

UC-win/WCOMD Ver.2

Operation guidance 操作ガイダンス

株式会社フォーラムエイト

- 本書のご使用にあたって -

本操作ガイダンスは、おもに初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説 明したものです。

ご利用にあたっては、下記の点にご留意下さい。

・最新情報は、製品添付のHELPのバージョン情報をご利用下さい。 本書は、表紙に掲載時期の各種製品の最新バージョンにより、ご説明しています。 ご利用いただく際には最新バージョンでない場合もございます。ご了承下さい。

・お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、ご所有の本製品のインストール用CD-ROMなどから 「問い合わせ支援ツール」をインストールして戴き、製品画面上から、問い合わせ支援ツールを利用した簡単なお問 い合わせ方法をご利用下さい。環境などの理由でご使用いただくことが可能ではない場合には弊社、「サポート窓 ロ」へメール若しくはFAXにてお問い合わせ下さい。

なお、ホームページでは、最新バージョンのダウンロードサービス、Q&A集、ユーザ情報ページ、ソフトウェアライ センスのレンタルサービスなどのサービスを行っておりますので、合わせてご利用下さい。

ホームページ: http://www.forum8.co.jp サポート窓口: 電子メール ic@forum8.co.jp FAX: 0985-55-3027

・本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご承知置き下さい。

製品のご使用については、「使用権許諾契約書」が設けられています。

VIEWER版でのご使用については、「VIEWER版使用権許諾契約書」が設けられています。

Web認証(レンタルライセンス、フローティングライセンス)でのご使用については、「レンタルライセンス、フローティングライセンス版使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は、一般に各社の登録商標 または、商標です。

Copyright 株式会社フォーラムエイト

目次

第1章 製品概要	5
1 概要	5
2 プログラムの機能と特長	5
3 フローチャート	
第2章 操作ガイダンス(UC-win/MESH)	
1 モデル作成	
1-1 新規作成	
1-2 メッシュ作成	
1-3 使用モードおよび損傷基準の設定	
1-4 材料の編集	
1-5 要素の編集	
1-5-1 要素の削除	
1-5-2 節点座標の編集	
1-5-3 各要素の設定	
1-5-4 オーバーラッピング要素の定義	
1-5-5 ジョイント要素の定義	
1-5-6 断面の定義	
1-5-7 境界条件の定義	51
1-6 3次元表示	53
1-7 ファイル保存	53
1-8 UC-win/WCOMD ~	54
第3章 操作ガイダンス(UC-win/WCOMD)	
1 荷重条件の定義	
1-1 荷重タイプ	
1-2 静的荷重の定義	
1-3 荷重ファイル保存	
2 構造解析の実行	
3 結果の確認	
3-1 解析結果	
3-2 損傷結果(最大)	
3-3 断面結果	
3-4 節点結果	
4 報告書作成	
第4章 Q&A	
1 入力・適用範囲関連	
2 用語他	71
3 解析関連	
4 出力及び表示	75
5 その他	75

第1章 製品概要

1 概要

東京大学コンクリート研究室で開発された鉄筋コンクリート構造物の2次元非線形動的解析/静的解析の解 析プログラム WCOMD をフォーラムエイトが製品化。

WCOMD は、海外でも非常に高い評価を得ているコンクリートに関する数多くの実験と理論的検証結果に基づいた高精度の構成則を用いており、ひび割れを生じた様々な鉄筋コンクリート構造物の2次元非線形動的解析/静的解析を精度良く行うことができます。

解析結果では、構造物の安全性の評価やダメージレベルの検討ができ、より合理的で適切な鉄筋コンクリート構造物の設計を行うことが可能です。

Ver.2 より、鉄筋の座屈モデルと土の非排水状態のオプションが追加され、より詳細な解析が可能となりました。

解析モデル作成は、UC-win/MESHにより、トポロジカルなモデルの生成が可能です。

一般的な設計に使用する際に便利な Basic モードと研究に使用する際に研究成果等を反映できるよう Advanced モードを用意しています。

Basic モードでは、材料強度や鉄筋比に応じて、これまでの研究成果に基づいた適切な推奨値が内部で設定 されます。

Advanced モードでは、さらに詳細なデータ項目や値の設定ができるようになっています。

2 プログラムの機能と特長

■解析対象

以下の各要素から構成される構造物の解析が可能です。 地盤モデルを含むあらゆる RC 構造物の解析が可能といっても過言ではありません。

• RC Plate(RC 要素):

使用コンクリート、使用鉄筋、鉄筋比等で定義されます。この要素は分散ひびわれモデルとして取り扱います。 無筋コンクリートは鉄筋比がOの RC 要素として取り扱います。

• RC Joint(RC 接合要素):

断面が激変するところに(耐震壁とフレーム、脚柱とフーチングなど)に設ける要素で、鉄筋比、鉄筋径、鉄筋 定着長等で定義されます。

Soil(地盤要素):
 地盤を定義する要素で、せん断弾性波速度、せん断剛性、せん断強さ等で定義されます。

• Universal Joint(境界要素):

異質の要素の境界(地盤とフーチングなど)に設ける要素で、せん断剛性、接触剛性等で定義されます。また、 弾性ゴム支承、地盤底面の粘性境界を表現することも出来ます。

• Elastic Plate(弾性要素):

線形挙動を示す要素です。ひびわれが生じない RC 部分等に適用することで無駄な計算を減らすことができ ます。

さらに、RC 断面における配筋の不均一さ(周囲は鉄筋が多く、中央部は少ない)や、杭と地盤、地盤の左右端の境界条件等を合理的にモデル化するために Overlapping 要素もサポートしています。

■解析内容(対象荷重)

WCOMD では以下の解析が可能です。

 非線形動的解析 非線形時刻歴応答解析を行います。地震加速度として水平方向の加速度のみならず、鉛直方向の加速度 を同時に作用させることができます。

2. 静的解析

自重および増分強制変位と増分荷重を与えた場合の解析を行います。増分強制変位、増分荷重の載荷パターンは

(1)Simple: 定義されたステップまで単調増加

(2)Cyclic: 定義されたステップまで単調増加し、原点まで単調減少

- (3) Reversal Cyclic: Cyclic+反転 Cyclic
- (4) Increasing Cyclic: Cyclic+2*Cyclic+3*Cyclic+…

(5) Reversal Increasing Cyclic: Rev.Cyclic+2* Rev.Cyclic+3* Rev.Cyclic+…

およびこれらの各載荷パターンにおいて荷重が衝撃的に載荷されるケース(時間間隔は、0.01 秒から 1000 秒までの間で設定できます)と合わせて計10パターンを用意しています。設計者はこれらの機能を適切に 利用することによりあらゆる載荷状態の解析を実行することができます。

これらの解析は同時に行うことが可能で、「自重」、「静的荷重」、「動的荷重」の順序で実行されます。した がって、鉛直土圧と水平土圧が作用している状態(ただし不変)を初期状態として地震波を入力して動的解 析をすることが可能です。

■解析結果

- 設定された破壊基準に基づいて破壊の判定を行います。全要素または全節点について各計算ステップに おいて以下のものが求められます。
 - o ひび割れ状態(ひび割れ方向に直交方向および平行方向のひずみ)
 - 平均応力度(X、Y方向の応力度、主応力度、偏差応力度、主応力の方向)
 - o 降伏応力度、応答変位、応答速度、応答加速度、反力、断面力

全てが画面で確認でき、全ての情報を保存することができますので、報告書の作成で自在に利用することができます。また、ひずみの大きさによって損傷の程度を評価することが可能です。Advanced モードでは判定のためのひずみを設計者が設定することができます。

さらに、各ステップ毎のひび割れの発生状況、変位の状況、応力状態などを動画で確認することができます。 静的解析結果の確認においては荷重状態を、動的解析結果の確認においては入力波形を同時に表示しま すので応答状況を的確に把握することができます。動画のスピードや変位の倍率は選択することが可能で す。

■MESH の特長

MESH は、要素の幾何学形状だけでなく解析に必要な要素の特性、境界条件等を容易に定義することができ、そのまま WCOMD の解析に適用できます。

MESHでは要素の削除、要素の再分割、節点の移動、一括定義、一括削除等の機能がサポートされており、 解析モデルを短時間に作成することができます。画面上で全ての編集を行いますので、構造モデルの形状を 確認しながら作業ができます。正しい構造モデルが作成できたか否かを3次元で確認できます。また前述の ように Basic モード入力を用意していますので、通常の RC 構造物の解析モデル作成は一層簡単です。 MESH では先に述べた要素の基になる材料(Concrete、Steel、Rc Joint、Universal Joint、Soil、Elastic)を合 計で61種類まで定義できるようになっています。また、複数の地盤材料が使用されている場合、自動的に色 分けされて表示されます。

■ヘルプ、サンプルの充実

 日本語と英語の両言語でプログラムの操作法だけではなく、本プログラムに関係のある専門用語や Basic モードにおける推奨値の根拠等についても詳しく解説しています。したがって、Advanced モードで使用する際 に参照することで適切な値を設定することができます。WCOMD に関する論文名も記載しています。また、理 解を深めるために現在5つの計算例を提供しています。

■RC 下部工の設計計算との連動で、一連の性能照査が可能

RC下部工の設計計算で作成された単柱橋脚、及びラーメン橋脚のメッシュデータをインポートすることができます。連動するデータは、形状・材質・鉄筋配置・鉄筋量・地層データ等です。単柱橋脚の場合は橋軸及び橋軸直角の両方向モデルのメッシュを自動生成します。ラーメン橋脚の場合は橋軸直角方向のみです。
 RC下部工の設計計算で作成されたデータが杭基礎であれば、杭及び地層データも生成します。この機能を利用することにより、保耐法から動的解析までの性能照査を一連で行うことができます。

■地震加速度波形

神戸、開北、板島をはじめいくつかの強震波形を用意しています。また、WCOMDでの指定フォーマットをヘルプに記載していますので、設計者が有している強震波形でも指定されたフォーマットに変換することで、利用することが可能です。これらの強震波形は倍率を乗じたり適用範囲を設定でき、編集後の波形を登録して利用することができます。また、加速度波形を作成するための関数をいくつか用意していますので、シンプルな加速度波形に対して構造物がどのように応答するかを確認でき、教育用としても大いに活用できます。

■性能照査について

「性能照査型」の設計が設計の標準になりつつあります。破壊基準や損傷の程度を評価する基準を構造物の形式 や周囲の環境を考慮して適切に設定することで、当該構造物が求められている性能を満足しているか否かの判定 ができるようになっています。

また、載荷パターンや強震波形の計算範囲を適切に設定することで残留ひずみ、残留変位を求めることができます。

第2章 操作ガイダンス(UC-win/MESH)

1 モデル作成

サンプルデータ「Buckling(s6)」を例として作成します。

このサンプルモデルは、鉄筋座屈の影響を示すものです。座屈長を 50cmと仮定して、柱基部のメッシュ2段の主鉄筋に設定されています。

各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 新規作成

(1)新規にプロジェクトを作成します。

I	UC-win	/Mesh Ver.2	(Project mode	.)	-	□ ×
ファイル(<u>E</u>) 編集(<u>E</u>) 表示(⊻) オプシ	a>(<u>O</u>) ∧⊮7°(<u>H</u>)					
🕞 🕒 🗽 🔳 🗙 30 🚵 Č		1 C		HE SE	節点サイス': 2	
SAMPLEDATA						
No Selection						.a

1-2 メッシュ作成

新規にメッシュを作成します。

	新規メッシュ	1	? ×
言羊糸田	要	素	
名前: Buckling	((\$6) 横	方向要素数 7	
要素厚の初期値 (cm):	90 K Č	方向要素数 1	2
要素%/7° RC	▼ 要	素幅 (cm): 1	5.8
傾き (度):	0 🔶 要	素高 (cm):	0
		確定	取消

I	UC-win/Mesh Ver.2 (Mesh mode.) – 🗆 🗙
ファイル(<u>E)</u> 編集(<u>E</u>) 表示(⊻)	オプション(<u>O</u>) ∧ルプ(<u>H</u>)
😂 🖬 🔚 🗙 3D 🛔	
-SAMPLEDATA Buckling(s6)	
A 50 10 10 10	* * * * * * * * * * * * * * * * * * *
Buckling(s6)	

