VR 3D·CG FEM CAD Cloud UC-1 series UC-win series Suite series

PCボックスカルバートの 設計計算 Ver.3

Operation Guidance 操作ガイダンス

本書のご使用にあたって

本操作ガイダンスは、おもに初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

ご利用にあたって ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2020 FORUM8 Inc. All rights reserved.

目次

5	第1章 製品概要
5	1 プログラム概要
7	2 フローチャート
8	第2章 操作ガイダンス
8	1 モデルを作成する
8	1-1 初期入力
9	2 入力
9	2-1 初期入力
10	2-2 形状
12	2-3 材料
13	2-4 基礎
14	2-5 荷重
15	2-6 配筋
18	2-7 考え方
20	3 計算確認
20	3-1 断面方向
45	3-2 FRAME
48	4 計算書作成
48	4-1 結果一覧
50	第3章 Q&A
50	1 適用範囲、制限条件
52	2 荷重
54	3 配筋
55	4 断面照查
59	5 その他

第1章 製品概要

1 プログラム概要

概要

道路下に埋設される水路および通路用に広く利用されるPCボックスカルバートの設計をサポートするプログラムです。 対象とするPCカルバートは、頂版、底版はPC鋼棒を使用したポストテンション方式のプレストレストコンクリート部材以下、 PC部材)、側壁は鉄筋コンクリート部材(以下、RC部材)となります。

形状

単ボックスで標準形/インバート形

ハンチ

上下それぞれにおいて寸法指定可(ハンチ無しも可)

土被り

舗装厚、盛土厚それぞれ入力

基礎

直接基礎のみ。

材料

PC鋼棒は下表のものを予め用意。また任意のものも直接入力可

PC鋼棒の種類	A種	2号	SBPR 785/1030
	B種	1号	SBPR 930/1030
		2号	SBPR 930/1180
	C種	1号	SBPR 1080/1230
PC鋼棒の種類			9.2、11、13、15、17、19、21、23、26、29、32、36、40

水位

外水位、内水位ともに1ケース設定可

計算内容

1連PCボックスカルバートの断面方向の計算を行います。

・断面方向の検討は、応力度照査 (PC部材、RC部材)、引張鉄筋量の照査 (PC部材)、破壊安全度の照査 (PC部材、RC部 材) を行います。

・活荷重は、T荷重(単軸、2軸)、TT-430荷重を1連ボックスカルバートに自動載荷する機能、荷重強度、作用位置、設置 幅、分布角度を任意に設定できる任意活荷重をサポートしています。

・内空荷重などを任意に設定できる任意死荷重を設けています。

・「共同溝設計指針」、「駐車場設計施工指針」、「下水道施設の耐震対策指針」の応答変位法による地震の検討が可能で す。

・多層地盤での検討が可能です。地盤データは地表面から最大30層まで入力可能です。

・断面力の計算は、微小変形理論に基づく変位法を用いて計算をします。計算を行うためのデータは全てプログラム内部で 自動的に生成されます。

適用基準・参考文献

・道路土エカルバート工指針(平成21年度版)(平成22年3月)社団法人日本道路協会

- ・道路橋示方書・同解説 | 共通編(平成14年3月) 社団法人 日本道路協会
- ・道路橋示方書・同解説IIIコンクリート橋編(平成14年3月) 社団法人 日本道路協会
- ・道路橋示方書・同解説IV下部構造編(平成14年度3月) 社団法人 日本道路協会 (参考文献)
- ・共同溝設計指針 昭和61年3月 (社)日本道路協会
- ・駐車場設計・施工指針 同解説 平成4年11月 (社)日本道路協会
- ・下水道施設の耐震対策指針と解説-2014年版-(社)日本下水道協会
- ・下水道施設の耐震対策指針と解説-2006年版-(社)日本下水道協会
- ·下水道施設耐震計算例-管路施設編-前編 2015年版 (社)日本下水道協会
- ·下水道施設耐震計算例-管路施設編-後編 2001年版 (社)日本下水道協会

2 フローチャート

第2章 操作ガイダンス

1 モデルを作成する

各入力項目の詳細については製品の【ヘルプ】をご覧ください。 (使用サンプルデータ:Sample_5.F9C)

<mark>操作ガイダンスムービー</mark> Youtubeへ操作手順を掲載しております。 PCボックスカルバートの設計計算 操作ガイダンスムービー(7:01)

1-1 初期入力

初期入力 初期入力をチェックして、確定ボタンを押します。

2 入力

画面左に項目ツリーアイテムが縦に並びます。上から順に入力してください。

- CONTRACTO	5-11-14	DC4:
	定部 (3(次口)	王的张 (40)
		(966)EX

入力済みはツリーアイテムを緑色で表示し、未入力およ びデータ不整合箇所はツリーアイテムをピンクで表示し ます。

すべてのデータが入力済みとなると[計算確認] モード ボタンが選択可能となります。

2-1 初期入力

初期入力を行います。

	<u>多層地盤</u> C しない
	- 地震時の検討
で 標準形 C インバート形	- 適用基準(地震時) ○ 下水道施設2006 @ 下水道施設2014
産型活両重 ○ 考慮しない ● 考慮する	-レベル2地豪時の服査 - C しない
や調練の引張力の入力方法 ○引張力を入力 ○引張応力度を入力 ※」、「プロの場合もプレストレッシング直後の値を 「林梨山画面で入力してください。	- 建築し土(地震考慮時) - 「しない」 C する - 埋戻し土の土育定数を用いる項目 - 戸 浩和 「 北斎印 「 広面地設
	-地域区分 (FAI CA2 CBI CB2 CO

初期入力

以下の項目について数値 (選択肢)を変更します。

<PC鋼棒の引張力の入力方法:引張応力度を入力> <地震時の検討:する> <適用基準(地震時):下水道施設2014> <レベル2地震時の照査:する> <埋戻し土(地震考慮時):しない> <地域区分:A1>

※地震時の検討で「しない」を選択した場合は、レベル2地震時の照査、地域区分が選択不可、多層地盤が選択可となります。

(Q1-6参照)

https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q1-6

確定ボタンをクリックします。

2-2 形状

アーチカルバートの形状を設定します。

本体形状

本体の形状を入力します。 以下の項目について数値 (選択肢)を変更します。

左側壁厚 X1	0.200
内空幅 X2	3.000
右側壁厚 X3	0.200
頂版厚 Y2	0.250
内空高 Y3	2.500
底版圧 Y4	0.250

■本体形状

入力範囲は次のとおりです。

- ・部材厚:0.050m~5.000m
- ・内空幅:0.200m~25.000m
- ・内空高:0.200m~15.000m

・底部半径:0.100m~99.999m (インバート形のみ)

確定ボタンをクリックします。

ハンチ形状

ハンチ形状を入力します。 以下の項目について数値 (選択肢)を変更します。

上ハンチ幅	UW	0.300
上ハンチ高	UH	0.300
下ハンチ幅	DW	0.300
下ハンチ高	DH	0.300

■ハンチ形状

入力範囲は次のとおりです。 ・ハンチ幅:0.000m~5.000m < 内空幅/2 ・ハンチ高:0.000m~5.000m < 脚部高/2

確定ボタンをクリックします。

ブロック長を設定します。 以下の項目について数値 (選択肢)を変更します。

<ブロック長 L(m):2.000>

■ブロック長
 ※ブロック長L(m)の入力範囲は
 0.500~30.000(m)です。
 入力後、「確定」ボタンを押下します。

確定ボタンをクリックします。

土被り

土腰り)
<u> </u>	お直土圧序数の算定条件 ○ 通常の地盤 ○ 風性の高い地盤改良をわいパート外部	編 電信度行う場合
<u>عد</u>	音報英厚 (m)	0.200
	盛土厚 (m)	2.800
	给直土庄係数	1.000
	衝撃係数	0.800
	活荷重の低減係数 後輪(%)	90.0
	活荷重の低減係数 前輪(%)	100.0
	浸荷重の(低)均序数(換幅(%)) 浸荷重の(低)対係数(前輪(%))	90.0
	計算 【文理定】 × 取消	? -

土被りを設定します。 以下の項目について数値 (選択肢)を変更します。

<鉛直土圧係数の算定条件:通常の地盤>

舗装厚(m)		0.200
盛土厚(m)		2.800
鉛直土圧係数		1.000
衝撃係数		0.300
活荷重の低減係数	後輪(%)	90.0
活荷重の低減係数	前輪(%)	100.0

(参)	考)

「道路土エカルバート工指針(平成22年3月)社団法人日本道路 協会」(P.98)に鉛直土圧係数の表(解表5-3) (Q5-3参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q5-3

舗装厚、盛土厚を入力後、[計算]ボタンにより、鉛直土圧係数,活荷重の低減係数を内部設定します。 衝撃係数,活荷重の低減係数は、定型1活荷重に対してのみ有効です。

[計算] ボタンにより、次のように内部設定します。

・鉛直土圧係数

a = 1.000

ただし、

・良好な地盤上に設置する場合で土かぶりが10m以上でかつ内空高が3mを超える場合、または ・セメント安定処理のような剛性の高い地盤改良をカルバート外幅程度に行う場合 次のように算出します。

K=土被り厚/カルバート全幅

K < 1.0	1.0≦K<2.0	2.0≦K<3.0	3.0≦K<4.0	4.0≦K
1.0	1.2	1.35	1.5	1.6

衝撃係数

土被り厚<4.0	4.0≦土被り厚
0.3	0.0

・活荷重の低減係数
1)土被り厚≦1.0m且つ内空幅≧4.0mのとき
後輪=100(%),前輪=100(%)
2)1)以外のとき
後輪=90(%),前輪=100(%)

