運搬のシミュレーションを通じた走行ルートに応じた交通への影響の検討、建設業界でのニーズを視野に作成したVRヒヤリマップ、数十kmに及ぶ大規模CIMデータの作成、CIMと情報化施工の連携、肥培かんがい施設整備事業へのCIM活用など、VRを活用したCIM事例をそこでのCIMデータの作り込みにおけるポイントと併せて紹介。さらに、AR(拡張現実)技術や没入型ヘッドマウントディスプレイ、3Dプリンタなど先進の技術を活用したCIM事例へと話を展開。今後のCIM対応、そこでの教育・トレーニングの重要性を説きました。

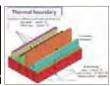
DesignFestival 2014特別講演レポート(設計解析セッション)

国土強靭化~ナショナルレジリエンス最前線~

京都大学大学院工学研究科都市社会工学専攻教授

地震や水害をはじめ多発する大規模自然災害、加えてインフラの老朽化 などへの対応が迫られる日本の現状と高度強靭化に向けた政策の意義 に触れた後、自身が第2次安倍内閣の内閣官房参与としてその策定を目 指した国土強靭化基本計画の2014年6月閣議決定に至るプロセスを整 理。同基本計画の意義と強靭化の考え方、とくにその中の「迅速な復旧 復興」の位置づけと防災減災ニューディールの考え方、そこでの政治の関 わりについて解説。その上で、各地域の多様性を再構築し、地域間の連 携を強化。併せて、災害に強い国土づくりを進めることで地域の活力を向 上。東京一極集中からの脱却を図り、「自律・分散・協調」型国土の形成に

繋げていく ― という国土強 靭化への視点の重要性を説 きます。さらに、その具体策の 一端として新幹線網拡充と 連携した地方創造の考え方 にも言及しました。



コンクリート構造物 建設工程シミュレータの開発

- 初期損傷下における保有耐荷力解析 -

名古屋大学名誉教授 社会基盤技術評価支援機構・中部専務理事 田辺忠顕氏

コンクリート構造物の初期びび割れやびび割れ幅の制御などに関連し、自身が顧問を務めるJCI(日本コン クリート工学会)マスコンクリートソフト作成委員会の取り組み、同委員会が初期損傷解析とその下での保有 耐荷カ解析の包括的なプラットフォームとして開発してきたプログラム「JCMAC3」と「JCMAC3-U」(半年内 にリリース予定)を紹介。そのベースとなる理論やコンクリート構造物のひび割れに関する様々な問題、それ らに対応した複数研究者による実験や解析などの事例を示しながら、現行のツールの有効性を解説。さら に、LECOM(JCMAC3-U)による垂井高架橋の耐荷力解析の例にも言及しました。

コンクリート橋における FEM解析の活用事例

耐震補強設計事例

株式会社ピーエス=菱東京十木支店 十木技術部設計グループ 花房禎三郎氏・横田剛氏・藤本謙太郎氏 株式会社サザンテック構造部部長 児玉 明裕 氏

● 数 **多 始出 全 FF**FF

第3回 ナショナル・レジリエンス・デザイン アワード

作品応募締切 2016年10月11日(火)

対象分野:構造解析(土木・建築)、地盤、水工

審査委員長: 吉川弘道氏(東京都市大学 災害軽減工学研究室 教授)

表彰式: 2016年11月18日(金)

FORUM8

Design Festival 2016-3Days+Eve

2016年11月15日(火)-18日(金) 品川インターシティホール (予定)

フォーラムエイトパブリッシング出版書籍

VRで学ぶ道路工学

道路工学の基礎的内容に加えICTやCIM の活用といった最先端の情報を含んだ 内容を、VRを利用した表現方法によって 紹介する新しいコンセプトの解説書。

- ■編著者: 稲垣 帝凰
- ((一社)道路・舗装技術研究協会 理事長)
- ■価格:¥3.800(税別)

行動、安全、文化、「BeSeCu」

~ 緊急時、災害時の人間行動と欧州文化相互調査~ 避難解析研究の世界的権威であるエド ウイン・ガリア氏編著書の日本語翻訳 版に増補して、専門家による避難行動 についての日本国内研究事例を紹介。

- ■編著者:エドウィン・R・ガリア
- (グリニッジ大学 火災安全工学 教授)
- ■価格:¥3,800(税別)