1-3 使用モードおよび損傷基準の設定

使用モードおよび損傷基準の設定を行います。 「編集」-「メッシュ設定」

	xyシュ設定 ×
6	アドハンスモート設定
ſ	損傷基準 - 破壊
	最大引張歪み(ひび割れに垂直) & (%): 10
	最大圧縮歪み(ひび割れに平行) & (%): 10
	最大せん断歪み(ひび割れに平行) & (%): 10
	重度の損傷 α: (ε _c ' = α.speak) 1.5
	軽微な損傷 & (%): 0.1
	確定 取消

1-4 材料の編集

材料の編集を行います。「編集」-「材料」

弾性安系			
材料の編	集 ×	弾性要素 Elastic1	
Elastic 1 ✓ 名称変更 弾性要素 ホアソン比 v: 単位重量 γ (KN/m ³): ヤンウィ系数 E (KN/mm ²):	₹	ポアソン比:0.3 単位重量:25 ヤング係数:200	
確定取消新規	見 肖明余 ヘルフ°		

アドバンスモード設定 チェックを入れる

アドバンスドモードでは破壊基準の値を 0.5 から 10(%)の範囲で変更することができます。入力値 は正で単位は(%)でなければなりません。重度の 損傷の基準 のおよび軽微な損傷の基準 a も変 更することができます。前者の許容範囲は 0.01 ~3.0(%)で、後者のそれは 0.05~0.8(%)です。軽 微な損傷の基準 を設定する場合には限界ひび 割れ幅(ω)と鉄筋間隔(s)を参照するのがいいで しょう。(cf: $\varepsilon \omega/s$) 例えば海岸に近い構造物の 限界ひび割れ幅は厳しくなります。

破壊基準

演算の限界の参考にします。要素内のひずみ がこれらのひずみに達したとき、破壊したもの と判断し演算を終了します。

破壊:すべて10 重度の損傷:1.5 軽微な損傷:0.1

※ここでは、演算の限界まで計算させるために、 破壊基準をすべて10%にします。

コンクリート要素		
材料の編集	ŧ ×	コンクリート要素 Concrete Plate1
Concrete Plate 1 ✓ 名称変更 コン/ソート要素 圧縮強度 f _c ' (N/mm ²): 引張強度 f _t (N/mm ²): 単位重量 x (KN/m ³):	26.900 V 2.520	圧縮強度:26.9 引張強度:2.52 単位重量:23 圧縮ピーク歪み:0.22 ひび割れ-せん断伝達係数:1
- 「二里」 ((((()))) 圧縮ピーク歪み apeak (%): ひび割れーせん断伝達係数:	0.220	
確定取消新規	削除 ^ルフ°	

コンクリート要素

新規材料	材料の編集	×
材料の種類	Concrete Plate 2 v 名称変更	
 ヨン/ツート要素 C ROジョイント 	コン別ート要素	
○弾性亜素 ○ プバーサルシネークル	圧縮強度 f _o ' (N/mm ²): 25.900	~
	515長速度 T _t (N/mm ⁴): 2.26	
○地盤要素 ○鋼材要素	単位重量 Y (KN/m ³): 23.000	
確定取消	圧縮ピーウ歪み apeak (%): 0.221	
	ひび割れーせん断伝達係数: 1	
コンクリート要素 Concrete Plate2 「新規」-「新規材料」		
コンクリート要素をチェック		
「材料の編集」		
圧縮強度:25.9		
51	· · · · · · · · · · · · · · · · · · ·	<u>^//</u> ,7*
・ ―― 圧縮ピーク歪み:0.221 ひび割れ-せん断伝達係数:1		

鋼材要素		
新規材料	材料の編集	>
材料の種類	Steel Plate 1 V 名称変更	
	ヤンケY系数 E (KN/mm ²): 161	
○弾性要素 ○ ユニハーサルショイント	降伏強度 f _v (N/mm ²): 368	
	単位重量 γ (KN/m ³): 77.000	
○地盤要素 ● 鋼材要素	座屈モデル: 座屈なし	~
確定取消	鉄筋径によって正規化された座屈長: 0.000	
	要素長によって正規化された座屈長: 1.000	
コンクリート要素 Steel Plate 1 「新規」-「新規材料」 鋼材要素をチェック 「材料の編集」		
ヤング係数:161 降伏強度:368	確定 取消 新規 削除	vµ7°

新	新規材料				
材料の種類					
○コン夘ート要素	⊖ RC୬′∎イント				
○弾性要素	○ ユニバーサルショイント				
○地盤要素	● 鋼材要素				
E	確定取消				
コンクリート要素 Steel Plate 2 「新規」-「新規材料」					
コンクリート要素 「新規」-「新規材料	Steel Plate 2 ¥J				
コンクリート要素 「新規」-「新規材料 鋼材要素をチェ	Steel Plate 2 計 ック				
コンクリート要素 「新規」-「新規材料 鋼材要素をチェ 「材料の編集」	Steel Plate 2 \$」 ック				

座屈モデル:座屈なし

単位重量:77 座屈モデル:座屈なし

ヤンケ係数 E (KN/mm ²): 降伏強度 f _v (N/mm ²):	153.000	
単位 <u>重</u> 量 γ (KN/m ³):	77.000	
座屈モデル:	座屈なし	
鉄筋径によって正規化された座屈	長: 0.000	
要素長によって正規化された座屈	長: 1.000	

鋼材要素をチェック

ヤング係数:161 降伏強度:368 単位重量:77

座屈モデル:座屈長の入力 鉄筋径によって…:15.625 要素長によって…:2.5

「材料の編集」

材料の編集		x
Steel Plate 3 名称変更		
調付要素 ヤンゲ係数 E (KN/mm ²): 降伏強度 f _v (N/mm ²): 単位重量 γ (KN/m ³): 座屈モデル:	161.000 368.000 77.000 座屈長の入力 v	
鉄筋径によって正規化された座屈長 : 要素長によって正規化された座屈長 :	15.625 2.500	
確定取消新規	削除 へルフ	0

新	規材料	×
材料の種類		
○コンクリート要素	() RC≯	ነብንት
○弾性要素	אבב 🔿	℠Ⅎ⅌⅌ℷ℈℄ℷ℩
○地盤要素	◉鋼材	要素
	確定	取消

コンクリート要素 Steel Plate 4 「新規」-「新規材料」 鋼材要素をチェック 「材料の編集」 ヤング係数:161 降伏強度:368 単位重量:77 座屈モデル:座屈長の入力 鉄筋径によって…:15.625

要素長によって…: 1.667

	がわりに開発	
Steel Plate 4	名称変更	
ヤンゲ係数 E (KN/mm ²):		161.000
降伏強度 f _v (N/mm²):		368.000
単位 <u>重</u> 量 γ(KN/m ³):		77.000
座屈モデル:		座屈長の入力 🗸 🗸
鉄筋径によって正規化された	座屈長:	15.625
要素長によって正規化された	座屈長:	1.667
確定取消	新規	肖切除 へルフ ^o

++地 小妇住

×

RC ジョイント		
新規材料	材料の編集	×
材料の種類	RC Joint 1 🗸 🗸 名称変更	
 □ コンウリート要素 ● RCショイント 	RCジョイント コン切ートの圧縮強度 f_' (N/mm ²): 26.9	
○弾性要素 ○ ユニハシーサルショイント	コンゲートの引張強度 f _t (N/mm ²): 2.52	
	鉄筋のヤンゲ係数 E (KN/mm ²): 161	
	鉄筋の降伏強度 f _v (N/mm ²): 368	
確定 取消	閉じる時の剛性 (N/mm ² /mm): 205	
コンクリート要素 RC Joint 1 「新規」-「新規材料」		
RC ジョイントをチェック		
「材料の編集」		
コンクリートの圧縮強度:26.9 コンクリートの引張強度:2.52 鉄筋のヤング係数:161 鉄筋の際は強度:368	確定取消新規削除	^₩7°
閉じる時の剛性:205		

1-5 要素の編集

要素の編集を行います。

1-5-1 要素の削除

- 削除する柱部の要素を選択 します。
 CTRL キーを押しながらクリ ックすると、複数選択できま す。
 SHIFT キーを押しながら、ド ラッグすると、複数選択でき ます。
- DELETE キーもしくは、右ク リックから「要素の削除」を 選択します。

1-5-2 節点座標の編集

原点を変更

無し

取消

^ル7°

確定

高さを調整

^ル7°

確定

取消

^ル7°

下 無し

取消

確定

幅を調整

^ル7°

無し

取消

確定

 3 新規座標を入力します。 X:34.2 Y:-150
 ④ 影響範囲を選択して、確定します。 右

^ル7°

無し

取消

確定

3	新規座標を入力します。 X:135 Y:−150
4	影響範囲を選択して、確定します。 右

⑥ 梁四隅の座標編集

- 3 新規座標を入力します。
 X:145 Y:275
- ④ 影響範囲を選択して、確定します。無し

LC-win/Mesh Ver.2 (Mesh mode.) -	1 編集する節点選択します。
77fl/(E) 編集(E) 表示(⊻) オプション(Q) ヘルプ(出)	
🚰 🖟 🎟 💢 30 🥘 🤮 🎽 🏦 1 つ C 🔍 🔍 🔍 🕀 🔛 🗹 📰 節点サイズ: 2 🍚	112
	 2 右クリックから「節点の編 集」を選択します。 もしくは、編集する節点をダブル クリックします。
Buckling	

- 3 新規座標を入力します。
 X:145 Y:385
- ④ 影響範囲を選択して、確定します。無し

1-5-3 各要素の設定

	要素編集	③ 要素タイプ、要素厚、材料を選択しま
要素9/7° 〇 RC 〇 無筋	● 弾性要素 ○ 地盤要素	9。 要素タイプ:弾性要素 要素厚:90 材料:Elastic1
要索厚 (cm):	90.000	
村料	Elastic 1 V	
結果保存しない	□ 確定 取消 ^ルフ°	

2	
UC-win/Mesh Ver.2 (Mesh mode.) -	 編集する要素を選択しま す。 CTRL キーを押しながらクリ ックすると、複数選択できま す。 SHIFT キーを押しながら、ド ラッグすると、複数選択でき ます。 [編集]-「要素」もしくは、右 クリックから「要素の編集」 を選択します。
Duraning	

3	
Image: Control (Mesh Mer.2 (Mesh mode.)) - </th <th> 編集する要素を選択しま す。 CTRL キーを押しながらクリ ックすると、複数選択できま す。 SHIFT キーを押しながら、ド ラッグすると、複数選択でき ます。 [編集]-「要素」もしくは、右 クリックから「要素の編集」 を選択します。 </th>	 編集する要素を選択しま す。 CTRL キーを押しながらクリ ックすると、複数選択できま す。 SHIFT キーを押しながら、ド ラッグすると、複数選択でき ます。 [編集]-「要素」もしくは、右 クリックから「要素の編集」 を選択します。
Buckling	

	要素編集
要素%/フ° ● <u>RC</u> ○ 無筋	○ 弾性要素 ○ 地盤要素
要素厚 (cm):	31.600
コンツート材料: 鉄筋材料(X方向):	Concrete Plate 1
鉄筋材料(Y方向):	Steel Plate 1
鉄筋配置角(度): 鉄筋比 Px (%): 0.66	0.0000 Py (%): 5.46
有効鉄筋比 Pex (%): 0.66	Pey (%): 5.46
弓張硬化/軟化係数 Cx: 0.4000	Су: 0.4000
結果保存しない	
	確定 取消 ヘルフ [®]

	要素編集	×
要素タイフ° ● RC ○ 無筋	○弾性要素 ○地盤要	素
要素厚 (cm):	90.000	
コンクリート本材料料: ※4-255+4+91/>ナナナー)。	Concrete Plate 1	¥
获励村科(Y方向):	Steel Plate 4	*
鉄筋配置角(度): 鉄筋比 Px (%): 0.66	0.0000 Py (%): 5.59	
有効鉄筋比 Pex (%): 0.66	Pey (%): 5.59	
弓張硬化/軟化係数 Cx: 0.4000	Cy: 0.4000	
結果保存しない		
	確定 取消 へ	7°