		原地的	2				₩ 18 <u>89</u>	の世人間	朝鮮を算出す	-3	
		地層線	t (6	基盤面	直上の居住	-	6			
			層厚 (m)	土質	MO	(k.N/m ³)	(v sat (kN/mª)	Vsi (m/sec)	(k N/m²)	(k.N/m²)	(度)
支 2 2 2 2 7/30 17/30		1	0.500	砂質	2.0	18.00	19.00	100.79		0.0	20.00
第 198 80% 100 17.00 14.422 18.8 0 4 15.88 15.95 10.0 17.84 11.80 17.25 0.0 2.0 5 10.0 17.84 11.80 17.66 12.0 0.0 2.0 8 46.66 15.95 12.00 17.34 18.00 182.15 0.0 2.0 5 10.0 17.34 18.00 182.15 0.0 2.0 5 10.0 17.34 18.00 182.15 0.0 2.0 5 10.0 12.00 17.34 18.00 182.15 0.0 2.0 5 10.0 12.00 19.00 182.15 0.0 2.0 12.0<		2	2.800	砂質	5.0	17.00	18.00	136.80		0.0	24.00
第 3.338 特別 10.0 7.28 0.0 22.25 0.0 22.20 10.38 17.80 12.25 0.0 22.3 10.38 17.80 12.25 0.0 22.3 10.38 17.80 12.25 0.0 22.3 0.38 17.80 12.25 0.0 22.3 0.38 17.80 12.35 0.0 26 第 4.006 第/算 12.0 17.70 18.00 153.15 0.0 26 第 4.006 第/算 12.0 17.70 18.00 153.15 0.0 26 第 10.1 12.8 0 12.8 0 12.8 0.0 26 第 10.1 12.8 0 12.8 0.0 26 12.8 0.0 26 第 10.1 12.8 0 12.8 0 12.8 0 26 10.1 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8		3	1900	粘性	3.0	16.00	17.00	144.22		18.0	0.00
第 12200 地位 2.0 13.00 17.00 125.60 12.20 0.0 2.20 0.00 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 <t< td=""><td></td><td>1</td><td>3 3 00</td><td>砂質</td><td>10.0</td><td>17.00</td><td>18.00</td><td>172.35</td><td></td><td>0.0</td><td>27.00</td></t<>		1	3 3 00	砂質	10.0	17.00	18.00	172.35		0.0	27.00
事業単価型の約約パアンだおッシロ 事業単価型の約1123.15 0.0 28 第14(1):3000		5	12.200	粘性	2.0	16.00	17.00	125.99		12.0	0.00
本部 (1) 2 28 (1) 2		5	4.000	砂質	12.0	17.00	18.00	183.15		0.0	28.00
は407時在前で30世紀入力する TGGの 0700 X地画面からの深ま 出用約数 (×TG)し1地間時用: 1290 12地間約数 (×TG)に1地間時用: 2200											
	(10) 〒 州 (1):2200 地名 100:24200 北京 100:24200 地名 100:24200 地名 100:142		5 同地整整 で 7 加重型 で VDV2 で 入力 に なります。	の動的# 単均に正 11による計 直を使用 3 3 4 4	ドアル 当計算 (下水県	北 vD 潘登徳間 ざ使用 ッD 遠のvD [0.489	表層机 で計 ED ED	2887年107支 夏信を使用 (L1地震時) (L2地震時)	形体数 ED ○ 入力値 82706 24494	老使用 306 kN/

地盤の入力を行います。 以下の項目について数値 (選択肢)を変更します。

<地層数:6>

<基礎面直上の層番号:6> <表層地盤の動的ポアソン比:加重平均による計算例を使用

>

<水位Hw(m):5.200>

<表層地盤の動的変形係数:計算値を使用>

「地盤のせん断強度を算出する」がチェックされている場合、
 地盤のせん断強度を算出し、地震時周面せん断力の上限値とします。このとき、粘着力c、地盤の内部摩擦角φが入力可能となりますのでc、φも入力してください。
 (Q4-18参照)

https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q4-18

	層厚(m)	土質	N値	γt(kN/m)	γsat(kN/m³)	Vsi(m/sec)	a ∙Eo(kN/m)	c(kN/m)	<i>φ</i> (度)
1	0.500	砂質	2.0	18.00	19.00	100.79	-	0.0	20.00
2	2.800	砂質	5.0	17.00	18.00	136.80	-	0.0	24.00
3	1.900	粘性	3.0	16.00	17.00	144.22	-	18.0	0.00
4	3.300	砂質	10.0	17.00	18.00	172.35	-	0.0	27.00
5	12.20	粘性	2.0	16.00	17.00	125.99	-	12.0	0.00
6	4.000	砂質	12.0	17.00	18.00	183.15	-	0.0	28.00

2-3 材料

Г

0345 N/mm² N/mm² N/mm²	345.0 40.00 3.10 2.80 20.00		●1号 SBPI mm <u>*</u> ●1号 SBPI ●1号 SBPI ●1号 SBPI mm <u>*</u> ●1号 SBPI	R 1080/1231] R1080/1230 R 1080/1230] R1080/1230	21mm 21mm 21mm (金で174	本当日の入
N/mm² N/mm² N/mm²	\$45.0 40.00 3.10 2.80 20.00	呼び名: 2 例材名称: Ci 底板 種類:記号: Ci 呼び名: 2 渦材名称: Ci	mm <u>▼</u> 11号 SBPF 11号 SBPF 11号 SBPF 11号 SBPF] R1080/1230 R 1080/1231] R1080/1230	21mm) 21mm (全て12	転当りの入
N/mm² N/mm²	40.00 3.10 2.80 20.00	 画版 通貨・記号: C: 時び・名: 2: 鋼材 名称: C: 	重1号 SBPI mm <u></u> 重1号 SBPF	R 1080/1281] R1080/1280	21mm (全て12	お当日の入
N/mm² N/mm²	40.00 3.10 2.80 20.00	種類・記号: ○ 呼び名: 2 鋼材名称: ○	重1号 SBPI mm 重1号 SBPF	R 1080/1281] R1080/1280) • 21mm (全て14	転送しの入
N/mm ²	3:10 2:80 20.00	呼び名:2 鋼材名称: C	nm <u>*</u> 重1号 SBPF] RI080/1280	21mm (全て1月	「皆りの入
	2.80 20.00		175 adri		21mm (全て12	お当日の入
	20.00				く全て12	大のし皆は
					TOPE	
		大学を設定	σm	N/mm ²	1912	JAREDR 1230.0
kN/mª	22.50	総件も確定	CT DN	N/mm ²	1030.0	1030.0
kN∕m³		引張広力度	ant	N/mm ²	8510	8610
kN/m³		HETERA	An	0.02	34540	345.40
kN/m ³	24.50	リラクセーション	Ξ Y	36	3.00	3.00
kN∕m³	10.00	opt: ブレストレ 有効プレス	シング直向 Fレスカは	8の引張応7 の引張応7)度 証します。	
		ヤング係数 *10	Ep	N/mm²	2.00	
		<u>I</u>				
	kN/m ³ kN/m ³ kN/m ³ kN/m ³	KIV/m3 22.30 KIV/m3	KNUm ³	ARONA 2224 HAV/A3 22450 HAV/A3 2450 HAV/A3 2450 HAV/A3 HAV/A3 2450 HAV/A3	NO (h) 22.30 N/en2 KN/h3 21.30 N/en2 KN/h3 3/BC/h1g Oct N/en2 KN/h3 13.00 D/5/C - 2h2年 Y M U/D/C - 2h2年 Y M G M U/D/C - 2h2年 Y M G M M U/D/C - 2h2年 Y M G G G M M G M	KN/m ³

鋼材・コンクリート・単位重量

今回は変更する点はありません。

■材料

鉄筋、コンクリートの使用材料、単位重量を設定してください。

・コンクリートのヤング係数Ecは、下表によりσckに応じた 値を初期設定しています。

表中にない σck が入力されたとき、 直線補間により求めています。

設計基準強度	21	24	27	30	40	50
$\sigma ck (N/mm^2)$						
ヤング係数	2.35	2.5	2.65	2.8	3.1	3.3
Ec(*104 N/m㎡)						

・指定されたコンクリート設計基準強度,鉄筋材質から「許容値」を自動的に設定します。

設定した許容値を変更する場合は、「許容値」画面で変更してください。

・水位以深の土の単位重量は、γsat-γwにより算出しています。

・多層地盤の場合、盛土(湿潤、飽和)の単位重量は、

「形状」-「地盤」画面で設定された値を用いるため、入力不可となります。

・PC鋼棒の引張強度 σ pu、降伏強度 σ py、引張応力度 σ ptは

下表により鋼棒種に応じた値を初期設定します。

任意の鋼材種が選択された際には0を初期設定します。

PC鋼棒G	の種類	引張強度	降伏強度	引張応力度
		σ pu(N/mm ²)	σ p y (N/mm ²)	σ pt(N/mm ²)
A種2号	SBPR 785/1030	1030	785	667
B種1号	SBPR 930/1080	1080	930	756
B種2号	SBPR 930/1180	1180	930	790
C種1号	SBPR 1080/1230	1230	1080	861

材料係数・コンクリート	Υr	1.00			
・鋼材	Υs	1.00			
部材係数・曲げ耐力	Υb	1.00			
・せん断附力・コンクリート	Υb	1.00			
・鋼材	Υb	1.00			
荷重採敷	+	1.00			
構造物解析係数	Тà	1.00			
構造物係数	γi	1.00			

変更する点はありません。

確定ボタンをクリックします。

2-4 基礎

地震時バネ

以下の項目について数値 (選択肢)を変更します。

計算ボタンをクリックします。

数値が変更されたのを確認します。 底版バネ kN/m^{*}/m

	レベノ	レ1 レ^	ベル2		
kv	1903	7.354 743	6.466		
k s B	6345	.721 247	8.797		
側壁/	バネ				kN/m²/m
No	層厚		ベル1	レ^	ミノレ2
	(m)	kH	kss	kH	kss
1	2.750	21575.668	7191.817	8427.995	2809.304

確定ボタンをクリックします。

■地震時バネ

奥行き1m当りの以下のバネ値を入力してください。

・側壁の水平方向およびせん断バネ

・底面の鉛直方向およびせん断バネ

形状などが変更された場合は、自動的に計算しませんので、

「計算」ボタンを押してバネ値を計算してください。

ボタン押下によりバネ値を内部計算することが可能です。 形状などが変更された場合は、自動的に計算しませんので、「計算」ボタンを押して バネ値を計算してください。

2-5 荷重

死荷重

死荷重を入力します。

今回は変更する点はありません。 確定ボタンをクリックします。

■死荷重

・水位データは、外水位と内水位を組合せて入力してください。

・路面荷重qdは死荷重として扱います。鉛直土圧および水平 土圧算出に用います。

水位ケース

最大5ケースの設定が可能です。 (Q2-9参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q2-9

※雪荷重について (Q2-11参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q2-11

定型活荷重

検討ケース

定型活荷重を入力します。

今回は変更する点はありません。 確定ボタンをクリックします。

■定型活荷重

単BOXを対象とした定型活荷重(鉛直荷重),水平活荷重の 荷重状態を設定します。 水平活荷重は入力された荷重強度に「考え方」で設定される水 平土圧係数を乗じて算出します。