都市の洪水リスク解析

~ 減災からリスクマネジメントへ ~ 洪水リスクアセスメントの考え方につい て、その基本的な理論や手法から、マク ロ・ミクロ解析によるリスク評価への応用、 将来的な展望までをわかりやすく解説。

■著者: 守田優

(芝浦工業大学 工学部 土木工学科 教授)

■価格: ¥2.800(税別)

都市の地震防災 ~ 地震・耐震・津波・減災を学ぶ~

都市防災技術を網羅し、豊富な写真・図解でわかりやすく解説。地震 工学、耐震工学、津波工学、関連する都市防災など、初学者・エンジニ アを対象とした俯瞰的な教科書・手引書。

- ■編著者:吉川 弘道(東京都市大学 教授)
- ■著者 :矢代 晴実・福島 誠一郎・大峰 秀人 ■価格:¥3,000(税別)

新版 地盤FEM解析入門

地盤FEM解析に関する豊富な経験と研究実績に裏付けられた入門書。 基礎理論、モデリング技術を整理し、多様な実例について、FEM解析に よる問題解決のプロセスと結果をわかりやすく解説した技術者必携書。

■監修: 鵜飼 恵三(前日本地すべり学会会長、群馬大学教授)

■著者:蔡飛(群馬大学助教) ■価格:¥3,800(税別)

「津波、避難解析の最新知見を現代の津波防災にどう生かすか」

Up&Coming99号ユーザ紹介(2013.1)

スパコン「京」で津波解析に挑む今村教授と避難解析の権威、ガリア教授が未来を展望

東日本大震災の"1000年に1度"と言われる巨大津波による被害は、津波対策に対する考え方や認識を大きく変えつつあります。発生が 予想される津波の高さや浸水範囲については、スーパーコンピュータ「京」を使った精密な解析が行われつつあります。また、津波発生後 の人的被害を最小限に食い止めるためには、個人の情報認知や地域の生活文化、習慣に合った適切な警報の出し方や広範囲の避難 シミュレーションなどの研究が進められています。津波研究の第一人者である東北大学災害科学国際研究所副所長の今村文彦教授と、 避難研究の権威であるグリニッジ大学のエドウィン・R・ガリア教授が津波と避難の最新知見を基に、今後の展開について語りました。

本 計 TEL: 03-6894-1888 0120-1888-58(営業窓口) FAX: 03-6894-3888 Mail: f8tokvo@forum8.co.ip 京 TEL: 06-7711-3888 FAX: 06-7709-9888 Mail: f8osaka@forum8.co.jp 阪 支 社 名古屋ショール TEL: 052-688-6888 FAX: 052-688-7888 Mail: f8nagoya@forum8.co.jp ーム TEL: 092-289-1880 FAX: 092-289-1885 Mail: f8fuku@forum8.co.jp 仙台事務所 TEL: 022-208-5588 FAX: 022-208-5590 Mail: f8sendai@forum8.co.jp 札 幌 事 発 所 TEL: 011-806-1888 FAX: 011-806-1889 Mail: f8sapporo@forum8.co.jp

金 沢 事 務 所 TEL: 076-254-1888 FAX: 076-255-3888 Mail: f8kanazawa@forum8.co.jp

株式会社 フォーラムエイト

http://www.forum8.co.jp

本支 京阪 果大名福仙札金ヶ大阪を開きの日本の一、大阪を開きまり、大阪を開きまり、大阪を開きまり、大阪を開きまり、大阪を開きまり、大阪を開きまり、大阪を開いた。 〒108-6021 東京都港区港南2-15-1 〒550-0002 大阪市西区江戸堀1-9-1 〒450-0036 名古屋市中村区名駅1-1-4 品川インターシティA棟21F 末 新 市 西 区 江 戸 堀 1 - 9 - 1 肥 後橋 センタービル 2F 名古屋市中村区名駅 1 - 1 - 4 JRセントラル・タワーズ 36F 福岡市博多区博多駅南 1 - 10 - 4 第二博多偕成ビル 6F 仙台市青葉区一番町 1 - 9 - 1 仙台トラストタワー 6F 〒812-0016 〒980-0811 ■お問い合せは、弊社または下記代理店へどうぞ。

※製品名、社名は一般に各社の商標または登録商標です。仕様・価格などカタログ記載事項を予告なく変更する場合があります。価格は税別です