Ī	要素編集	③ 要素タイプ、要素厚、材料を選択し
要素タイフ [°] ● RC ○無筋	○弾性要素 ○地盤要素	す。 要素タイプ:RC 要素厚:90
要索厚 (cm):	90.000	ムンジリート材料: Concrete Plate1 鉄筋材料(X): Steel Plate2 鉄筋材料(Y): Steel Plate3 鉄筋配置角:0
コンクリート材料	Concrete Plate 1 v	鉄筋比:0.66/5.59 有効鉄筋比:0.66/5.59
鉄筋材料(X方向): 鉄筋材料(Y方向):	Steel Plate 2 v Steel Plate 3 v	51張硬化/軟化係数:0.4/0.4
鉄筋配置角(度): 鉄筋比 Px (%): 0.66	0.0000 Py (%): 5.59	
有効鉄筋比 Pex (%): 0.66	Pey (%): 5.59	
弓 I張硬化/軟化係数 Cx: 0.4000	Cy: 0.4000	
結果保存しない		
	確定 取消 ヘルフ [*]	

i	要素編集	×
要素タイフ° ● RC ○ 無筋	○弾性要素 ○地盤要	素
要素厚 (cm):	240.000	
コンクリート材料:	Concrete Plate 2	¥
鉄筋材料(X方向): 鉄筋材料(Y方向):	Steel Plate 2 Steel Plate 1	× ×
鉄筋配置角(度): 鉄筋比 Px (%): 0.50	0.0000 Py (%): 0.50	
有効鉄筋比 Pex (%): 0.50	Pey (%): 05	
弓I張硬化/軟化係数 Cx: 0.4000	Су: 0.4000	
結果保存しない		
	確定 取消 い	7°

- 編集する要素を選択します。
 CTRL キーを押しながらクリックすると、複数選択できます。
 SHIFT キーを押しながら、ドラッグすると、複数選択できます。
- (編集)-「要素」もしくは、右 クリックから「要素の編集」 を選択します。

i I I	要素編集	×		
要素如7°				
● RC ○無筋	○弾性要素 ○地盤要素			
要索厚 (cm):	240.000			
コンクリート材料:	Concrete Plate 2	-		
鉄筋材料(X方向):	Steel Plate 2	~		
鉄筋材料(Y方向):	Steel Plate 1	•		
鉄筋配置角(度):	0.0000			
鉄筋比 Px (%): 0.50	Ру (%): 0.72			
有効鉄筋比				
Pex (%): 0.50	Pey (%): 0.72			
弓張硬化/軟化係数				
Cx: 0.4000	Су: 0.4000			
結果保存しない				
	確定 取消 ヘルフ *			

 ③ 要素タイプ、要素厚、材料を選択します。
 要素タイプ:RC 要素厚:240
 コンクリート材料:Concrete Plate2
 鉄筋材料(X):Steel Plate2
 鉄筋材料(Y):Steel Plate1
 鉄筋配置角:0
 鉄筋比:0.5/0.72
 有効鉄筋比:0.5./0.72
 引張硬化/軟化係数:0.4/0.4

不要な材料の削除

「編集」-「材料」

Soil1 と Steel 1 を削除します。

材料の編集			
Soil 1 名称変更			
基本	砂質粘性土(1.5 10 18.000 0.087 74.201		
確定取消新規	削除	ヘルフ°	

材料の編集		×
Steel 1 V 名称変更		
細材要素		
ヤンウ'(系数 E (KN/mm ²):	200.000	
降伏強度 f _v (N/mm²):	350.000	
単位 <u>重</u> 量 γ (KN/m ³):	77.000	
座屈モデル:	座屈なし	*
鉄筋径によって正規化された座屈長:	0.000	
要素長によって正規化された座屈長:	1.000	
確定取消新規	削除	^/₽7°

1-5-4 オーバーラッピング要素の定義

厚さ方向(奥行き方向)に2つの異なる材料要素を表すにはオーバーラッピング要素を用います。オーバーラッピング 要素の使用例としてRC要素と無筋コンクリート要素もしくはフーチングのRC要素と地盤要素などがあげられます。

要素編集			
要素外7° ● RC ○ 無筋	○弾性要素 ○地盤要素		
要素厚 (cm):	58.400		
コンクリート材料料	Concrete Plate 1 🗸 🗸		
鉄筋材料(X方向):	Steel Plate 2 🗸 🗸		
鉄筋材料(Y方向):	Steel Plate 1 🗸 🗸 🗸		
鉄筋配置角(度): 鉄筋比 Px (%): 0.66	0.0000 Py (%): 0.00		
有効鉄筋比 Pex (%): 0.66 Pey (%): 0.00			
弓 引張硬化/軟化係数 Cx: 0.4000	Су: 3.9000		
結果保存しない 確定 取消 ヘルフ [°]			

3	要素タイプ、要素厚、材料を選択しま
	す。
	要素タイプ:RC
	要素厚:58.4
	コンクリート材料:Concrete Plate1
	鉄筋材料(X):Steel Plate2
	鉄筋材料(Y):Steel Plate1
	鉄筋配置角:0
	鉄筋比:0.66/0
	有効鉄筋比:0.66/0
	引張硬化/軟化係数:0.4/3.9

2	
エ UC-win/Mesh Ver.2 - 新規.ucw (Mesh mode.) - ロ ×	① 編集する要素を選択しま
7ァイル(E) 編集(E) 表示(⊻) オプション(Ω) ヘルプ(出)	」 す。
	CTRL キーを押しながらクリ
	ックすると、複数選択できま す。 SHIFT キーを押しながら、ド ラッグすると、複数選択でき ます。 ② 右クリックから「オーバーラ ッピング要素の追加」を選 択します。
Buckling	

	要素編集
要素外72° ●第02 ○無筋	○ 弾性要素 ○ 地發要素
<u>要素厚 (cm)</u> :	58.400
コン夘ート材料: 鉄筋材料(X方向):	Concrete Plate 1 Steel Plate 2
鉄筋材料(Y方向): 鉄筋配置角(度): 鉄筋比 Px (%): 0.66	Steel Plate 1 0.0000 Py (%): 0.00
有効鉄筋比 Pex (%): 0.66	Pey (%): 0.00
弓張硬化/軟化係数 Cx: 0.4000	Су: 3.2000
結果保存しない	
	確定 取消 ヘルフ°

	要素編集	×
要素9/7° ● RC ○ 無筋	○弾性要素 ○地盤要	素
要素厚 (cm):	58.400	
コンクリート材料:	Concrete Plate 1	~
鉄筋材料(X方向): 鉄筋材料(Y方向):	Steel Plate 2 Steel Plate 1	~
鉄筋配置角(度): 鉄筋比	0.0000	
Px (%): 0.66	Ру (%): 0.00	
有効鉄筋比 Pex (%): 0.66	Pey (%): 0.00	
- 引張硬化/軟化係数 - Cx: 0.4000	Су: 2.6000	
結果保存しない		
	確定 取消 へ	/7°

1-5-5 ジョイント要素の定義

ジョイント要素は2つ以上の要素間のインターフェースです。ジョイント要素は接合面の断続的開口やずれを表現するために使われます。

I		UC-win/Mesh Ve	r.2 - 新規.ucw (Me	sh mode.)		- 🗆 🗙
ファイル(<u>E)</u> 編集(<u>E</u>)表示(⊻)	オプ [®] ション(<u>O</u>) ヘルプ(<u>H</u>)				
😂 🖬 🔚 🗶 3D 🕯	i 🚯 🖒	5 C 1 K	 . <u>.</u>	A 🖬 🖬 🛱 🦉	気サイス*: 2	
SAMPLEDATA SAMPLEDATAA SAMPLEDATAA SAMPLEDATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					1	
- 15 (2)	 ✓ -200 -1 	150 -100 -5	50 0	50 100	150 200	250 31
Buckling(s6)						

	ジョイント 編集 ×	⑥ ジョイントの情報を入力します。
ショイントタイフ [*]	○ コニハ ^ĸ -サル	ジョイントタイプ:RC 要素厚:90 RC 材料:RC Joint1 鉄筋径:32
要素厚 (cm):	90.000	鉄筋比:5.585 定着長:150
RC材料:	RC Joint 1 🗸 🗸	
鉄筋		
鉄筋径 (mm):	32 🗸	
鉄筋比 P(%):	5.585	
定着長 (cm):	150.0000	
	確定 取消 ^/レフ°	
I	UC-win/Mesh Ver.2 (Mesh mode.)	× ⑦ 左 2 番目と右 2 番目の二つ
ファイル(F) 編集(E) 表示(V) オプション(O)	▲15°(H) ■ 15 10 10 10 10 10 10 10 10 10 10 10 10 10	2 0ジョイントを選択して、右
SAMPLEDATA		クリック「ジョイントの編集」を 選択 ジョイントの情報を入

4.	SAMPLEDATA			╀╶╫ <u>╷</u> ╫╷╫╷╫ ┟╨╷┶╷╼╷╤╷╤╷		選択、ジョイントの情報を入
		ジョイント 編集 ×		* * * * *		カーキす
	· › ፡ ብントタイフ* ④ RC	<u>○ ユニハ⁶ーサル</u>				
	要索厚 (cm):	90.000			_	ショイントダイン:RC 要素厚:90 RC 材料:RC Joint1
	RC材料:	RC Joint 1		▐┞╧┿┛╚┞╧┿┛		鉄筋径:32
	鉄筋					鉄筋比:1.918
	鉄筋径 (mm):	32 🗸				定着長:150
	鉄筋比 P(%):	1.918		* * * * * *	×	
	定着長 (cm):	150				
		確定 取消 ヘルフ [*]				
		~	_			
		150 -100 -50		0 50 100	150 200	
Buc	ckling					

エ UC-win/Mesh Ver.2 - 新規.uc	cw (Mesh mode.) – 🗆 🗙	⑧ 真ん中のジョイントを選択し
	 	て、右クリック「ジョイントの
▲-S ジョクト編集 ジョクルhの*		編集」を選択、ショイントの 情報を入力します。
● RC ○ 22.パーサル		ジョイントタイプ:RC
要荣厚 (cm): 90.000 ×		要素厚:90
RC材料: RC Joint 1 v × x		RC M科:RC Joint I 鉄筋径:32 鉄筋比:0.817
鉄筋径 (mm): 32 ↓ 鉄筋比 P (%): 0.817		定着長:150
定着長 (cm): 150.0000		
確定 取消 小ル7°		
	50 100 150 200 D	
Buckling		

1-5-6 断面の定義

断面はさらに詳しい解析結果を得るためのメッシュの特別な領域です。ここで断面を定義すると UC-win/WCOMD の計算後、断面における軸方向力、せん断力、曲げモーメントが得られます。断面は座標と法線ベクトルで定義されます。UC-win/MESH では、断面が横切る全要素について自動的に計算しています。

	断面 編集	×	③断
断面 開始点		_	リクす
X:	45		
Y:	10.000		断
─法線方向ベウ	hu		
ΔΧ:	0.000		
<u>Δ</u> Υ:	20.000		
	確定取	消	

3	断面をダブルクリック、もしくは、右クリッ
	ク「断面の編集」にて、断面を編集しま
	す。

断面開始点 X:45 Y:10 法線方向ベクトル X:0 Y:20

1-5-7 境界条件の定義

メッシュデータ作成後、境界条件を正しく定義します。節点のXまたはY方向(あるいは両方向)の拘束はここで選択します。入力データは構造解析を行うに際し安定した構造系でなければなりません。

静的解析には、荷重制御として増分変位制御、増分荷重制御があります。

1 方向(XまたはY方向)において節点を拘束することで拘束方向に増分強制変位を与えることができ、逆に1方向(X またはY方向)に拘束を自由にした節点には増分荷重を与えることができます。