※群集荷重について

Q2-12参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q2-12

検討ケースを入力します。

今回は変更する点はありません。 確定ボタンをクリックします。

■検討ケース

・死荷重と活荷重の組合せについて、検討ケースを設定します。

・活荷重ケース数が0のときは画面は開きません。

・死荷重ケースは、「死荷重」で設定したケースで、任意死荷重 を考慮するように指定されているときは任意死荷重も同時に 載荷します。

・活荷重ケースは、定型活荷重と任意活荷重と任意活荷重(縦 断方向)の合計で、ケース番号は定型活荷重,任意活荷重,任 意活荷重(縦断方向)の順になっています。

地震荷重

地震荷重を入力します。

慣性力の向き

チェックされた向きの地震時ケースを検討対象とします。両方 向の同時計算が可能です。 (Q1-20参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q1-20

以下の項目について数値 (選択肢)を変更します。

設計水平震度 <レベル1:下水道施設の耐震対策指針> <レベル2:下水道施設の耐震対策指針> 計算ボタンをクリックします。

設計応答速度

<レベル1:下水道施設の耐震対策指針(共同溝設計指針)> <レベル2:下水道施設の耐震対策指針> -計算ボタンをクリックします。

確定ボタンをクリックします。

2-6 配筋

配筋の設計を行います。

頂版外側

	鉄筋径 D13	ブロック長当り 本数 10	鉄筋量 (cm²)
0	D13	10	
	22		1967
	DU	0	12.07
	D13	10	10.07
	D0	0	12.07
	D13	10	10.07
	D0	0	12.07

断面方向配筋データ(頂版外側)を入力します。

以下の項目について数値 (選択肢)を変更します。

配筋

	鉄筋径	ブロック長当り	鉄筋量(c㎡)
		本数	
	D13	10	12.67
U	D0	0	12.07
٦	D13	10	12.67
2	D0	0	12.07
0	D13	10	12.67
9	D0	0	12.07

■頂版外側

設計断面ごとに鉄筋径とブロック長あたりの本数を入力してく ださい。

いずれの断面においてもかぶりは部材厚の1/2より小さい値 を入力してください。

引張側に鉄筋が入力されていない場合、計算を中断します。

頂版内側

		鉄筋径	ブロック長当り 本数	鉄筋量 (cm²)
		D13	10	
	0	D0	0	12.67
lik di		D13	10	10.07
	0	D0	0	12.67
		D13	10	19.67
	9	D0	0	12.07
のかぶり J (cm) 3.5				

断面方向配筋データ(頂版内側)を入力します。

以下の項目について数値 (選択肢)を変更します。

配筋

	鉄筋径	ブロック長当り	鉄筋量(c㎡)
		本数	
	D13	10	12.67
\bigcirc	D0	0	12.07
	D13	10	12.67
2	D0	0	12.07
0	D13	10	12.67
9	D0	0	12.07

■頂版内側

設計断面ごとに鉄筋径とブロック長あたりの本数を入力してく ださい。

いずれの断面においてもかぶりは部材厚の1/2より小さい値 を入力してください。

引張側に鉄筋が入力されていない場合、計算を中断します。

底版外側

(]		鉄筋径	ブロック長当り 本数	鉄筋量 (cm²)
	•	D13	10	10.07
	U U	D0	0	12.67
		D13	10	10.07
		D0	0	12.07
		D13	10	10.07
6		D0	0	12.07
ගත්රුවේ J (cm) <u>8.5</u>	_			

断面方向配筋データ(底版外側)を入力します。

以下の項目について数値 (選択肢)を変更します。

配筋

	鉄筋径	ブロック長当り	鉄筋量(c㎡)
		本数	
	D13	10	12.67
(1)	D0	0	12.07
0	D13	10	12.67
2	D0	0	12.07
0	D13	10	12.67
9	D0	0	12.07

■底版外側

設計断面ごとに鉄筋径とブロック長あたりの本数を入力してください。

いずれの断面においてもかぶりは部材厚の1/2より小さい値 を入力してください。

引張側に鉄筋が入力されていない場合、計算を中断します。

底版内側

F1		鉄筋径	ブロック長当り 本数	鉄筋量 (cm²)
		D13	10	
	U U	D0	0	12.67
@ 3	0	D13	10	12.67
		D0	0	
		D13	10	19.67
		D0	0	12.07

断面方向配筋データ(底版内側)を入力します。

以下の項目について数値 (選択肢)を変更します。

配筋

	鉄筋径	ブロック長当り	鉄筋量(c㎡)
		本数	
	D13	10	12.67
(1)	D0	0	12.07
	D13	10	12.67
2	D0	0	12.07
0	D13	10	12.67
9	D0	0	12.07

■底版内側

設計断面ごとに鉄筋径とブロック長あたりの本数を入力してく ださい。

いずれの断面においてもかぶりは部材厚の1/2より小さい値 を入力してください。

引張側に鉄筋が入力されていない場合、計算を中断します。

側壁を入力します。

以下の項目について数値 (選択肢)を変更します。

配筋

	鉄筋径	ブロック長当り	ブロック長当り
		本数	鉄筋量(c㎡)
	D19	10	20 65
\bigcirc	D0	0	20.03
	D19	10	20.65
2	D0	0	28.05
0	D10	10	712
9	D0	0	7.15
	D10	10	712
4	D0	0	7.15

■側壁

設計断面ごとに鉄筋径とブロック長あたりの本数を入力してく ださい。

いずれの断面においてもかぶりは部材厚の1/2より小さい値 を入力してください。

引張側に鉄筋が入力されていない場合、計算を中断します。

PC鋼棒

PC鋼棒を入力します。

以下の項目について数値(選択肢)を変更します。

	本数(本)	偏心量e(m)
頂版	10	0.010
底版	10	0.010

■PC鋼棒

横方向のPC鋼棒の本数と部材中心からの偏心量を入力してく ださい。

偏心量は内側をプラス(+)、外側をマイナス(-)で入力してく ださい。

偏心量は頂版および底版それぞれの部材厚/2未満の値を入力 してください。

側壁

ff-				鉄筋徑	ブロック長当り 本校	プロック長当り 鉄筋壁 (cm ²)	奥行き1m当り 武防星 (cm ²)	與行言1m当4 必要铁筋型 (cm ²)	
				D19	10	19.85	12.00		
-3		@@	w.	D0	0	20.00	16.50		
			0	D19	10	19.55	11.99		
La L		0	D0. 0		28.00	14.60			
and the second s				D10	10	310	0.62		
0.65-02-02				D0	0	r.13	3.57		
575-359				D10	10				
期经外间	cm	3.5		D0	0	1.15	3.57		
制题内创	cm	3.5				外側鉄筋	21155		
2005-32-1 3825-749 cm 9.5 3825-749 cm 9.5 3825-749 cm 9.5 3825-749 cm 9.5				(• 本画語)	のの命を使用				
開始外側	om	3.5				○ 頂底は	原外側の増部鉄線	(1)(1)を使用	

せん断補強鉄筋

	鉄筋量Aw (cm²/m)	間隔 (cm)
頂版	0.000	25.0
底版	0.000	25.0
左側壁	0.000	25.0
占側壁	0.000	25.0

2-7 考え方

基本・荷重

本・荷重				
水平土庄係数		一地盤反力度の計算方法		
左側	0.500	(* BISENE	⊂ 全幅	
右側	0.500	ー水平力の差分を底版部 (* しない)	村に分布荷重とし (^ する	て載荷する
50%の自重の考え	法 他	-B0Xの自重の考え ● ①回録色部分	方 の重量を頼録高に	G) 可決, 太信を登続別に設荷する
	۵	○ ②回録色部分で	のみを考える	
		 		
	ø	BOX全幅で算出し、 で 考慮しない	ビギカについての 2除した値を載荷 見で除した値を載荷	考え方 可
活商重作用位置 <u>地表面</u>	Pv	- 活荷重T酸反での 「調販天端」。	の作用位置 「作用する	 ・活首重による創圧の考え方 ・ ・ ・
	1		作用する	○ 分布荷重に係わらず一定値
and and the second	PI+i	PH	単位;kN/m ²	☑ 分布活荷重(制限土被引以上)の 側田は考慮
	-	左側	0.0	
Рн		右肌	0.0	
				✓ 確定 X 取消 ? ヘルフ¹

せん断補強鉄筋を入力します。

今回は変更する点はありません。

確定ボタンをクリックします。

■せん断補強鉄筋

奥行き1m当たりのせん断補強鉄筋量Awとせん断補強鉄筋の 間隔(断面方向の間隔)を入力してください。

※せん断補強鉄筋の計算はRC部材の側壁のみ行います。また、レベル2地震時の検討を行う場合、せん断耐力照査にも用います。(この時、左右側壁の他に頂底版も入力可能となります。)

(Q3-6参照)

https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q3-6

各値を設定します。

<底版自重:考慮する>

確定ボタンをクリックします。

■基本・荷重

地盤反力度の計算方法

・軸線幅:骨組モデルに載荷される荷重を集計し、骨組軸線幅 を用いた地盤反力度を算出

支点に鉛直反力が生じません。

・全幅:BOX全幅, 全高に作用する荷重を集計し、BOX底面 全幅を用いて地盤反力度を算出

作用荷重と地盤反力とが一致せず、その差が支点鉛直反力となります。

水平力の差分を底版部材に分布荷重として載荷

左右の水平力に差がある場合、ピン支点に水平反力が生じま す。「する」が選択されている場合、左右の水平力の差を底版 部材に分布荷重として載荷し、支点反力が生じないようにしま す。

底版自重

無視とされたとき、底版自重および底版自重による地盤反力 度を無視します。ただし、地盤反力度の計算方法が「軸線幅」 の場合、底版自重を考慮しても地盤反力で完全に相殺されま すので、底版自重を無視した場合と結果が一致します。 活荷重作用位置を選択、入力

・活荷重頂版上での分布荷重を計算する位置および活荷重に よる側圧の取扱いを設定します。

・活荷重による側圧の考え方について、「分布荷重に係わらず 一定値」のとき、その荷重強度PHを入力してください。「分布 活荷重が作用しても無視」のときでも「分布活荷重(制限土被り 以上)の側圧は考慮」がチェックされている場合は、制限土被 り以上の場合に路面に等分布荷重として載荷する分布活荷重 による側圧を考慮します。

応力度照査

(前)	── 」 」 せんじ師打の算出方法 〈レベル2地雷時堅査用〉──
○単鉄筋 ◎ 複鉄筋	□準拠基準(コンクリート標準示方書)
※曲げ応力度計算。曲げ耐力計算で参照	○ 2002年 ● 2007年
2	◎ n值出方法
1ノナのお客	Mud=2Md C Mud=Mud
	「プレストレス力を考慮(PC部材)
さんにから力度時間における形容	(Util) (735
※公配1:nよりゆるやかな部分を有効として計算します。	
Phillip Dyrestanta and Doro Create	
2C部材(1頁應版)のMu算出時《破壊安全度照査用》	
● 軸力無視 ● 軸力考慮	· BMANUELOPOEMARES/ 20/02/2
PC各科オのMuの低流係数 0.7	▼ 通示IV、土工指計(H21)の方法で照査
	せん新興査位置(ROB)材)
最小鉄能量照查(RC部材)	○ 漏角部格点と2d点 …①
「行わな」	◎ 部材内面から部材高/2の位置③
* 112 〒 今体用鉄施長A-5- 国際鉄協委長(制鉄施時)	のの時:土工指計(H.11)
● 王 1元中国大阪の王 AS - 江口語大阪 ち 地(中国大阪が中)	
後へぶに明白重要な重くれい当時4) 「 行きわたれい	ONT CHECK 20
 לח 	世人断膜査の有効高
	□ ○ 外側鉄筋 ● 曲げの向きに応じる
新丁的力頻置(レベル2地震時頻置用) 	せん地理査(PG部材)の現角部の実際係数
▶ ハンチ増も調査	C 2575 C K575
	1 × k = 1 + No/Md 5 9
	Ma: 有効プレストレスによる応力度が溶解物価の
	引張後で等となる曲げモーズント MALL 然早満新時の地域の、これは
	100:00/20101至04023303年一次24
	付着応力度の照査
	(L/4C) (* 3-5

各値を設定します。

曲げ耐力照査(レベル2地震時照査用)

<ハンチ端も照査:チェックボックスにチェックを入れる>

・N一定:Md, Nd点を通り水平軸(M軸)に平行な線がNM曲線 と交差する位置でMuを算出します。

・(M/N)一定:原点OとMd, Nd点を結ぶ線がNM曲線と交差する位置でMuを算出します。

(Q4-1参照)

https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q4-1

せん断耐力の算出方法(レベル2時照査用) <準拠基準(コンクリート標準示方書):2007年> <プレストレス力を考慮(PC部材):する>

せん断照査位置(PC部材)

<部材内面から部材高/2の位置…②> <道示IV,土工指針(H21)の方法で照査:チェックボックスに チェックを入れる>

確定ボタンをクリックします。

■応力度照査

- せん断耐力の算出方法(レベル2地震時照査用)
- ・準拠基準(コンクリート標準示方書)を選択します。
- ・ β n算出方法を選択します。

・プレストレス力を考慮 (PC部材) を選択します。 PC部材のせん断耐力算出において、βn算出に用いるMo (設計曲げモーメントMdに対する引張縁において、軸方向力によって発生する応力を打ち消すのに必要な曲げモーメント) および Mud (軸方向力を考慮しない純曲げ耐力) についてプレストレ ス力を考慮に含めて算出するか否か設定してください。

せん断照査位置

・PC部材

「道示IV, 土工指針(H21)の方法で照査」 がチェックされてい る場合、道示IV, 土工指針(H21)による方法で照査します。

・RC部材

「隅角部格点と2d点」を選択した場合、土工指針(H11)に記載の方法で照査します。

「部材内面から部材高/2の位置」を選択した場合、道示IV, 土工指針(H21)による方法で照査します。

(Q4-2参照)

https://www.forum8.co.jp/faq/win/PCBOX2-ga.htm#q4-2

3 計算確認

計算結果を一覧表および図により出力します。計算結果を確認してください。許容値を超えた項目はツリーアイテムをピンク 色で表示しています。入力データの変更が必要な場合は、入力モードに移行してデータの変更を行い、[計算確認] により再 計算を行います。

3-1 断面方向

総括表、部材ごとの照査結果、断面力図、安定計算を表示します。

総括表

ー計算確認画面に移ります。 総括表をクリックします。

	輕責位置	(มใน	5 12)	0	1/m	1)	0	w.Tm	æ					
	左隅角部	4.43	≦	15.00	2.81	\geq	0.00								
	ハンチ端	8.89	≦	15.00	9.25	≧	0.00								
-	て点							0.922	≦	0.744					
版	支間部	8.01	≦	15.00	2.19	2	0.00								
	て点							0.922	≦	0.744					
	ハンチ端	8.89	≦	15.00	9.25	2	0.00								
	右隅角部	4.43	≦	15.00	2.81	2	0.00								
	左隅角部	4.17	S	15.00	9.18	2	0.00								
	ハンチ端	7.18	≦	15.00	9.11	2	0.00								
-	マ点							0.970	5	0.744					
版	支間部	8.67	5	15.00	1.00	2	0.00								
	マ点							0.376	1	0.744					
	ハンチ端	7.18	≤	15.00	3.11	2	0.00								
	右隅角部	4.17	1	15.00	9.18	2	0.00								

応力度	死荷重時

		-	1 2			
	照查位置	(W/m2)	(Wint)	(11/m)		
	左隅角部	4.35 ≤ 15.00	2.93 ≥ -1.50			
	ハンチ端	7.11 ≤ 15.00	3.08 ≥ -1.50			
_	て点			0.419 ≤ 0.752		
	支間部	9.28 ≤ 15.00	0.88 ≧ -1.50			
	て点			0.413 ≤ 0.752		
	ハンチ端	7.11 ≤ 15.00	3.08 ≧ -1.50			
	右隅角部	4.35 ≤ 15.00	2.93 ≥ -1.50			
	左隅角部	4.09 ≤ 15.00	3.28 ≥ -1.50			
	ハンチ端	7.38 ≤ 15.00	2.95 ≥ -1.50			
	マ点			0.469 ≤ 0.752		
長市	支間部	9.94 ≤ 15.00	0.33 ≧ -1.50			
	マ点			0.469 ≤ 0.752		
	ハンチ端	7.38 ≤ 15.00	2.95 ≥ -1.50			
	右隅角部	4.09 ≤ 15.00	3.28 ≥ -1.50			
	上端部	$9.82 \leq 14.00$	72.65 ≤ 180.00			
	ハンチ端	5.29 ≤ 14.00	80.42 ≤ 180.00			
÷	て点			0.219 ≤ 0.825		
前	支間部	$1.08 \leq 14.00$	-13.57 ≥ -200.00			

応力度 設計荷重時

	照查位置	(л и/п	6 n2)	ő	t/n	б з а)	0	T mt)			
	左隅角部	5.65	\leq	22.50	1.48	≧	-2.25					
	ハンチ端	8.99	\leq	22.50	1.27	≧	-2.25					
100	て点	-						0.395	≤ 1.129			
調	支間部	8.21	\leq	22.50	1.91	≧	-2.25					
-	て点							0.395	≤ 1.129			
	ハンチ端	8.99	\leq	22.50	1.27	≧	-2.25					
	右隅角部	5.65	\leq	22.50	1.48	≧	-2.25					
	左隅角部	5.58	\leq	22.50	1.59	≧	-2.25					
	ハンチ端	9.55	\leq	22.50	0.90	≧	-2.25					
-	て点	-						0.468	≤ 1.129			
版版	支間部	8.86	\leq	22.50	1.38	2	-2.25					
	て点	-						0.488	≤ 1.129			
	ハンチ端	9.55	\leq	22.50	0.90	2	-2.25					
	右隅角部	5.58	\leq	22.50	1.59	2	-2.25					
	上端部	5.97	\leq	21.00	198-09	5	900-00					
	ハンチ端	8.61	S	21.00	101.30	5	300.00					
左	て点	-						0.290	≤ 0.879			
阋	支間部	1.45	\leq	21.00	-14.49	\geq	-300.00					

	昭吉位居	(~i-Md)/Mud	(~ 1-1(d) /1(vd	-
	大隅角彩	0.278 ≤ 1.000		
	いつチ端	0.334 ≤ 1.000		
	て占		0.439 ≦ 1.000	
IE	支間部	0.307 ≦ 1.000		
nik.	て点		0.439 ≦ 1.000	
	ハンチ端	0.334 ≦ 1.000		
	右隅角部	0.278 ≦ 1.000		
	左隅角部	0.320 ≦ 1.000		
	ハンチ端	0.387 ≦ 1.000		
-	て点		0.508 ≦ 1.000	
馬筋	支間部	0.348 ≦ 1.000		
	て点		0.508 ≦ 1.000	
	ハンチ端	0.387 ≦ 1.000		
	右隅角部	0.320 ≦ 1.000		_
	上端部	0.521 ≦ 1.000		
	ハンチ端	0.657 ≦ 1.000		
去	て点		0.377 ≦ 1.000	
0	支間部	0.104 ≦ 1.000		
Ŧ	て点		0.495 ≦ 1.000	
	ハンチ端	0.711 ≦ 1.000		

応力度 レベル1地震時

耐力

引張鉄筋量

D.B	:果薙認(凹 毛)耐力 :	面方向: 引張鉄節	(総括表) (量) 破壊	(計算単位 安全度	S [单位]			-	
	照查位置	tota (kN+n)	Mu (kilini)	Mu/Ma					
	左端部	-62.4	-298.6	4,785					
-	ハンチ端	-14.9	-142.6	9.574					
間販	支間部	95.3	168.4	1.768					
	ハンチ端	-14.9	-142.6	9.574					
	右端部	-62.4	-298.6	4.785					
	左端部	-73.2	-300.2	4.104					
-	ハンチ端	-18.4	-143.8	7.812					
臣	支問部	105.8	169.5	1.601					
- me	ハンチ端	-18.4	-143.8	7.812					
	右端部	-73.2	-300.2	4.104					
	上端部	-62.4	-167.1	2.678					
左	ハンチ端	-41.3	-95.1	2.304					
Ō.	支間部	7.8	39.2	5.014					
r	ハンチ端	-46.1	-96.7	2.097					
	下端部	-73.2	-170.4	2.330					
	上端部	-62.4	-167.1	2.678					
右	ハンチ端	-41,3	-95.1	2.304					
<u>آ</u>	支間部	7.8	39.2	5.014					
	ハンチ端	-46.1	-96.7	2.097					