I		UC-1	win/Mesh Ve	r.2 (Mesh mod	e.)				- 🗆 🗙	
ファイル(F) 編集(E) 表示(V	/) オプション(0) NJ7°(H)						0	_	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9 C	લ્લ્ લ્	ШЦ	1 =	節点サイス:	2	T	
L HE Buckline	-100 0 100 200 300 4			節点の編集 要素群の分 ていい ・1010 ・						
		-300 -200	-100	0	100	20)0	300	400	
Buckling									.:	
		節点	気の編集				×	[境界条件	を定義します。
境界条件		節点	気の編集				×	[境界条件	を定義します。
境界条件		節点	<mark>気の編集</mark> _Y方向				×		境界条件 X方	- を定義します。 向: 拘束 コ・白巾
境界条件 X 方向 〇 自中		点 "	気の編集 Y 方向 ● 自日				×		境界条件 X 方I Y 方I	を定義します。 句: 拘束 句:自由
境界条件 X 方向 〇 自由		節点	気の編集 ● Y 方向 ● 自由	3			×		境界条件 X 方 Y 方	を定義します。 句: 拘束 句:自由
境界条件 X 方向 〇 自由 ● 拘束		節点	Xの編集 Y 方向 ● 自日 ○ 拘須	3			X		境界条件 X 方I Y 方I	を定義します。 句: 拘束 句:自由
境界条件 X 方向 〇 自由 ④ 拘束			 Y方向 ●自由 ○拘引 	3			X		境界条件 X 方I Y 方I	を定義します。 向:拘束 う:自由

1-6 3次元表示

3 次元表示はメッシュデータの形をチェックする際に利用できます。特にオーバーラッピング要素の厚みを確認する際に役立ちます。

マウスをドラッグすることで様々に視点を変えることができます。

通常の編集ウィンドウに戻るには「3D」ボタンをもう一度クリックしてください。

1-7 ファイル保存

メニューバーのファイル(F)より「名前を付けて保存」を選択します。

任意のフォルダを指定して保存します。既存データを「上書き保存」にて書きかえることも可能です。

1-8 UC-win/WCOMD \sim

UC-win/MESH での作業終了後、メッシュは UC-win/WCOMD に移ります。UC-win/WCOMD は自動的にスタートします。(もし、UC-win/WCOMD で計算が既に実行されている場合には、クリックする前に終了してください。

第3章 操作ガイダンス(UC-win/WCOMD)

1 荷重条件の定義

1-1 荷重タイプ

解析目的に応じて、適切な荷重を1つあるいは複数をチェックします。1つ、2つあるいはすべてを選択できます。荷 重タイプの優先順位は、1:自重、2:静的荷重、3:動的荷重です。動的解析の前に静的解析を実行できても、その 逆の順番で解析することはできません。

ファィル(E) 表示(Y) 荷重(L) オブション(Q) ヘルブ(H)
↓ -1000 -800 -600 -400 -200 0 200 400 600 800 1000
載荷 織り返し1 回 「 御伊 日 日 日 日 日 日 日 日 日 日 日 日 日

自重:対象構造物の死荷重を考慮します。特別な定義は必要ではありません。死荷重が解析の中で自動的に考慮されます。一般的には死荷重は他の 荷重タイプといっしょに考慮されます。 静的荷重:載荷点、載荷タイプおよび繰り返し回数を定義します。 動的荷重:地震波を定義します。 自重、静的荷重にチェック

1-2 静的荷重の定義

2	UC-win/WCOMD Ver.2 - SAMPLEDATA:Buckling	- 🗆 ×
ファイル(F) 表示(V) 荷重(L) オプション(O) ヘルプ(H)		
	節点サイズ:2	E
▲ 載荷1 <単調増加>無載荷		□レポートへ添付 (1)
0 200 201	節点 226:載荷荷重 1 による荷重 Δax ← 0.5 → (cm) 価定 ΔPy ↑ 0.00000 ↓ (KN) 局容除	
-28- ▼		
	-400 -200 0 200 400 600 800	1000
	trai new>	
11 λ̄テッフ°		

- 節点をクリックして、載荷節 点を選択します。
- ② 増分荷重あるいは変位を入 力、「矢印」ボタンをクリック して適切に載荷方向を選択 してください。選択された節 点が拘束されているとき、 入力値は増分変位(Dd; cm). になります。逆に、選択され た節点が自由のとき、入力 値は増分荷重(DP; kN).にな ります。

#	UC-win/WCOMD Ver.2 - SAMPLEDATA:Buckling	- • ×	載荷タイプを選択します
ファイル(E) 表示(V) 荷重(L) オプション(O) ヘルプ(H)		
🖉 🔜 🕨 📰 🔳 🔎 🔍 🗮 🗉	節点サイズ:2		反転増加繰り返し
▲ 載荷1 <反転増加繰り返し>	C]レポートへ添付 (1)	
87		2) 「適用」、「サイクル」、「増加
			回数」を入力します。
8-			· · · · · · · · · · · · · · · · · · ·
			サイクル:1
			増加:5
	9 99 99 99 9		
	a - and a the ca		
✓ -1000 -800 -600	-400 -200 0 200 400 600 800	1000 D	
	オート オート レスキャンプロロボンパン マ 前D除 編り返されい(一度は載荷する) サイクル 1 回		
	レージョン 単加 5 回		
421 X797°			

1-3 荷重ファイル保存

メニューバーのファイル(F)より「荷重ファイルの新規保存」を選択します。

2	UC-win/WCOMD Ver.2	- 🗆 🗡
ファイル(F) 表示(V) 荷重(L) オプション(O)	∧ルフ° (H)	
メッシュファイルを開く(0)	田 印 節点サイズ: 2	
荷重ファイルを開く(V)		[7] + #: 1 + 3%(+ (2))
荷重ファイルの上書き保存(W)		▼ D = P < 301 (2)
荷重ファイルの新規保存(Y)	0.500	
出力(R)		
結果保存(S)		
結果読込(Z)		
終了(X)		
#~ 3 (×)		
28-		
✓ -1000 -800 -600	-400 -200 0 200 400	600 800 1000 D
	載荷	
繰り返し1	回 挿入 載荷が7° 反転増加繰り返し V	
	除 □ 繰り返さない(一度は載荷する) 7	
	Up Dn	8/U 0 U
421 ステップ		

任意のフォルダを指定して保存します。既存データを「上書き保存」にて書きかえることも可能です。

2 構造解析の実行

実行完了率、解析中ステップ/全ステップの比率、解析時間、完了までの概算残り時間が表示されます。 最初のひび割れ発生ステップと最初の鉄筋降伏ステップも、それらが発生すれば表示されます。

計算は、破壊することなく全ステップが終了したとき、あるいは何かの破壊が起きたとき自動的に終了します。

計算を途中で停止したり、中断したい場合は、「一時停止」ボタンあるいは「閉じる」ボタンをクリックしてください。中 断機能を使用すると、解析結果(ダメージ状況)の一部は結果として保持されません。

26			ι	JC-win/WC0	MD Ver.2				- 🗆 🛛
ファイル(F) 表示(V)	荷重(L) オプショ	¢(O) ∿⊮7°(I	H)						
📁 🔜 🕨 🗠	II 🚺 🔍	. 🗨 🎛 🗉	3 節点サイス*: 2	▲					=
								[]レポートへ添付 (1)
8-									
28-				解析 [M	lesh]				
		<mark>破壊</mark> 解析	321/42 終了予定までの列引時	1 0:00:26 1 0:00:08	ひび割れ: ステッフ° 2 降伏: ステッフ° 5	一時候 閉じ	5		
		Compre	ession failure.						
-20		-				-			
	-800	-600	-400 -200	0	200	400	600	800	1000 👂
	繰り返し1		載荷 「 本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本	載荷外7* [反転増加繰り返し , ヾ(一度)は載荷する)	~	適用 5 サイクル 1 増加 5		
421 X797°									

3 結果の確認

3-1 解析結果

全解析領域の各ステップで、RC 要素、無筋コンクリート要素の空間平均応力とひずみを確認することができます。 最初のひび割れ発生ステップ、最初の鉄筋降伏ステップおよび損傷状況も確認できます。

靐		L	IC-win/WCOMD Ver.2		- 🗆 🗙
ファイル(<u>E</u>) 表示(⊻)	荷重(L) オプション(<u>O)</u> ヘ	17° (<u>H</u>)			
👛 🖹 🔸 🗠	e 2 & I I	1 🗙 🗶 🛣 🖍	» III III 🔎 🔍 🔍 🖽 🖻] ▶ ■ ◀ ▶ 標準	✓ X 10 ✓ 🖃
Z777°0					
200 0					
√ -1000	-800 -600	-400 -200	0 200	400 600 800	1000
	繰り返し 1 回	載荷 1 挿入 肖 『除 Up Dn	載荷外フ* 反転増加繰り返し □ 繰り返さない(一度は載荷する)	通用 5 回 サイクル 1 回 1900 5 回	
421 X797°					

平均ひずみ、せん断の偏差不変量および応力度の値が、空間平均値を用いて RC 要素と無筋コンクリート要素についてのみ全解析領域で出力されます。地盤要素と弾性要素は計算されません。 これらの値は次式で定義され、損傷度合の指標 として使用することができます。

平均応力に着目します。応力度の値はひび割れが大きく開くことに伴いせん断ひび割れが進展し出すときに急激に 変化します。偏差応力の値は、せん断破壊の直前にせん断ひび割れの進展による応力度の軟化によって降下し出 します。破壊モードの確認のためには、この指標が有効です。

平均ひずみと平均応力

$$\overline{\varepsilon}_{o} = \frac{1}{V} \int_{V} \left(\frac{\varepsilon_{xx} + \varepsilon_{yy}}{2} \right) dV, \qquad \overline{\sigma_{o}} = \frac{1}{V} \int_{V} \left(\frac{\sigma_{xx} + \sigma_{yy}}{2} \right) dV$$

偏差ひずみと偏差応力

$$\overline{\gamma} = \frac{1}{V} \int_{V} \sqrt{\left(\frac{\varepsilon_{xx} - \varepsilon_{yy}}{2}\right)^2 + \gamma_{xy}^2} \cdot dV, \qquad \overline{\tau} = \frac{1}{V} \int_{V} \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2} \cdot dV$$

履歴で表示された平均応力と偏差応力

履歴で表示された平均ひずみと偏差ひずみ

応力ひずみ関係

全体構造系解析結果

ひび割れ発生ステップと降伏発生ステップに関する経路依存情報が含まれています。 各ガウス点でのひずみ値が破壊/損傷基準を超えている場合は、最終ステップ情報と損傷分布図が表示されます。 ダメージを受けた要素は色で強調表示されます。

ダメージ評価は、外力が作用し終わった後に、定義されている基準に基づいて行なわれます

1) 破壊

平均ひずみが破壊基準を超え ると、破壊が判定され解析は中 断します。破壊と判定されたガ ウス点が含まれる損傷要素はダ メージマップで赤く強調表示され ます。この場合、重度の損傷 と 軽微な損傷は表示されません。

2) 修復/復旧

破壊を免れると、修復あるいは 復旧が必要か否かを判定する ために残留ひずみに基づいてダ メージ評価が行なわれます。ダ メージの基準は2つあり、重度 の損傷と軽微な損傷です。修 復と判定されたガウス点が含ま れる損傷要素は、ダメージマッ プでは、重度の損傷に対してピ ンク色で、軽微な損傷に対して 黄色で強調表示されます。