頂版

応力度, 耐力, 引張鉄筋量, 破壊安全度ごとに、照査結果を出力します

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	м	kB n	-92.9	-6.B	0.0	-8.8	-32.3		
軸力	М	HN	45.6	45.6	0.0	45.6	45.6		
使用鋼材量		onž	また。 からした。 からしては、 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 ののでは、 ののです。 ののでのです。 ののです。 ののです。 ののでのです。 ののです。 ののです。 ののです。 ののです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののです。 ののです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののです。 ののです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのです。 ののでのでのでのでのです。 ののでのです。 ののでのでのです。 ののでのでのです。 ののでのでです。 ののでのです。 ののでのです。 ののでのでのでです。 ののでのでです。 ののでです。 ののでです。 ののでのでたたり、 ののでのでたたた。 ののでのででたた。 ののでのででです。 ののでのででです。 ののでのでたたた。 ののでのででたたたた。 ののでのでたたたたた。 ののでのでたたた。 のでのでのででたたた。 ののでのででためでのででためでのででためでのででです。 うのでのでのでででためでのででためでのででためでためでのでででためでのでででです。 うのででです。 うのででででです。 うつででです。 うつでででででです。 うつででででででです。 うつでででででです。 うつでででででででです。 うつででででででです。 うつでででででででででででででででででででででででででででででででででででで	また。 またのの本 17-920	0.000本 0.000	¢21.0 5.00025 17.320	¢21.0 5.000本 17.920		
	00	8/nm2	4.43	6.89	0.00	6.89	4.43		
w/Je	σt	K/nm²	2.81	3.25	0.00	8.25	2.81		
计交应力度	σca	Brong	15.00	15.00	15.00	15.00	15.00		
	of ta	87nm2	0.00	0.00	0.00	0.00	0.00		

項目	-	単位	左端部	ハンチ端	支間部	ハンチ瑞	右端部	
曲けモニメント	M	kh n	0.0	0.0	42-8 45 C	0.0	0.0	
使用鋼材量	74	onž	0.000本 0.000	0.000本 0.000	また。 またの 5.000本 17.320	本000.0	0.000本 0.000	
広力度	σ.	N/mm2	0.00	0.00	8.01	0.00	0.00	
NO7502	σt	K/nm7	0.00	0.00	2.13	0.00	0.00	
許容応力度	σca	Brond	15.00	15.00	15.00	15.00	15.00	
	© ta	B/nm2	0.00	0.00	0.00	0.00	0.00	

応力度 1.死荷重時 曲げ照査 外側引張

破壊安全度

2.死荷重時 曲げ照査 内側引張

現 目	-	里位	左端部	て点 71.9	て点	石頭部			
由げモーメント	W	kN In		-1.2	-1.2				
油力	N			45.6	45.8				
自効高	d	an		22.3	22.3				
	Ca			1.400	1.400				
第正係数	Cut			0.984	0.984				
	CN			2.000	2.000				
な力度	z	B/nn2		0.322	0.322				
在家店力度	T a	8/nn2		0.744	0.744				
a service	T 32	8/mg		2.400	2.400				

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	м	kB · n	-94.9	-8.8	0.0	-8.8	-34.3		
袖力	N	HN	52.5	52.5	0.0	52.5	52.5		
使用鋼材量		onž	また。 からした。 からした。 からした。 からした。 からした。 からした。 からした。 からした。 からした。 ののであり、ののです。ののです。ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののでの。 いれるいいのです。このであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののでるい。ののでるい。ののでるい。ののであり、ののでるい。ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののであり、ののい。のののい。のい。ののい。ののい。のい。ののい。のい。ののい。ののの、のののの のののいいいいいいいいいいいいいいいいいいいいいいいいいいい	また。 また110日本 17-92日	0.000本 0.000	タ21.0 5.000本 17.920	¢21.0 5.000本 17.920		
(S 由)(F	00	B/nn2	4.35	7.11	0.00	7.11	4.35		
NO/JEL	σt	K/nm?	2.93	3.08	0.00	8.08	2.93		
社会成力度	σca	Brong	15.00	15.00	15.00	15.00	15.00		
	of ta	B/nm2	-1.50	-1.50	-1.50	-1.50	-1.50		

項目		単位	左端部	ハンチ端	花間支	ハンチ瑞	右端部		
曲げモーメント	M	kh n	0.0	0.0	58.0	0.0	0.0		
11170	N	HN	0.0	0.0	45.6	0.0	0.0		
使用鋼材量		onž	D.000本 0.000	0.000本 0.000	め21.0 5.000本 17.320	本000.0 000.0	本000.0 0.000		
医中原	0.	K/nm2	0.00	0.00	9.28	0.00	0.00		
KY/JE	σt	B/nm2	0.00	0.00	0.86	0.00	0.00		
許察広力度	Gea	Brnnt	15.00	15.00	15.00	15.00	15.00		
a) d scoota	O'ta	B/mr2	-1.50	-1.50	-1.50	-1.50	-1.50		

3.死荷重時 せん断照査

4. 設計荷重時 曲げ照査 外側引張

5. 設計荷重時 曲げ照査 内側引張

せん断力	8	1 M	 88.88	-88.8			
曲げモーメント		kK in	 1.7	1.7			
随力	N	HN	 45.6	45.8			
有効高	d	an	 21.5	21.5			
	Ca		 1.400	1.400			
補正係数	Cut		 0.995	0.995			
	CN		 2.000	2.000			
芯力度	T	B/nn2	 0.413	0.413			
年級広力度	T a	8/nn2	 0.752	0.752			
in a workbac	T 32	8/nut	 2.400	2.400			

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	М	kB 'n	-8.9	-28.0	0.0	-28.0	-6.9		
軸力	N	HN	26.9	60.9	0.0	60.9	26.9		
使用鋼材量		onž	ゆ21.0 5.000法 17.920	#21.0 5.000本 17.320	0.000本 0.000	\$ 21.0 5.00035 17.320	¢21.0 5.000本 17.320		
区市度	σ.	N/nm2	5.65	8.99	0.00	B.99	5.65		
white .	σt	K/nm2	1.48	1.27	0.00	1.27	1.48		
許察広力度	Gea	8/nrå	22.50	22.50	22.50	22.50	22.50		
ar ta sur o the	o ta	B/mm2	-2.25	-2.25	-2.25	-2.25	-2.25		

<u>ज़</u> 🗄		単位	左端部	ハンチ端	支間部	ハンチ瑞	右端部		
曲げモーメント	M	kh n	0.0	14.4	45.0	14.4	0.0		
粗力	N	EN	0.0	30.4	43.0	30.4	0.0		
使用鋼材量		oni	0.000本 0.000	●21.0 5.000本 17.920	の21.0 5.000本 17.920	5.0002K 17.320	本00000 0.000		
医韦摩	σ.	N/nm2	0.00	5.22	8.21	5.22	0.00		
KY/JE	σt	8/nm2	0.00	4.80	1.81	4.80	0.00		
許察広力度	σca	Brand	22.50	22.50	22.50	22.50	22.50		
a) d scootac	Ota	B/ms2	-2.25	-2.25	-2.25	-2.25	-2.25		

6.設計荷重時 せん断照査

7.レベル1地震時 曲げ照査 外側引張

8.レベル1地震時 曲げ照査 内側引張

 Eん切力 5 単 曲げモーメント 4 kK 相力 N k 有効高 d 。 Co. Matrix (String) 	N	88.2 -21.2 60.0 22.3	-88.2 -21.2 60.0			
田りモータンド W An 田力 N M 有効高 d 。 Co	N	-21-2 60-0 22-3	60.0			
1827月 N N N N N N N N N N N N N N N N N N N	n	22.3	00.0			
Се	-	- A.S. + G	99 3			
· · · · · · · · · · · · · · · · · · ·		1.400	1.400			
THE PERSON AND ADDRESS OF ADDRESS OF ADDRESS ADDRE		0.984	0.984			
Cw		2.000	2.000			
な力度 で #/#	nn2	0.395	0.395			
Ta N/s	nn2	1.129	1.128			
T 82 8/1	nut	3.600	3.600			

		里位	左端部	ハンチ頭	透開部	ハンチ環	石第部		
目げモニメント	Nd	E.U.	-02-4	-47.0	0.0	-41.0 27.8	-DZ - 4 85 0		
* = 04 57 5	外側	snL	D13 5.0本 D— 一本 8-335	D13 5.0次 D— —本 8.335	D— —本 D— —本	D13 5.0水 D— —本 8-335	013 5.0本 D— —本 6.335		
2.111.6元月为重	内側	ent	D19 5.0本 D— —本 6.335	D19 5.0本 D— —本 6.335	D— —本 D— —本	D19 5.0本 D— —本 6.335	019 5.0本 D— —本 6.335		
使用鋼材量		onz	¢21.0 5.000本 17.320	φ 21.0 5.000本 17.320	0.000本 0.000	∳21.0 5.000本 17.320	φ 21.0 5.00045 17.320		
自げ耐力	Mud	kK 'n	-299.1	-142-1	0.0	-142-1	-289.1		
(mi+Nd)/Nud			0.278	0.334	0.000	D.334	0.276		

曲げモーメント	Hd	kK 'n	17.7	53.9	51.0	33.9	17.7	
油力	Nd	KN	6.1	19.5	94.9	19.5	6.1	
* 0000	外側	cn1	DI3 5.0本 D— —本 8-335	013 5.0本 D— 一本 6.335	D13 5.0本 D— —本 6.335	D13 5.0本 D— —本 6.335	D13 5.0本 D— —本 8-335	
见用缺助量	内側	ent	D19 5.0本 D本 6.335	013 5.0本 D— —本 6.335	D13 5.0本 D本 6.335	D19 5.0本 D本 6-335	D19 5.0本 D	
吏用鋼材 量		on2	¢21.0 5.000本 17.320	々21.0 5.000本 17.320	ゆ21.0 5.000本 17.320	¢21.0 5.000本 17.320	∳21.0 5.000本 17.320	
曲げ耐力	Mud	kK 'n	165.3	165.4	166.4	165.4	165.8	
(mi • Nd)/Nud			0.107	0.205	0.307	0.205	D.107	

9.レベル1地震時 せん断照査

耐力 (L2地震時) 1. 曲げ照査 外側引張

2. 曲げ照査 内側引張

項目		單位	左隅角部	右隅角部			
eん新力	Яq	RN	103.2	-103.2			
自げモーメント	Nd	kN ¹ m	-39.6	-38.6			
自力	N'd	KII.	75.9	75.9			
せん断補強筋	An Se	eni cn	0.000 25.0	0.000 25.0			
きん断耐力(コンクリート)	Yed	H	294.9	294.9			
せん新耐力(鉄筋)	Vad	BI	0.0	0.0			
せん断耐力	Vyd	KI	234.9	234.9			
rri•¥d)/¥yd			0.439	0.439			

		単位	左骥部	ハンチ環	支間部	ハンチ端	右端部		
ヨザモーメント	м	kii in	-32.3	-6.8	0.0	-6-8	-32.3		
的	Ν	kN	45.6	45.6	0.0	45-6	45.6		
力度	00	W/mi	4.43	8.89	0.00	8.89	4.49		
	۳t	H/m1	2.BI	3.25	0.00	3.25	2.81		
	As1	onz							
张铁筋量	As2	cnž							
	As	cn2							
川林肋重		one							

項目		単位	左骥部	ハンチ環	支間部	ハンチ端	右端部		
曲げモーメント	м	kii in	0.0	0.0	42.8	0.0	0.0		
胎 力	N	kN	0.0	0.0	45 - 8	D.0	0.0		
立力度	00	W/mii	0.00	0.00	8.01	0.00	0.00		
C-7300C	σ,	H/m1	0.00	0.00	2.13	0.00	0.00		
	As1	onz							
引張鉄筋量	As2	ent							
	Ås	cn2							
使用鉄筋量		on2							

2. 内側引張

3. せん断照査

引張鉄筋量 1. 外側引張

由けモーメント	Md	kN 'n	-62.4	-14.9	0.0	-14.8	-82.4		
自力	Nd	1.1	77.8	89.3	0.0	89.3	77.6		
* -	外側	ent	D19 5.0本 D本 8-335	D13 5.0本 D— —本 6.335	D- 二本 D- 二本	D19 5.0本 D本 8-335	D13 5.0本 D— —本 6.335		
北川林州加重	内側	on2	D13 5-0本 D本 6-335	D13 5.0本 D本 6.335	D 二 二本	D13 5-0本 D本 6-335	D13 5.0本 D本 6.335		
史用鋼材量		onž	#21.0 5.000本 17.320	タ21.0 5.000株 17.320	0.000本 0.000	#21.0 5.000本 17.320	φ 21.0 5.0002\$ 17.320		
自任耐力	Mu	kN 'n	-298.6	-142.6	0.0	-142.6	-298.6		
/u/Md			4.785	8.574		8.574	4.785		

ヨチモーメント	Mid	kN 'm	0.0	0.0	95.8	0.0	0.0		
自力	Nd	6.6	0.0	0.0	77.8	D.O	0.0		
N FR 91-17 FL	外側	ent		D- 二本 D- 二本	D19 5.0本 D— —本 6-335	= 二本	D		
CADAXANE	内側	onz	D— —本 D— —本	D— —本 D— —本	D13 5.0本 D本 6.335	0本 	D*		
也用鋼材量		onž	本000.0 000.0	0.000本. 0.000	¢21.0 5.000本 17.320	D.000本 0.000	0.000本 D.00D		
日子耐力	Mu	kN in	0,0	0.0	168.4	0.0	0.0		
lu/Md					1.768				

左側壁

左側壁の応力度、耐力、引張鉄筋量、破壊安全度ごとに照査結果を表示します。

項目		単位	上端部	バンチ端	支間部	ハンチ端	下端部		
曲げモーメント	M	k8 m	-36.7	-24.9	-9.4	-27.1	-43.0		
袖力	N	HN	115.9	117.6	123.8	129.9	131.6		
	外側	onz	5.07	5.76	0.00	6.57	6.18		
心丧获励量	内側	ent	1.28	1.44	0.00	1.83	1.54		
	外側	ent	D19 5.0本 D本 14-325	019 5.0本 0本 14.325	D19 5.0本 0— —本 14.325	D19 5.0本 D- 一本 14.325	D19 5.0本 D— —本 14-325		
史用联肋量	内側	onz	D10 5.0本 D本 3.567	D10 5.0本 D	D1D 5.D本 0一 一本 3.567	D10 5.0本 D- 一本 3.567	D10 5.0本 D— —本 3.567		
	0 e	N/mrz	3.82	5.29	1.08	5.80	4.47		
応力度	0.	8/mm2	72.85	80.42	-13.57	90.21	86.32		
	00	8/mm2	14.00	14.00	14-00	14-00	14.00		
开容心力度	17-1	H/mr2	180.00	180.00	-200.00	180.00	190.00		

応力度

1. 常時 曲げ照査 外側引張

2. 内側引張

破壊安全度 1. 外側引張

項目		単位	上端部	ハンチ端	支間部	ハンチ端	下端部	
曲げモーメント	M	kh • n	0.0	0.0	9.7	0.0	0.0	
轴力	N	HN	0.0	0.0	101.B	0.0	0.0	
心理维兹县	外側	onz	0.00	0.00	0.00	0.00	0.00	
- HANNAL	内側	ent	0.00	0.00	0.00	0.00	0.00	
	外側	ent	日本	D— 一本. D— 一本.	D19 5.0本 D本	0本	D— 二本 D— 二本	
使用鉄筋量	内側	onž	D = _ *	D— 一本 D— 一本	D10 5.0本 D- 一本 3.567			
	0 e	8/mrz	0.00	0.00	0.85	0.00	0.00	
応力度	0.	8 /mrs	0.00	0.00	-10.50	0.00	0.00	
	00	B/mr2	0.00	0.00	14.00	0.00	0.00	
許容心力度	đ	N/mx2	0.00	0.00	-200.00	0.00	0.00	

項 !	8	里位	下端跳	て点	て点	下調器			
せん助力	5	- IL M		-38.8	41.8				
曲けモーメン	F W	kN m		-17.0	-19.2				
和力	N	HN		98-1	107.5				
有幻雨	d	an		18.2	18.2				
	Ca			1.400	1.400				
帶止能致	Cet			1.373	1.878				
the standard	UN			1.205	1.202				
心力度	τ	B/nn2		0.219	0.261				
許容応力度	7 a	B/nn2		0.625	0.624				
4×(7+#	T a2	Brnix		2.400	2.400				
村若心力度	20	BINK		0.859	0.939				
許容何者応力	E Too	B/mi ²		2.000	2.000				

項目	單位	上端部	ハンチ端	支間部	ハンチ端	下端部				
M	kN•m	-36.7	-24.9	-9.4	-27.1	-49.0				
N	kN	115.9	117.6	123.8	129.9	131.6				
Mc	kN • n	46.1	21.9	22.1	22.8	46.9				
Mu	kN•n	156.8	88.0	89.5	90.0	158.8				
1.7M	kN•n	-82.4	-41.3	-5.8	- 46 . 1	-79.2				
D.008A1'	cn ²	D.72	0.73	0.77	0.80	D.81				
A s'	CN ²	17.89	17.89	17.89	17.89	17.89				
As	Cn ²	14.32	14.32	14.32	14.32	14.32				
判定		0K	0K.	OK.	OK	0K				
1)We ≥ Wu 1), 2)O	เช้า	./ni⊆ne かと9),	, 3/5(cn 4)を満足	101249, すると	4,0,000 ≹OK	AT 24	3			

2. 常時 曲げ照査 内側引張

3. 常時 せん断照査

4. 常時 最小鉄筋量 外側引張

項目	単位	上端部	ハンチ端	福間支	ハンチ端	下端部				
N/	KN TH			101.0						
MC	Left and			21.3						
Mu	kll-a			21.0						
1.7M	kll m			1.6						
0.008 A 1'	cn ²			0.63						
As'	Cn2			17.89						
As	Cn2			8.57						
判定				, OK						
1), 2)の	เง ช ีท	./m ⊆ Ho かと9),	, 3)5(cr 4)を満足	(1) 2 As, (すると)	4,0,000 ≝0K	SAT" SI	s'			

項目	単位	上端部	ハンチ端	支間部	ハンチ端	下端部				
N	kN	115.9	117.8	123.8	129.9	191.6				
As	CR2	14.32	14.32	14.32	14.32	14.32				
Asb	CNZ	139.89	86.33	88-16	87.88	139.54				

項目	単位	上端部	ハンチ端	支間部	ハンチ端	下端部			
N	kN			101.8					
As	CU ₂			3.57					
A sb	CU 5			98.55					
判定				OK					

※レベル1地震時も1~7と同様画面を表示

5. 常時 最小鉄筋量 内側引張

6. 常時 最大鉄筋量 外側引張

7. 常時 最大鉄筋量 内側引張

	Ma	单12	02 /	1) J T SR	2.16189	11.27.20	-90.9		
曲りモ テンド 軸力	Nd	HN.	125.9	119.4	109.8	191.1	145.8		
	外側	snL	D19 5.0本 D本 14-325	D19 5.0本 D本 14-825	D19 5.0本 0一 一本 14-825	D19 5.0本 D— —本 14.925	D19 5.0本 D本 14-825		
见用碳肪量	内側	ent	D10 5.0本 D本 3.567	010 5.0本 D本 3.567	D10 5.0本 0本 3.567	D10 5.0本 D	D10 5.0本 D本 8.567		
曲げ耐力	Mud	kK n	-158-0	-89.2	-88.0	-90.0	-160.8		
(⊤i•Nd)/Nud			0.521	0.657	0.025	0.711	0.599		

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

項目		單位	上隅角部	下隅角部			
せん新力	٧d	BI	-70.2	92.3			
曲げモーメント	Nd	kN1m	-53.2	-56.9			
釉力	N'd	kl	117.9	127.5			
せん断補強筋	AN Sc	end on	0.000 25.0	0.000 25.0			
せん断耐力(コンクリート)	Yed	RN.	186.1	188.9			
せん新耐力(鉄筋)	Vsd	BH.	0.0	D.0			
せん断耐力	Vy d	RH	186-1	186.3			
(~i•Yd)/Yyd			0.377	0.495			