3) 損傷無し

残留ひずみがダメージ基準を超 えない場合、RC 構造物は「損傷 無し」とみなされ、ダメージマップ は表示されません。

Ê				要素損傷データ	[要素 19]		-	×
						□ 数(直を添付	閉じる
損傷/石 破壊結果(ξ壊結果:∮ ステップ 32	要素 19 1):破壞						
	545	び割れ面に 引張ひ	■重直方向の ずみEt	圧縮ひ ひび割れ面に ³	・ずみ F行方向のE。	せん断ひ ひび割れ面に平	トずみ 行方向のE _{ah}	
ガウス	点	結果	基準	結果	基準	結果	基準	
	23 -	1.1200e-2	1.0000e-1	-1.0100e-1	-1.0000e-1	-1.9000e-3	1.0000e-1	
最大歪みに	こよる損傷:							
最大歪みに 別めて発生	こよる損傷: Eした軽微な	損傷:ステ	ップ 13					
最大歪みに 加めて発生 加めて発生	こよる損傷: Eした軽微な Eした重度の	損傷:ステ 損傷:ステ	・ップ 13 -ップ 28					
最大歪みに 別めて発生 別めて発生	こよる損傷: こした軽微な こした重度の 軽微な損傷	損傷:ステ 損傷:ステ 基準: _{Et} ;	⁻ ップ 13 -ップ 28 > 1.0000e-3					
最大歪みに 別めて発生 別めて発生	こよる損傷: Eした軽微な Eした重度の 軽微な損傷 重度の損傷	損傷:ステ 損傷:ステ 基準: ɛ₊ン 基準: ɛ₊	⁼ ップ 13 =ップ 28 > 1.0000e-3 < -3.3000e-3					
最大歪みに 初めて発生 初めて発生	 よる損傷: した軽微な した重度の 軽微な損傷 重度の損傷 最大引引 	損傷:ステ 損傷:ステ 基準: ɛ, 基準: ɛ。 歪み	⁻ ップ 13 -ップ 28 > 1.0000e-3 < -3.3000e-3 - 最大圧縮	歪み				
最大歪み! 加めて発生 加めて発生 ガウス点	こよる損傷: こした軽微な こした重度の 軽微な損傷 重度の損傷 最大引引 8t	損傷:ステ 損傷:ステ 基準: c, 基準: c。 基準: c。 ステッブ	= ップ 13 = ップ 28 > 1.0000e-3 < -3.3000e-3 ■最大圧縮 ε _ε	歪み ステップ				
最大歪みに 加めて発生 加めて発生 ガウス点 11	よる損傷: こした軽微な にた重度の 軽微な損傷 重度の損傷 最大引引 Et 2.8906e-2	損傷:ステ 損傷:ステ 基準: s _t 基準: s _c 基準: s _c ステップ 276	=ップ 13 =ップ 28 > 1.0000e-3 < -3.3000e-3 ■最大圧縮 を。 -3.1284e-3	歪み ステップ 318				
最大歪みに 別めて発生 別めて発生 ガウス点 11 12	よる損傷: した軽微な した重度の 軽微な損傷 重度の損傷 最大引引 をt 2.8906e-2 4.0538e-2	損傷:ステ 損傷:ステ 基準: s _t ; 基準: s _c ステップ 276 276	- ップ 13 - ップ 28 > 1.0000e-3 < -3.3000e-3 最大圧縮 を。 -3.1284e-3 -5.4415e-2	歪み ステップ ³¹⁸ 321				
最大歪みに 初めて発生 初めて発生 ガウス点 11 12 13	よる損傷: こした軽微な にした重度の 軽微な損傷 重度の損傷 最大引引 をt 2.8906e-2 4.0538e-2 5.1633e-2	損傷:ステ 損傷:ステ 基準: ε、 基準: ε。 ステップ 276 276 276	- ップ 13 - ップ 28 > 1.0000e-3 < - 3.3000e-3 最大圧縮 を。 - 3.1284e-3 - 5.4415e-2 - 1.2859e-1	歪み ステップ 318 321 321				
ようしい 大学の 大学の 大学の 大学の 大学の 大学の 大学の 大学の	よる損傷: こした軽微な にした重度の 軽微な損傷 重度の損傷 最大引引 E1 2.8906e-2 4.0538e-2 5.1633e-2 2.8928e-2	損傷:ステ 損傷:ステ 基準: ε、 基準: ε。 ステップ 276 276 276 276 276	- ップ 13 - ップ 28 > 1.0000e-3 < - 3.3000e-3	歪み ステップ 318 321 321 31				
ようした 大変みに かめて発生 がのて発生 ガウス点 11 12 13 21 22	よる損傷: こした軽微な 転した重度の 軽微な損傷 重度の損傷 を よ 2.8906e-2 5.1633e-2 2.8928e-2 3.7051e-2	損傷:ステ 損傷:スラ 基準: ε、 基準: ε。 ステップ 276 276 276 276 276 276	ップ 13 - ップ 28 > 1.0000e-3 < -3.3000e-3 長大圧縮 E_ -3.1284e-3 -5.4415e-2 -1.2859e-1 -1.6593e-3 -4.5252e-2	歪み ステップ 318 321 321 31 321				
大空みに 初めて発生 初めて発生 ガウス点 11 12 13 22 23	よる損傷: こした軽微な 転換な損傷 重度の損傷 量度の損傷 最大引引 2,8906e-2 4,0538e-2 5,1633e-2 2,8928e-2 3,7051e-2 4,5478e-2	損傷:ステ 損傷:スラ 基準: ε、 基準: ε。 ステップ 276 276 276 276 276 276 276 276	ップ 13 ップ 28 > 1.0000e-3 < -3.3000e-3 最大圧縮 E_ -3.1284e-3 -5.4415e-2 -1.2859e-1 -1.6593e-3 -4.5252e-2 -1.0060e-1	至み ステップ 318 321 321 31 321 321 321				
大空みに 切めて発生 切めて発生 ガウス点 11 12 13 21 222 31 31	よる損傷: した軽微な にた軽微な 転度の損傷 重度の損傷 最大引引 を、 2.8906e-2 4.0538e-2 5.1633e-2 2.8928e-2 3.7051e-2 4.5478e-2 2.9587e-2	損傷:スラ 損傷:スラ 基準: ε、 基準: ε 、 本 ステップ 276 276 276 276 276 276 276 276 276 276	ップ 13 マプ 28 > 1.0000e-3 <-3.3000e-3 最大圧縮 E_ -3.1284e-3 -5.4415e-2 -1.2859e-1 -1.6593e-3 -4.5252e-2 -1.0060e-1 -1.6768e-3	至み ステップ 318 921 321 31 321 321 321 141				
ようした。 ありませんで、 もので、 ありませんで、 ありませんで、 ありませんで、 もので、 ありませんで、 ありませんで、 ありませんで、 ありませんで、 ありませんで、 もの	よる損傷: にた軽微な にた軽微な 重度の損傷 重度の損傷 をt 2.8996e-2 4.0538e-2 5.1633e-2 2.8928e-2 3.7051e-2 2.9587e-2 3.5329e-2 3.5329e-2	損傷:ステ 損傷:ステ 基準: ε、 基準: ε、 本準: ε ステッブ 276 276 276 276 276 276 276 276 276 276	ップ 13 ップ 28 > 1.0000e=3 < -3.3000e-3 最大圧縮 Ec -3.1284e=3 -5.4415e=2 -1.2859e=1 -1.6593e=3 -4.5252e=2 -1.0060e-1 -1.6768e=3 -2.4897e=2	至み ステップ 318 321 321 31 321 321 321 141 321				

強調表示されている要素をクリックすると、ひ び割れの直交する方向の引張ひずみ、ひび 割れに平行な方向の圧縮ひずみ、ひび割れ に平行な方向のせん断ひずみの値が表で表 示されます。

破壊/ダメージ基準のひずみが強調フォント で表示されます。

数値結果

ステップ毎に平均応力度と平均ひずみ、および偏差応力度と偏差ひずみの数値結果を表示します。

構造物解析結果							
σε					 」 ゲラフを添付 一数値を添付 	閉じる	
ステップ	平均応力度 (N/mm²)	平均ひずみ	偏差応力度 (N/mm²)	偏差ひずみ			
1	-2.9085e-2	-9.7689e-7	2.8001e-2	1.5547e-6		~	
2	-2.6910e-2	2.8414e-6	6.1822e-1	4.1462e-5			
3	-2.8220e-2	1.5146e-5	9.6071e-1	7.6414e-5			
4	-3.2089e-2	3.0058e-5	1.2866	1.1824e-4			
5	-3.6793e-2	4.6849e-5	1.6005	1.6569e-4			
6	-4.7708e-2	6.6655e-5	1.8426	2.1424e-4			
7	-4.5819e-2	5.6582e-5	1.3501	1.7230e-4			
8	-4.2123e-2	4.5203e-5	9.2622e-1	1.2969e-4			
9	-3.6344e-2	3.2450e-5	5.4690e-1	8.6492e-5			
10	-3.3509e-2	1.8395e-5	2.1931e-1	4.1994e-5			
11	-2.7690e-2	3.4941e-6	2.3584e-1	1.3118e-5			
12	-2.6421e-2	6.1194e-6	6.1593e-1	3.8172e-5			
13	-2.3453e-2	1.7588e-5	1.0223	7.4649e-5			
14	-2.5136e-2	3.2324e-5	1.3442	1.1477e-4			
15	-3.2403e-2	4.9385e-5	1.6690	1.6669e-4			
16	-3.9398e-2	6.9114e-5	1.9032	2.1681e-4			
17	-4.0089e-2	5.9242e-5	1.3886	1.7424e-4			
18	-3.7829e-2	4.8043e-5	9.4907e-1	1.3098e-4			
	0.4000 0	0.5040 E	E 0030 4	0.3550 F			

3-2 損傷結果(最大)

ガウス点の経験した最大ひずみ(最大圧縮ひずみ、最大引張ひずみ)によって損傷評価を行います。 黄色は軽微な損傷(Light Damage)、ピンク色は重度の損傷(Considerable damage)、赤色は破壊(Failure)を表しま す。損傷基準、破壊基準はメッシュ設定で定めます。

*		UC-win/WCOMD Ver.2		- 🗆 🗙
ファイル(<u>F)</u> 表示(⊻)	荷重(上) オプション(0) ヘ	* (<u>H</u>)		
📕 \Lambda 🕨 🚧	e 🙎 II	≤≾≾¼≤ № !!! ::: ● ● € ⊞ ⊡		EB
▲ 破壊 ● 重度の損傷			[コレポートへ添付 (1)
5 回 輕微な損傷 200				
	-800 -600	-400 -200 0 200 40	00 600 800	1000
	繰り返し 1 回		通用 5 回 サイカル 1 回 増加 5 回	
421 X797°				

損傷または破壊した要素をクリックすると、テーブルが表示されます。

上段は、破壊しない場合、損傷結果(残留)と同じ Residual Damage が表示されます。破壊した場合、破壊した要素の み Failure Damage が表示されます。ともに、損傷基準あるいは破壊基準に達したガウス点のひずみが表示されます。 下段は Peak Strain Damage が表示され、いずれかのガウス点のひずみがはじめて損傷基準に達した時のステップ、 そして各ガウス点が経験した最大ひずみ(最大圧縮ひずみ、最大引張ひずみ)とその時のステップが表示されます。 ここでいうひずみとは、すべてひび割れ面に平行および直行するひずみ(Ex、Ey)をさします。ただし、ひびわれを経 験していないガウス点で重度の損傷に達した場合、ひび割れ面に平行および直行するひずみの数値は確認できま せん。この場合、ガウス点での結果を参考にしてください。