耐力 (L2地震時) 1. 曲げ照査 外側引張

2. 曲げ照査 内側引張

3. 曲げ照査 せん断照査

	N.L.d.	平 112 	_62_4	-41.9	_10.0	リンチ 3月 - 46 - 1	-73.2		
油力	Nd	HH	197.1	200.0	158.7	220.8	223.7		
	外側	ent	D19 5.0本 D本 14-325	D19 5.0本 D本 14-325	D19 5.D本 D— —本 14-325	D19 5.0本 D-本 14.325	D19 5.0本 D本 14-325		
史用获加量	内側	on2	D10 5-0本 D本 3.567	D10 5.0本 D本 3.567	D1D 5.D本 0本 3.567	D10 5.0本 D本 3.567	D10 5.0本 D本 3.567		
由げ耐力	Mu	k8 in	-167.1	-95.1	-91.9	-96.7	-170.4		
vlu / Mid			2.678	2.304	9.210	2.097	2.330		

affモーメント	- M d	kN 'n	0.0	0.0	7.8	0.0	0.0		
力	Nd	1.1	0.0	0.0	101.8	D-0	0.0		
	外側	ent	四二二本	D— —本 D— —本	D19 5.0本 D— —本 14.325		D— —本 D— —本		
11 秋雨 重	内側	on2	D= <u>-</u> *	D— —本 D— —本	D10 5.0本 D本 3.567	0 二 二 本	D= <u>-</u> *		
自行耐力	Mu	kN 'n	0.0	0.0	39.2	0.0	0.0		
lu∕Mid					5.014				

右側壁

右側壁の応力度、耐力、引張鉄筋量、破壊安全度ごとに照査結果を表示します。

項目		単位	上端部	バンチ端	支間部	ハンチ端	下端部	
曲げモーメント	M	kli n	-38.7	-24.9	-3.4	-27.1	-43.0	
抽力	N	HN	115.9	117.6	123.8	129.9	131.6	
21 700 644 527 00	外側	onz	5.07	5.76	0.00	6.57	6.18	
い安林肋重	内側	ent	1.28	1.44	0.00	1.83	1.54	
			D19 5.0本	019 5.0本	D19 5.0本	D19 5.0本	D19 5.0本	
*田姓於早.	外側	ent	D— —本 14.325	D——本 14.325	0本	D— —本 14-325	D— —本 14.325	
L/104×40重	内側	onz	D10 5.0本 D本 3 567	D10 5.0本 D一 一本 3 567	D1D 5.0本 0一 一本 3 567	D10 5.0本 D- 一本 3 567	D10 5.0本 D本 3 567	
to all sales	0 e	8/mr2	3.82	5.29	1.08	5.90	4.47	
心力度	0.	8/mm2	72.85	80.42	-13.57	90.21	86.32	
	00	8/mm2	14.00	14.00	14.00	14.00	14.00	
计在心力反	×	H/my2	120.00	190.00	-200.00	100 00	100.00	

応力度		
1. 常時	曲げ照査	外側引張

破壊安全度 1. 外側引張

破壊安全度 1. 内側引張

項目	-	単位	上端部	ハンチ端	支間部	ハンチ端	下端部	
曲げモーメント	M	kli n	0.0	0.0	3.7	0.0	0.0	
轴力	N	HN	0.0	0.0	101.B	0.0	0.0	
21 THE SHE ST 1	外側	onz	0.00	0.00	0.00	0.00	0.00	
C. BERYSTER	内側	ent	0.00	0.00	0.00	0.00	0.00	
	外側	ent	D= =*	D— —本 D— —本	D19 5.0本 D- 一本 14-325	四十二十二	D*	
此用其肋量	内側	onz	D二 二本 D二 二本	D二 二杰 D二 二杰	D10 5.0本 D- 一本 3.567	8= <u>-</u> *		
of the selection	0 e	8/mr2	0.00	0.00	0.85	0.00	0.00	
心力度	0,	8/mm2	0.00	0.00	-10.50	0.00	0.00	
***	00	B/mr2	0.00	0.00	14.00	0.00	0.00	
計在心力反	1	H/my2	0.00	0.00	-200 00	0.00	0.00	

項目		単位	上端部	て点	て点	下端部			
まん断力	8	-k N		38.8	-47.3				
affモニメント	N	kK n		-17.0	-19.2				
自力	N	HN		98.1	107.5				
「効高	d	c n		18.2	18.2				
	Ca			1.400	1.400				
市正係数	Cet			1.373	1.378				
	CN			1.205	1.202				
い力度	T	B/nn2		0.219	0.261				
いなかった	τa	8/ns2		0.625	0.624				
(Harves / Jiac	T 32	8/nut		2.400	2.400				
† 着応力度	20	8/mm2		0.420	0.999				
F容付着応力度	Too	B/nx2		2.000	2.000				
容応力度 看応力度 容付着応力度	2 a T a2 T o T o	B/nut B/nut B/nu2 B/nu2		2.400 0.420 2.000	0.824 2.400 0.999 2.000				

項目	単位	上端部)	ハンチ端	支間部	ハンチ端	下端部				
M	kN•n	-36.7	-24.3	-9.4	-27.1	-49.0				
N	kN	115.9	117.6	123.8	129.9	131.6				
Mc	kN n	46.1	21.9	22.1	22.3	46.9				
Mu	kN•n	156.8	89.0	88.5	90.0	158.8				
1.7M	kN•n	-82.4	-41.3	-5.8	-46.1	-79.2				
.008A1'	cn ²	D.72	0.73	0.77	0.80	0.81				
As'	Cn2	17.89	17.89	17.89	17.89	17.89				
As	Cn2	14.32	14.82	14-82	14.32	14.32				
判足		0K	OK.	OK.	OK	0K				
1), 2)の	เชิ่ม	./n 2 mc, かと3),	, 375(cn 4)を満足	10243, すると	4)0.000 80K	AT 24	8.			

2. 常時 曲げ照査 内側引張

3. 常時 せん断照査

4. 常時 最小鉄筋量 外側引張

項目	单位	上端部	ハンチ端	福間支	ハンチ端	下端部				
N	KN II			101.9						
MC	kill -m			21.3						
Mu	kN-a			39.2						
1.7M	kN·n			1.6						
0.008 A 1'	cn ²			0.63						
As'	Cn2			17.89						
As	Cn ²			8.57						
判定				NO.						
15, 250	เร่า	かと3)。	(4)を満足	4 82	≝ OK					

項目	単位	上端部	ハンチ端	支間部 129.8	ハンチ端 129-9	下端部			
As	CR2	14.32	14.32	14.32	14.32	14.32			
A sb	CN2	139-99	88.33	88.16	87.98	139.54			
判定		OK	OK	OK	OK	OK.			

見日	単位	上端部	ハンチ端	支間部	ハンチ端	下端部			
N A a	KN CNZ			3.57					
A sh	CH2			98.55					
削定				OK					

※レベル1地震時も1~7と同様画面を表示

5. 常時 最小鉄筋量 内側引張

6. 常時 最大鉄筋量 外側引張

7. 常時 最大鉄筋量 内側引張

ショーロ 日	Md	# 112 kK 10	-82.4	-58 R	-2.2	-84.0	-98.8		
曲力 ロックスト	Nd	H.N.	125.9	119.4	109.8	191.1	145.8		
	外側	snL	D19 5.0本 D本 14.325	D19 5.0本 D本 14.325	D19 5.0本 D本 14.325	D19 5.0本 D— —本 14.925	DI9 5.0本 D本 14.325		
史用碳肠量	内側	ent	D10 5.0本 D本 8.567	010 5.0本 D本 3.567	D10 5.0本 0本 3.567	D10 5.0本 D	D10 5.0本 D		
曲げ耐力	Hud	kK n	-158.0	-89.2	-88.0	-90.0	-160.8		
(+i·Nd)/Nud			0.521	0.657	0.025	0.711	0.599		

道目		単位	上端部	ハンチ蟾	支間部	ハンチ端	下端部	
曲けモーメント	Hd	kN . n	17.7	18.8	4.1	18.5	18.8	
阳力	Nd	HN	02-7	72.0	35.0	04.7	73-7	
	外側	ont	0本	D	0本	D本	D	
使用鉄筋量			14.325	14.325	14-325	14.325	14-325	
	के की	202	D10 5.0本	010 5.0本	010 5.0本	010 5.0本	DIO 5.0本	
	F. 3 163		3.567	3.567	3.567	3.567	3.567	
曲げ耐力	Mud	kK 'n	39.8	87.2	39.1	38.1	41.0	
(+ i · Nd)/Nud			0.447	0.505	0.104	0.486	0.482	

項目		單位	上隅角部	下隅角部			
せん断力	٧d	BN	70.2	-92.3			
曲げモーメント	Nd	kN+m	-53.2	-56.9			
袖 力	N'd	kl	117.9	127.5			
せん断補強筋	AN SS	ent on	0.000 25.0	0.000 25.0			
せん断耐力(コンクリート) Vod	RN.	188.1	188.9			
せん断耐力(鉄筋)	Vsd	BN	0.0	D.0			
せん断耐力	Vy d	RH	186-1	186-3			
(🕆 I + Vd)/Vsd			0.877	0.495			

耐力 (L2地震時) 1. 曲げ照査 外側引張

2. 曲げ照査 内側引張

3. せん断照査

曲げエーメント	M.d.	+ 122	-62.4	-41.3	-10.0	-46-1	-73.2		
協力	Nd	HN	197.1	200.0	158.7	220.8	223.7		
	外側	ent	D19 5.0本 D- 一本 14-325	D19 5.0本 D— —本 14.325	D19 5.0本 0 <u>-</u> 本 14.325	D19 5.0本 D本 14.325	D19 5.0本 D本 14.325		
史用鉄肋量	内側	onz	D10 5-0本 D本 3.567	D10 5.0本 D本 3.567	D1D 5.D本 0— —本 3.567	D10 5.0本 D本 3.567	D10 5.0本 D- 一本 3.567		
曲げ耐力	Mu	kN 'n	-167-1	-95.1	-91.9	-96.7	-170.4		
Mu/Md			2.678	2.304	9.210	2.097	2.330		