				受系損傷テーク	[安糸 19]			
							値を添付	閉じる
損傷/砥 破壊結果(&壊結果: ステップ 3	要素 19 21):破壞						
	υ	び割れ面に	重直方向の	圧縮ひ	・ずみ	せん断び	トずみ	
		引張ひ	ቻみει	ひび割れ面に	平行方向のを。	ひび割れ面に平	行方向のᢄォ	
ガウス	点	結果	基準	結果	基準	結果	基準	
	23	-1.1200e-2	1.0000-1		1.0000- 1	-1.00009		
最大歪みに 初めて発生 初めて発生	こよる損傷: Eした軽微な Eした重度の 軽微な損	に損傷:ステ)損傷:ステ)損傷:ステ	-ップ 13 -ップ 28 > 10000e-3	-1.0100e-1	-1.00008-1	-1.30008-3	1.0000e-1	
最大歪みに 初めて発生 初めて発生	こよる損傷: Eした軽徴な Eした重度の 軽微な損俗 重度の損俗 最大引	:損傷:ステ)損傷:ステ 基準: e _t 基準: e _s 基準: e _s 裏基準: e _s	-ップ 13 -ップ 28 > 1.0000e-3 < -3.3000e-3 最大圧縮	 歪み	-1.00008-1	-1.30008-3	1.0000e-1	
最大歪みに 初めて発生 のめて発生 ガウス点	ELた軽微な Eした軽敵な Eした重度の 軽微な損俗 重度の損俗 最大引 Et	に損傷:ステ つ損傷:ステ み基準: ε₁ 調基準: ε₀ 調査 裏 こテップ	-ップ 13 -ップ 28 > 1.0000e-3 < -8.3000e-3 最大圧縮: をε	-1.0100e-1 歪み ステップ	-1.0000-1	-1.30008-3	1.0000e-1	
最大歪みに 初めて発生 初めて発生 ガウス点 11	こよる損傷: Eした軽微な Eした重度の 軽微な損傷 重度の損傷 最大引 E ₁ 2.8906e-?	: 損傷:ステ) 損傷:ステ) 損傷:ステ) 基準: s _c : 、 、 、 、 、 、 、 、 、 、 、 、 、	- ップ 13 - ップ 28 > 1.0000e-3 < -3.3000e-3 最大圧縮: を ₄ - 3.1284e-3	至み ステップ 818	- 1.0000e-1	-1.30508-3	1.0000e-1	
最大歪みに JDめて発生 JDめて発生 ガウス点 11 12	こよる損傷: Eした軽微な Eした重度の 軽微な損傷 重度の損傷 最大引 E ₁ 2.8906e-2 4.0538e-2			<u>-1.0100e-1</u>	- 1.0000e-1	-1.3000e-3	1.0000e-1	
最大歪みに 別めて発生 ガウス点 11 12 13	による損傷: Eした軽敵な Eした重度の 軽微な損俗 重度の損俗 最大引! Et 2.8906e-2 4.0538e-2 5.1633e-2	は損傷:ステ う損傷:スラ 基準: ε、 基準: ε、 基準: ε。 は ステップ 2766 2776 2		至み ステップ 318 321 321	- 1.0000e-1		1.0000e-1	
最大歪みに 加めて発生 加めて発生 ガウス点 11 12 13 21	こよる損傷: とした軽微な Eした重度の 軽微な損齢 重度の損齢 を、 2.8906e-2 4.0538e-2 5.1633e-2 2.8928e-3		・ ・ ・ ・ ・ ・ ・ 13 ・ ・ ・ 13 ・ ・ 28 ・ ・ 13 ・ ・ 28 ・ ・ 3.0000e-3 ・ く - 3.3000e-3 ・ 長大圧縮: ・ こ。 ・ - 3.1284e-3 ・ - 3.1284e-3 ・ - 5.1284e-3 ・ - 5.1284e-3 - 5.1285e-1 - 1.1285e-1 - 1.5593e-1 - 1.5593e-3 - - - 1.5593e-3 - - - - - - - - - - - - -	至み ステップ 318 321 31 31	- 1.0000e-1	-1.3000e-3	1.0000e-1	
 最大歪みに 加めて発生 ガウス点 11 12 13 21 22 	こよる損傷: ELた軽微な ELた重度の 軽微な損伤 重度の損命 を、 2.8906e-3 5.1633e-3 5.1633e-3 2.8928e-3 3.7051e-3		・ ップ 13 ・ ップ 28 > 1.0000e-3 く-3.3000e-3 をェ -3.1284e-3 -5.4415e-2 -1.2859e-1 -1.6595e-3 -4.5252e-2	生み ステップ 318 321 311 321	- 1.0000e-1		1.0000e-1	
最大歪み に 初めて発生 ガウス点 111 123 133 211 222 23	よる損傷: ELた軽微な ELた重度の 軽微な損伤 重度の損 を、 2.8906e- 5.1633e- 5.1633e- 3.7051e- 4.5478e-:	:損傷:スラ)損傷:スラ 込み基準: e, 湯基準: e。 果正み 276 276 276 276 276 276 276 276 276 276	- ップ 13 - ップ 28 > 1.0000e-3 < -3.3000e-3 を上工統 - 3.1284e-3 - 5.1415e-2 - 1.2859e-1 - 1.5593e-3 - 4.5252e-2 - 1.0060e-1	生み ステップ 318 321 321 321 321 321 321	- 1.0000E-1		1.0000e-1	
最大歪み に 切めて発生 ガウス点 111 12 13 211 222 233 31	よる損傷: にした軽微な にした軽微な にした重度の 軽微な損齢 重度の損齢 量度の損齢 した3 2.8906e-3 4.0538e-5 5.1633e-7 2.8928e-3 3.7051e-3 4.5478e-1 2.9587e-3	に損傷:スラ)損傷:スラ)基準: ε、 湯基準: ε。 、 ステッラ 276 276 276 276 276 276 276 276 276 276	- ップ 13 - ップ 28 > 1.0000e-3 < -3.3000e-3 を - 3.1284e-3 - 5.44 15e-2 - 1.2859e-1 - 1.6593e-3 - 4.5252e-2 - 1.0060e-1 - 1.6768e-3	エラ ステップ 316 321 321 321 321 321 321 321	- 1.0000E-1		1.0000e-1	
最大歪みは、 のめて発生 のめて発生 のかて発生 がつくた 11 12 13 21 22 23 31 32	よる損傷: ELた軽微な ELた軽微な ELた重度の 超微な損俗 重度の損俗 最大引 E 2.8906e-1 4.0538e-2 5.1633e-2 5.1633e-3 5.1633e-3 2.8928e-3 3.7051e-3 2.8928e-3 3.7051e-3 2.9587e-3 2.9587e-3 3.5329e-3	は損傷:スラ つ損傷:スラ 、	- - - - - - - - - -	モみ ステップ 318 321 321 321 321 141 321	- 1.0000e-1		1.0000e-1	

3-3 断面結果

「断面結果」ボタンをクリックすると、定義済みの断面が強調されます。詳細情報を確認したい断面をクリックします。 断面結果ダイアログにて、軸力、せん断力、曲げモーメントに関する全履歴のグラフあるいは数値が確認できます。

数値結果

æ			断面
14 .			
フテッゴ	動力化剤	# / #6 + (L M)	曲げエーント(ルルー)
1	90/J(KN)	2 ABI/J(KN)	=0.7957a=9
1	-110.2200	-3.0437e-3	-9.7007e=0
2	-113.4020	-407 7005	-15007e+3
	-130.3337	-664 3054	-0.1050e+9
5	-125.0804	-7023140	-2.12038+3
6	-140 9448	-904 2955	-2.9930e+3
7	-1024026	-640.3377	-21427e+3
8	-82 3891	-438 3057	-14143e+3
9	-68 1804	-225 1818	-781 6335
10	-72 4829	-77.9182	-185.8646
11	-81.8179	98.3720	376.1739
12	-92.6587	323,5598	1.0184e+3
13	-100.4219	562.5048	1.7114e+3
14	-43.4584	600.5377	2.2324e+3
15	-98.5471	847.3890	2.7391e+3
16	-183.1552	874.2223	3.0643e+3
17	-103.7315	659.7775	2.1849e+3
18	-36.2970	456.9625	1.4453e+3
19	0.4948	285.3941	799.2426
20	-22.5775	102.8955	228.7797
21	-70.4990	-12.7729	-179.5603
22	-82.0216	-177.9143	-633.3494
23	-161.5143	-321.9647	-1.1969e+3
24	-190.2385	-488.2494	-1.8288e+3
25	-120.7611	-678.1618	-2.4598e+3
26	-111.5541	-865.9324	-3.0124e+3
27	-186.3468	-913.0240	-3.1587e+3
28	-196.7355	-951.1329	-3.2065e+3
0.0	00.0000	0004353	0.1100.0

ステップ・軸力・せん断力・曲げモーメントを表示します。また、テーブルの最後尾に最大値 と最小値、およびその時のステップ数を確認 することが出来ます。

これらの値は、構造の安全性や供用の妥当 性を間接的に確認するために、標準的な設 計コードあるいは仕様書によって規定される 許容値と比較することができます。

3-4 節点結果

X、Y 方向の節点加速度、節点速度、節点変位、支点反力および全反力を確認することができます。 全反力は、解析領域に入力された荷重の和を意味しています。

- UC-win/WCOMD Ver.2	
ファイル(E) 表示(Y) 荷重(L) オブション(Q) ヘルブ(H)	
🖷 🔍 🕨 🐨 🔤 🖾 🌌 🎞 🗳 🗶 🌠 🛳 🔛 💷 🏛 🗮 🖳 🛱 🏛 🎽 🖉	5
△ 節点を別ックすると結果が表示されます。	
	000
載荷 適用 5 回 繰り返し1 回 挿入 載荷9(7* 反転増加繰り返し 適用 5 回 削除 繰り返さない(一度は載荷する) 1 回 リロ Dn 場別の 5 回	
421 <i>λ</i> 797°	.a

詳細な情報を確認したい節点をクリックします。

絶対応答加速度

※本例は静的解析なのでY方向のみ 9.8m/2の鉛直加速度が得られています これは自重を考慮しているためです。

相対応答加速度

※本例は静的解析なので本来相対加速 度は発生しませんが、数値計算のため 無視できる程小さな数値(ゴミ)がグラフ 化されています。

相対応答速度

※本例は静的解析なので本来速度は発 生しませんが、無視できる程小さな数値 (ゴミ)がグラフ化されています。

相対応答変位

支点反力

全反力と節点の応答変位の関係

「符号反転」機能は、全反力と節点変 位の関係図のみに対して有効です。 この機能を使えば、X 方向、Y 方向(あ るいは両方)の結果にマイナス1(-1)を 乗じることができます。値を反転させた いとき、該当する方向の「(-1)」をチェ ックしてください。

節点の数値結果

4	2					節	点 226 結	果						×
	# %	ನ್ 🎞 🚽	4 🔳						 □ りうフを注 □ 数値を注 	5付 5 付		閉じる]	
Step		絶対加 (cm/se	速度 ec ²)	— 相対加 (cm/s	I速度 sec ²)	速 (cm/	度 sec)	麦 (c	位 m)	反力 (kN)		全质 (k	7力 N)	
		X	Y	Х	Y	X	Y	Х	Y	х	Y	X	Y	
	1	0	980.6600	0	-3.8810e-7	0	-2.7167e-5	0	-1.3971e-3	3.0445e-3	0	4.1394e-7	-257.6517	
	2	1.4889e-4	980.6600	1.3889e-4	5.5181e-5	9.7222e-3	3.8238e-3	5.0000e-1	1.9399e-1	317.1880	0	317.1904	-257.7220	
	3	-1.7519e-4	980.6599	-1.8519e-4	-6.8076e-5	9.2593e-4	7.1393e-4	1.0000	4.0856e-1	497.7249	0	498.1452	-257.5898	
	4	1.9519e-4	980.6600	1.8519e-4	6.8162e-5	8.3333e-3	3.4430e-3	1.5000	6.3002e-1	664.3915	0	665.2210	-255.8113	
	5	-1.5461e-4	980.6599	-1.6461e-4	-6.0222e-5	2.3663e-3	1.2723e-3	2.0000	8.5295e-1	822.2860	0	833.0952	-210.0626	
	6	1.4717e-4	980.6600	1.3717e-4	4.8411e-5	7.0302e-3	2.8544e-3	2.5000	1.0701	934.2845	0	944.2744	-224.0219	
	7	-3.8752e-4	980.6598	-3.8752e-4	-1.5665e-4	-1.5981e-2	-6.6589e-3	2.0000	8.5941e-1	669.1562	0	644.1543	-263.5485	
	8	4.5572e-4	980.6602	4.5572e-4	1.8696e-4	4.2943e-3	1.7286e-3	1.5000	6.4725e-1	442.4678	0	436.0639	-263.1321	
	9	-4.3540e-4	980.6598	-4.3540e-4	-1.8010e-4	-1.2512e-2	-5.2694e-3	1.0000	4.3351e-1	243.3537	0	238.3977	-269.3850	
	10	3.7799e-4	980.6601	3.7799e-4	1.5700e-4	8.8528e-4	3.1790e-4	5.0000e-1	2.1964e-1	58.5527	0	56.2251	-263.2008	
	11	-3.1048e-4	980.6598	-3.1048e-4	-1.2839e-4	-9.5083e-3	-3.9591e-3	0	9.0412e-3	-117.8681	0	-118.0156	-257.1539	
	12	2.4597e-4	980.6601	2.4597e-4	1.1356e-4	-1.6046e-3	1.3863e-4	-5.0000e-1	-1.5779e-1	-323.3277	0	-323.6121	-257.3077	
	13	-1.8997e-4	980.6599	-1.8997e-4	-9.1286e-5	-7.5236e-3	-2.8445e-3	-1.0000	-3.1357e-1	-534.6026	0	-532.6683	-263.2735	
	14	1.4398e-4	980.6600	1.4398e-4	7.3236e-5	-3.1443e-3	-4.5657e-4	-1.5000	-4.6217e-1	-693.4531	0	-694.2725	-258.5707	
	15	-1.0754e-4	980.6599	-1.0754e-4	-5.6674e-5	-6.3526e-3	-2.2267e-3	-2.0000	-6.0932e-1	-854.7752	0	-856.7492	-253.9447	
	16	7.9393e-5	980.6600	7.9393e-5	4.7254e-5	-4.0212e-3	-6.1911e-4	-2.5000	-7.4122e-1	-955.5734	0	-963.4017	-226.0916	
	17	2.1971e-4	980.6600	2.1971e-4	4.3353e-5	1.3741e-2	3.8332e-3	-2.0000	-5.8091e-1	-681.7383	0	-692.2012	-261.5559	
	18	-3.2824e-4	980.6599	-3.2824e-4	-8.0019e-5	-2.6447e-3	-4.6756e-4	-1.5000	-4.2496e-1	-450.6975	0	-448.2241	-269.6596	
	19	3.4000e-4	980.6601	3.4000e-4	8.6669e-5	1.1308e-2	3.1987e-3	-1.0000	-2.7174e-1	-250.2830	0	-250.0701	-263.0821	

ステップ・絶対応答加速度・相対応答加 速度・相対応答速度・相対応答変位・支 点反力・全反力を全て表示します。 また、テーブルの最後尾に最大値と最 小値、およびその時のステップ数を確認 することが出来ます。

4 報告書作成

プリンタあるいはファイル(HTML)への出力を選択ででます。

 各結果表示画面で、「数値を添付」 「グラフを添付」「レポートへ添付」に チェックを入れます。 チェックを入れたらウィンドウを閉じ ます。

②「ファイル | 出力」を選択しま す。

靐	名前を	付けて保存				×
💮 🏵 🗉 🕇 퉬 « F0	ORUM 8 → UCwinWCOMD2 → Samples	۶.	v ♂ Samp	esの検索		Q
整理 ▼ 新しいフォルダー					•	0
🔶 お気に入り 🔷	名前	更新日時	種類	サイズ		
	퉬 L1	2014/03/12 16:28	ファイル フォルダー			
🗥 SkyDrive	퉬 L2-H8	2014/03/12 16:28	ファイル フォルダー			
	퉬 L2-H24	2014/03/12 16:28	ファイル フォルダー			
🜏 ホームグループ	퉬 Observed	2014/03/12 16:28	ファイル フォルダー			
PC ダウンロード デスクトップ ドキュンント ビグチャ ビデオ ジェージック Windows (C:) ローカル ディスク ((*						
ファイル名(<u>N</u>): samp	ble					~
ファイルの種類(<u>T</u>): HTMI	L file (*.htm)					~
● フォルダーの非表示			保	芋(<u>ら</u>)	キャンセ	UL

「ファイル」の場合、レポートは HTML ファイル に出力されます。

「出力実行」ボタンをクリックした後、保存ダイ アログが表示されます。適切なディレクトリを 選択し、ファイル名を入力します。

第4章 Q&A

1 入力・適用範囲関連

- Q1-1. 鉄筋比が 0%の場合、有効鉄筋比はデフォルトの 1.0%で問題ないか
- A1-1. 鉄筋比が0の要素では、有効鉄筋比にどのような値を入力しても、計算には使用されません。 したがって、ご質問の場合ではデフォルト値の「1.0%」のままで問題ありません(解析結果には影響しません)。
- Q1-2. 重力式ダムのような無筋コンクリート構造物でも対応可能か?
- A1-2. 無筋コンクリート構造物の解析も可能です。 製品添付のサンプル「cylinder(s1)」は無筋コンクリートの解析例です。 ヘルプ 「サンプルモデル | サンプル1—円柱供試体」 に概要が解説されていますのでご参考ください。 ただし、マッシブなコンクリートで問題となる温度応力に関係する解析機能はありません。

Q1-3. 鉄筋比の入力に Px、Py の2つがあるが、どちらが主鉄筋となるか?

A1-3. 梁要素のように、Px と Py のどちらかが主鉄筋になるという概念はありません。 Px、Py は要素の向きや形状に関係なく、全体座標系に対する角度になります。 例えば、右上 45 度方向に鉄筋が配筋されている場合、鉄筋配置角度を 45 度、そしてその方向の鉄筋比 を Px に入力することになります。ヘルプ 「エンジニアリングノート | 鉄筋配置角」 の図にある x、y 軸は全体座標系とお考えください。

Q1-4. ユニバーサルジョイントの閉合時せん断剛性は、過去の数値検証から基本モードでは 0.1 を推奨するとへ ルプに書かれているが、「過去の数値検証」とは具体的に何か?

A1-4. 文献[1]の Fig.1c、文献[2]の Fig.4 に、Ks=10³KPa があります。これが閉合時せん断剛性に相当します。単位を変換すると 1000 [KPa]=1 [MPa]=1 [N/mm2] トないます。この剛性は、単位幅(1am)当ないの剛性トなっているので、1mm 当ないにすると

となります。この剛性は、単位幅(1cm)当たりの剛性となっているので、1mm 当たりにすると、 0.1 [N/mm2] となります。

<文献>

[1]Failure Analysis of Underground RC Frame Subjected to Seismic Action An, X. and Maekawa, K.; Proc. of JSCE, No.571/V-36, pp.251-268, 1997.8 地震作用を受ける地中鉄筋コンクリートの破壊解析

[2]Computational Approach to Path-Dependent Nonlinear RC/Soil Interaction Shawky, A. and Maekawa, K.; Proc. of JSCE, No.532/V-30, 1996.2 経路依存性を考慮した RC/地盤系の非線形相互作用に対する計算力学的アプローチ

Q1-5. 引張硬化/軟化係数 c を入力している場合(アドバンスモード)、「破壊エネルギーGf」の入力値は解析結果 に影響を与えないか

A1-5. 破壊エネルギーGfより引張硬化/軟化係数 Cx(Cy)を計算しています。 しかし、アドバンスモードでは、引張硬化/軟化係数 Cx(Cy)は入力値なので、入力された破壊エネルギー Gf は引張硬化/軟化係数 Cx(Cy)に影響を与えません。 引張硬化/軟化係数 Cx(Cy)の入力の横に括弧()があり、自動算出された Cx(Cy)を確認することができます が、解析に使用される数値はあくまでも入力された Cx(Cy)の方です。

Q1-6. RC ジョイントの鉄筋径、鉄筋比、定着長はどのように設定したらよいか

A1-6. RC ジョイントの鉄筋径、鉄筋比、定着長の設定方法については、 ・鉄筋径は境界面(RC ジョイント面)を貫通している鉄筋のもの ・鉄筋比の計算に用いる鉄筋の総断面積は、境界面(RC ジョイント面)を貫通している鉄筋を対象、コンク リート面積は柱側面積 ・定着長は、境界面からの主鉄筋の埋込長(定着長)

とすればよいです。

Q1-7. メッシュ分割、メッシュサイズの目安について、論文などの参考文献はないか?

A1-7. 2012 年制定コンクリート標準示方書(標準)9 編 3.2.2(5)条文と解説によると、要素の寸法は有効高さ以下で 200mm 程度以下とするのがよく、200mm の 0.5~2.0 倍程度であれば応答値に及ぼす影響は小さい、とさ れています。これを適用してよい条件は、 地震による影響を考慮する場合で、 最大曲げモーメントが作 用する部材端部等の変形が集中する部位の部材軸方向です。その他、文献[1][2][3]も紹介いたします。

文献

[1]コンクリートライブラリー138 号 2012 年制定コンクリート標準示方書 改訂資料-基本原則編・設計編・施工編-、p.170、コンクリート委員会 コンクリート標準示方書改訂小委員会、土木学会、2013.3

[2]Numerical Simulation of Size Effect in Shear Strength of RC Beams、An, X., Maekawa, K. and Okamura, H.; Proc. of JSCE, No.564/V-35, pp.297-316, 1997.5(邦題:RC はりのせん断強度に現れる 寸法効果の数値シミュレーション)

[3]梁のせん断耐力と斜めひび割れの 3 次元分布に及ぼす側方筋の効果、土屋 智史,中浜俊介,前川 宏 一、コンクリート工学年次論文報告集、Vol23、No.3、pp.997-1002、2001.6

Q1-8鉄筋が1方向しか配置されていない場合のアドバンスドモードでの引張硬化軟化係数(C)の設定方法は? たとえば、主鉄筋方向が×方向、それに直交する方向がy方向のとき、CxとCyをどのように設定すべきか。

- A1-8. ヘルプの
 - 「エンジニアリングノート|引張硬化/軟化係数」

の図に示すように、引張硬化軟化係数が大きくなるとひび割れた後の強度低下が急激になります。 y方向の鉄筋がコンクリートと付着すると考えられるときは、RC 要素と同じ 0.4、付着しないと考えるときは 無筋要素と同じ 7.5 と設定します。

両者の中間と考えるときは、2.0などの数値になります。上記ヘルプの曲線をみながら設定してください。

2 用語他

3 解析関連

- **Q3-1**. 収束計算の方法は?
- A3-1. 収束計算には「Newton-Raphson 法」を用いております。
 収束基準は 0.001(=0.1%)で、最大繰返し回数は 12 回となっております。

Q3-2. 破壊基準の根拠は?

- A3-2. デフォルト値の破壊基準:
 - ・最大引張ひずみ……3%(ひずみがこれ以上になると引張破壊)

・最大圧縮ひずみ……1%(ひずみがこれ以上になると圧縮破壊)

・最大せん断ひずみ…2%(せん断ひずみがこれ以上になるとせん断破壊)

の根拠は、ヘルプ[エンジニアリングノート]-[参考文献]の「Analyses Examples」に示しております、 下記文献 P.197 を参照しています。

3) Nonlinear Response of Underground RC Structures under Shear J; Shawky, A.and Maekawa, K.;Proc.of JSCE, No.538/V-31, 1996.5.

Q3-3. UC-win/WCOMDの自重は、通常の鉛直荷重として導入されているか?

A3-3. 設定画面「荷重タイプの定義」で自重にチェックを入れると、重力加速度が与えられます。自重を静 的な荷重で載荷していません。このため、節点の結果をみるとY成分に 980cm/s2 がみられます。

Q3-4. 減衰に関する入力箇所が見当たらないが、どのような減衰を使用しているのか

A3-4. UC-win/WCOMD では、Newmark 法のパラメータとして高次モードの振動減衰が生じる γ=0.7、β= 0.36 が用いられております。

Newmark 法における加速度の仮定としては、"一定加速度法(γ=1/2、β=1/4)"や"線形加速度法 (γ=1/2、β=1/6)"が有名ですが、これらの値を γ>0.5, β=0.25(γ+0.5)2 と選ぶことにより、高次 振動領域において時間積分法の数値的メカニズムにより減衰することが言われております。

この種の減衰効果は、物理的な減衰と区別して、数値減衰(numerical dissipation)と呼ばれ、本プロ グラムでは積極的に利用されております。

RC要素や地盤要素は、材料の非線形特性により履歴減衰が支配的となるために、新たに粘性減 衰定数を与える必要がないことから入力項目はありません。そして、高振動領域における解の安定 性を確保するために上述の数値減衰が採用されています。

履歴減衰が卓越することなどから原則として粘性減衰を用いないとした規定・解説が「2007 年制定 コンクリート標準示方書【設計編】、土木学会」p.92 にありますのでこちらもご覧ください。

Q3-5. ガウス点の結果の Gxx、Gyy、Gxy の意味は何か?

- A3-5. Gxx は、ひび割れ座標系の x 軸方向ひび割れに沿った、ずれに起因するせん断ひずみ Gyy は、ひび割れ座標系の y 軸方向ひび割れに沿った、ずれに起因するせん断ひずみ Gxy は、要素全体の平均せん断ひずみで、ずれに起因するせん断変形とひび割れ間に挟まれた連 続体コンクリートのせん断変形を合計したひずみ
- Q3-6. 動的解析結果の評価法について、ヘルプではひずみを対象としているが、応力で評価していない理由?
- A3-6. ヘルプ「エンジニアリングノート | 圧縮ピークひずみ」に示されるように、コンクリートの応力ひずみ曲線は、最大圧縮応力度を超えた後は、応力が低下するモデルです。応力に着目して結果を判定していると、最大圧縮応力を超えた後のひずみが増大しているような領域を検出できません。このため、応力で判定するのではなく、ひずみに着目しています。

Q3-7. 道路橋示方書 V 耐震設計編に示される入力波形をそのまま使用しても問題ないか?

A3-7. 地盤と構造物をモデル化した場合に入力する波形としては、解放基盤面での加速度波形を与えることが一般的です。道路橋示方書の波形は、地盤種別に応じた地表面付近での波形ですので、そのまま使用することはできません。ただし、たとえば、文献[1]p.22 には、『道路橋示方書に規定されている I 種地盤(最も硬質な表層地盤)の加速度応答スペクトル適合波形を解放基盤面のものとみなすなどの方法で入力地震動を設定する場合が多い』、これは『実務設計において便宜上よく用いられるが、当該波形が解放基盤面におけるものとみなしうるか否かについては十分な検討を要する』とされています。文献[1]には入力地震動に関して詳しい解説がございますので、ご参考ください。

文献

[1]最新 地中・基礎構造の耐震設計、九州大学出版会、2001/12

Q3-8. 地盤が塑性化するかどうかを判断するには?

A3-8. UC-win/WCOMD の地盤要素の構成則はバイリニア型などのように明確な折れ点を持っていません。ヘルプ 「エンジニアリングノート | 大崎モデル」 に示すように原点から曲線を呈します。つまり、地盤は最初から非線形挙動を呈します。

もし、せん断強度 Su(ヘルプ「エンジニアリングノート | 残留剛性比」参照)を超えたかどうかを確認し
たい場合は、地盤要素のガウス点の結果(応カーひずみ関係)を観察してください。

Q3-9. ジョイント要素の計算結果を確認するには?

- A3-9. ジョイント要素のガウス点は1要素当たり2個あります。 ジョイント要素のガウス点結果は、要素座標系での結果です。要素座標系は、ジョイント要素に平行 な方向が x 軸、垂直な方向が y 軸となります。 その他に節点の結果があります。ジョイント要素の部分は二重節点になっており、それぞれの節点 の結果を呼び出してみることができます。
- Q3-10. 破壊エネルギーGfから引張硬化軟化係数 Cx と Cy をプログラムが自動算出するときの要素長の考え方は?

A3-10. 要素の形状は長方形ではない形も想定されるため、面積が等価な長方形へ換算しています。

節点 1 (x1, y1) 節点 2 (x2, y2) 節点 3 (x3, y3) 節点 4 (x4, y4)

という座標があるとき、この要素の面積をA、CxとCyの要素長をそれぞれ、LxとLyとすると、以下のようにして算出されます。

a = |x1 - x2| + |x2 - x3| + |x3 - x4| + |x4 - x1| b = |y1 - y2| + |y2 - y3| + |y3 - y4| + |y4 - y1| k = a / b $Lx = (A * k)^{(1/2)}$ Ly = A / Lx

任意の形の四角形を長方形に換算する上記の考え方は、特に文献を参考にしておりません。 必要に応じて Cx と Cy をアドバンスモードにて直接入力してください。

Q3-11. 鉄筋配置角は計算上どのように効いているのでしょうか

A3-11. 鉄筋比、有効鉄筋比、引張硬化/軟化係数に鉄筋配置角を考慮しています。
無筋要素では、引張硬化/軟化係数は全体座標系での方向に定義されます。
詳細は下記文献を参照願います。
・福浦 尚之,前川
宏一:非直交する独立4方向ひび割れ群を有する平面RC要素の空間平均化構成則、土木学会論文集、土木学会、No.634/V-45、pp.177-195、1999.11
・前川宏一,福浦尚之:疑似直交2方向ひび割れを有する平面 RC 要素の空間平均化構成モデルの
再構築,土木学会論文集, No.634/V-45, pp.157-176, 1999.11

Q3-12. 「有効鉄筋比」と「鉄筋比」は何に使用されているか

A3-12. 有効鉄筋比

鉄筋の付着効果が及ぶコンクリート領域から決定される鉄筋比なので、要素内の鉄筋の構成則に 適用されています。

鉄筋比

モデル化した要素厚さに対して配筋された実際の鉄筋の比率なので、要素の応力を計算するときにこの鉄筋比を使用しています。

- **Q3-13**. 引張硬化/軟化係数 Cx、Cy が適用される方向は?
- A3-13. RC 要素の引張硬化/軟化係数 Cx、Cy は、鉄筋の角度を定義した方向に考慮されます。鉄筋配置角が 0 度なら全体座標系と同じ x 方向と y 方向、90 度なら左回りに 90 度回転した方向です。 無筋要素では、全体座標系の方向になります。

Q3-14. 絶対加速度、相対加速度とは?

A3-14. 絶対加速度とは、相対加速度(=構造物に生じる加速度)と入力地震動の加速度を合計したもので す。「入力地震波が 2000gal で、応答加速度が 2500gal だった」というような表現で用いる場合は、そ の応答加速度は"絶対加速度"を意味しています。 相対加速度は、地震によって揺れている地表面を基準としたときの構造物の応答加速度と言えま す。

Q3-15. 無筋要素の引張軟化係数について、内部計算結果の上限値は「7.5」となっているが、この根拠は?

A3-15. ヘルプ「エンジニアリングノート | テクニカルノート」に記載されておりますように、解析の発散を防ぐ ために上限値(7.5)が設定されています。7.5 という数値については、ヘルプ「エンジニアリングノート | 引張硬化/軟化係数」に記載されております、下記論文に C=7.5 までの図がありますので、これを 参考にして決定されています。 2) An, X., Maekawa, K. and Okamura, H.;

> Numerical simulation of size effect in shear strength of RC beams Journal of Materials, Concrete Structures and Pavements, JSCE, No.564/V-35, 297-316, 1997.5

Q3-16. 地盤層の間にユニバーサルジョイントを入れて計算する場合「要素厚」にはどの程度の値を入力した らよいか?また計算時、どのように影響するか?

- A3-16. 外部からの荷重が直接間接に要素に作用したとき、 要素厚が薄いと要素内部に発生する応力は大きくなる 要素厚が厚いと要素内部に発生する応力は小さくなる、 という挙動になります。 したがって、地盤要素の厚みよりも薄く(あるいは厚く)する目的が特にない場合は、ジョイントを挟む 地盤要素の厚みと同じ厚みにすればよいと考えます。
- **Q3-17**. Newmark 法の積分パラメータは γ=1/2、β=1/4 がよく用いられるが、UC-win/WCOMD が γ=0.70、 β=0.36 を内部で固定して使用している理由は?
- A3-17. 高周波ノイズを除去する目的で Newmark 法のパラメータを ℱ0.7、 & 0.36 とされています。 文献[1]p.108 に、Newmark 法は ℱ0.7、 & 0.36 を用いてもよいとされており、その照査例である文献 [2]p.50 では解析事例が掲載されております。

文献:

[1] 土木学会:原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル、2005/06 [2] 土木学会:原子力発電所屋外重要土木構造物の耐震性能照査指針<照査例>、2005/06

Q3-18. 解析結果で表示される平均応力、平均歪および偏差応力、偏差歪はどの要素のものか?

- A3-18. 平均応力、平均ひずみ、偏差応力、偏差ひずみは要素全体の結果を平均した量です。 モデル内にある全ての RC 要素と無筋コンクリート要素が空間平均化の対象です。 詳細については、誠に申し訳ございませんが、ヘルプの 「UC-win/WCOMD ガイド | 解析結果」 をご一読いただきますようお願い致します。
- Q3-19. Ver.2.0.0 改訂履歴に「土材料に非排水状態オプションが追加されました。これにより、液状化を考慮 した地盤応答解析が可能です。」とあるが、どのようにして液状化を考慮しているか

A3-19. 詳細については、ヘルプ「エンジニアリングノート | 間隙水(土粒子)の排水条件」に紹介している文 献: [1]牧 剛史,前川宏一,半井健一郎,平野勝識:液状化を生じる地盤中における RC 杭基礎の非線 形応答に関する研究, 地盤工学会 液状化地盤中の杭の挙動と設計法に関するシンポジウム論文集,pp.285-290,2004.12 をご覧いただくことになります。この中で「(3)間隙水の移動を考慮しない場合(完全非排水)」が UC-win/WCOMD のモデルに該当いたします。 また、Ver.2.00.00の液状化に関する機能追加につきましては、その内容をヘルプ「Ver2.00.00 について~東京大学コンクリート研究室より~」に掲載しています。

UC-win/WCOMD は、鉄筋コンクリート構造物の非線形挙動が主な対象なので、液状化問題に関しては上記ヘルプの「…試験的に取り入れており、…」や「…地盤液状化の厳しい状態に対応…」に相当 する機能とお考えください。

Q3-20. 収束計算の方法は?

A3-20. UC-win/WCOMD では以下のとおりです。 1) 収束計算の手法 Newton-Raphson 法と修正 Newton-Raphson 法を組み合わせた手法です。

2)繰り返し計算時の反復回数
 12回です。不平衡力は次のステップに持ち越しています。

3) 収束判定基準

収束判定は、正規化された残差カノルムとそれに対応する変位ノルム、となります。 収束基準は、10[^]-6 です。

- Q3-21. 地盤とRC構造物を一体にしてモデリングして解析した際、構造物と地盤の間に隙間(構造物の不連続面)が生じる場合があるが、どれくらい隙間があるかを計測することはできるか
- A3-21. 構造物と地盤の間にユニバーサルジョイントを配置している場合は、二重節点になっていいますので、地盤側の節点と構造物側の節点のそれぞれの変位を取得して、別途差をとれば、それが隙間となります。

4 出力及び表示

5 その他

Q5-1. Administrators 権限がない PC では利用できないか?

A5-1. UC-win/MESHとUC-win/WCOMDはCOMインターフェースを介して通信しているため、インストール時だけでなく起動時にもAdministratorsの権限が必要です。Administrators権限がないユーザアカウントでは、UC-win/MESHを起動するときやUC-win/WCOMDを起動するときにAdministrators権限(パスワード)が要求されます。

ユーザー アカウント制御 (UAC) を「通知しない」に設定されている場合は起動が可能です(ただし、 UAC を通知しない設定は推奨されておりません)。

※ユーザアカウント制御とは Windows に搭載されているセキュリティ機能の一つです。

「通知しない」と設定すると事実上 UAC を無効にしたことになります。この場合、PC は潜在的なセキュリティ上のリスクにさらされます。そのため OS が推奨していないようです。

Q&A はホームページ <u>http://www.forum8.co.jp/faq/ucwin/winwcomdqa.htm</u> にも掲載しております。

UC-win/WCOMD Ver.2 操作ガイダンス

2015年 12月 第5版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

本プログラム及び解説書についてご不明な点がありましたら、必ず文書あるいはFAX、 e-mailにて下記宛、お問い合せ下さい。また、インターネットホームページ上の Q&A集もご利用下さい。なお、回答は9:00~12:00/13:00~17:00(月~金) となりますのでご了承ください。

	ホームページ	www.forum8.co.jp
お問い合せ先	サポート窓口	ic@forum8.co.jp fax 0985-55-3027

本システムを使用する時は、貴社の業務に該当するかどうか充分のチェックを行った上でご 使用下さい。本システムを使用したことによる、貴社の金銭上の損害及び逸失利益または 第三者からのいかなる請求についても、当社はその責任を一切負いませんのであらかじめ ご了承下さい。 UC-win/WCOMD Ver.2

www.forum8.co.jp