底版

底版の曲げ照査、せん断照査、最小鉄筋量、最大鉄筋量を表示します。

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	м	kB n	-98.7	-8.8	0.0	-8.8	-38.7		
軸力	N	HN	60.4	60.4	0.0	60.4	60.4		
使用鋼材量		onž	ゆ21-0 5-000次 17-920	#21.0 5.000本 17.320	0.000本 0.000	タ21.0 5.000本 17.320	また1.0 5.000本 17.320		
T + 95	00	8/nm2	4.17	7.15	0.00	7.16	4.17		
心力度	σt	8/nm2	3.16	3.11	0.00	3.11	3.16		
となった。中	Gea	Brand	15.00	15.00	15.00	15.00	15.00		
at the MANJIEL	O'ta	8/m2	0.00	0.00	0.00	0.00	0.00		

破壊安全度 1. 外側引張

2. 内側引張

応力度 1. 死荷重時 曲げ照査 外側引張

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部	
曲げモーメント	м	kB · n	0.0	0.0	49 - 1	0.0	0.0	
軸力	N	HN	0.0	0.0	60.4	0.0	0.0	
使用鋼材量		onž	0.000本 0.000	0.000本 0.000	また またの またの またの またの またの して して して して して して して して して して	本000.0 000.0	本000.0 000.0	
(C も)研	00	B/nn2	0.00	0.00	8.67	0.00	0.00	
W/JE	σt	K/nm7	0.00	0.00	1.60	0.00	0.00	
社会成力度	σca	Bring	15.00	15.00	15.00	15.00	15.00	
	of ta	B/nm2	0.00	0.00	0.00	0.00	0.00	

項目		單位	左端部	て点	て点	右號部			
せん断力	5	- LA		-83.9	83.8				
曲けモーメント	N	k8 m		-2.4	-2.4				
110万	N	HN		60.4	60.4				
有幻雨	d	cn		22.3	22.3				
	Co			1.400	1.400				
伸止 18家	Get			0.884	0.984				
* + +	UN	H/nv2		2.000	2.000				
Corrige	τ.	B/DYZ		0.744	0.744				
許容応力度	T	8/mut		2,400	2 400				

핏 티		単位	左端部	ハンチ端	在同支	ハンチ3階	右閉部		
曲げモーメント	м	kB · m	-40.8	-10.B	0.0	-10.8	-40.8		
軸力	N	HN.	67.3	67.3	0.0	67.3	67.3		
使用鋼材量		onž	ゆ21.0 5.000本 17.920	また。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 からしていた。 ののの本。 していた。 ののの本。 していた。 ののの本。 していた。 ののの本。 していた。 ののの本。 していた。 ののの本。 していた。 ののの本。 していた。 ののの本。 ののの本。 していた。 ののの本。 ののの本。 ののの本。 のので、 のので、 のので、 のので、 のので、 のので、 のので、 のので	本000.0 0.000	¢21.0 5.00025 17.320	また からした からしの本 17.320		
医中原	σ.	N/nm2	4.09	7.38	0.00	7.38	4.09		
KY/JE	σt	8/nm²	3.28	2.95	0.00	2.95	3.28		
教察成力度	Ø ca	Brand	15.00	15.00	15.00	15.00	15.00		
at track state	o ta	B/mg	-1.50	-1.50	-1.50	-1.50	-1.50		

2. 死荷重時 曲げ照査 内側引張

3. 死荷重時 せん断照査

4. 設計荷重時 曲げ照査 外側引張

36

県 日 曲げモーメント	M	单112 kB:n	左端部 0.0	ハンナ3編 0.0	文間部 62.2	ハンナ3番 0.0	石)(市)(日)	
轴力	N	HN	D.0	0.0	60.4	0.0	0.0	
使用鋼材量		onž	0.000本 0.000	0.000本 0.000	また からしまでの からしの からしの からしの からし からし からし からし からし から から から から から から から から から から から から から	本000.0	0.000本 D.00D	
広力度	σ_{\circ}	B/nm2	0.00	0.00	9.94	0.00	0.00	
NO THE	σt	K/nm?	0.00	0.00	0.83	0.00	0.00	
許察広力度	σca	Brond	15.00	15.00	15.00	15.00	15.00	
	Ota	B/nm2	-1.50	-1.50	-1.50	-1.50	-1.50	

項目		単位	左端部	て点	て点	右端部			
せん断力	8	-H-M		-100.8	100.8				
曲げモーメント	M	kN *m		0.5	0.5				
帕力	N	HN		80.4	60.4				
有効高	d	cn		21.5	21.5				
	Co			1.400	1.400				
補正係数	Cet			0.995	0.995				
	GN			2.000	2.000				
芯力度	Ŧ	B/mr2		0.469	0.469				
許容応力度	2 a	8/nn2		0.752	0.752				
	T 32	Brnnk		2.400	2.400				

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	м	kñ ' n	-8.2	-32.8	0.0	- 92 . 8	-8.2		
軸力	N	HN	31.6	83.B	0.0	83.8	31.6		
使用鋼材量		onž	ゆ21.0 5.000次 17.920	#21.0 5.000本 17.320	本000.0 0.000	4 21 .0 5.00025 17.320	また1,0 5,000本 17,320		
医中原	σ.	K/nm2	5.58	9.55	0.00	9.55	5.5B		
KY/JE	σt	8/nm2	1.59	0.90	0.00	0.90	1.59		
教察広力度	σ ca	Bring	22.50	22.50	22.50	22.50	22.50		
at trace volume	o' ta	B/mg	-2.25	-2.25	-2.25	-2.25	-2.25		

5. 設計荷重時 曲げ照査 内側引張

6. 設計荷重時 せん断照査

7. レベル1地震時 曲げ照査 外側引張

項目		単位	左端部	ハンチ端	支間部	ハンチ端	右端部		
曲げモーメント	м	kñ i n	0.0	15.1	51.2	15.1	0.0		
軸力	N	HN	D.0	37.0	56.3	37.0	0.0		
使用鋼材量		onž	D.000本 0.000	∲21.0 5.000株 17.920	また。 ま、000本 17、920	タ21.0 5.000本 17.920	本000-0 000-0		
医韦德	00	B/nm2	0.00	5.32	8.86	5.32	0.00		
NO / JEL	σt	K/nm7	0.00	4.76	1.38	4.76	0.00		
教察成力度	σca	Brong	22.50	22.50	22.50	22.50	22.50		
	of ta	B/nm2	-2.25	-2.25	-2.25	-2.25	-2.25		

項目		單位	左端部	τĀ	て点	右端部			
せん断力	6	1.1		-104.5	104.5				
曲げモーメント	M	kN 1m		-24.8	-24.8				
釉力	N	HN		82.4	82.4				
有効高	d	an		22.3	22.3				
	Ca			1.400	1.400				
補正係数	Cet			0.984	0.984				
	CN			2.000	2.000				
応力度	T	B/nn2		0.468	0.468				
	T a	8/nrz		1.129	1.129				
at the us / Just	T #2	8/mst		3.800	3.800				

曲げモーメント	Hd	kK 'n	-96.3	-55.5	0.0	-55.5	-96.3		
釉力	Nd	HN	117.7	106.9	0.0	106.9	117.7		
	外側	snL	D13 5.0本 D— —本	013 5.0本 D— —本	D- 一本 D- 一本	DI3 5.0本 D— —本	D13 5.0本 D— —本		
使用鉄筋量			8.335	6.335		8.335	8.335		
	内側	ent	D19 5.0本 D- 一本 8-335	019 5.0本 D— —本 6.335	D本 D本	D19 5.0本 D- 一本 6-335	013 5.0本 D— —本 6.335		
使用鋼材量		onz	¢21.0 5.000本 17.320	φ 21.0 5.00045 17.320	0.000本 0.000	¢21.0 5.000本 17.320	々21.0 5.000本 17.320		
曲げ耐力	Mud	kK 'n	-301.2	-143.4	0.0	-143.4	-301.2		
(ri Hd)/Nud			0.820	0.387	0.000	0.387	0.320		

8. レベル1地震時 曲げ照査 内側引張

9. レベル1地震時 せん断照査

耐力 (L2地震時) 1. 曲げ照査 外側引張

曲げモーメント	Hd	kK • n	18.9	87.8	58.0	37.8	18.9		
脑力	Nd	KN	9.1	19.9	44.0	19.9	9.1		
	51-181	cn1	DI3 5.0本	D 本	0- 一本	D13 5.0本	D13 5.0本		
東田鉄路長			8.335	6.335	6.335	6.335	8.335		
ALT IN DR. MIL MAL	the dist		D13 5.0本	013 5.0本	013 5.0本	D19 5.0本	D13 5.0本		
	1916	enc	6.335	6.335	6.335	6.335	6.335		
吏用鋼材 量		onz	¢21.0 5.000本 17.320	ゆ21.0 5.000本 17.320	ゆ21.0 5.000本 17.320	¢21.0 5.000本 17.320	∳21.0 5.000本 17.320		
曲げ耐力	Mud	KK 'D	165-1	165.4	166.8	165.4	165.1		
(~i•Nd)/Nud			0.115	0.229	0.348	0.229	D-115		

項目		甲位	左隅角部	右隅角部			
せん断力	٧d	BN	-120.6	120.6			
曲げモーメント	Nd	KN m	-46.3	-46.3			
胎 力	N'd	KI	104-8	104.3			
せん断補強筋	An Ss	eni cn	0.000 25.0	0.000 25.0			
せん断耐力(コンクリート)) Ved	RN.	297.5	297.5			
せん断耐力(鉄筋)	Vad	BH	0.0	0.0			
せん断耐力	Vy d	KH	287.5	287.5			
(∽i•Vd)/Vyd			0.508	0.508			

曲げモーメント 暗力	M	kii in	-38.7	-8.8	0.0		the second se		
胎 力	N			0.0	0.0	-8-8	-38.7		
		KN	60.4	80.4	0.0	60.4	80.4		
正力度	00	W/mi1	4.17	7.18	0.00	7.16	4.17		
C-750k	σ'τ	H/m1	3.16	3.11	0.00	3.11	3.16		
	As1	onz							
引張鉄筋量	As2	ont							
	Ås	cn2							
使用鉄筋量		on2							

2. 曲げ照査 内側引張

3. せん断照査

引張鉄筋量 1. 外側引張

		里位	左端部	ハンチ環	支間部	ハンチ端	右端部		
自げモーメント	M	kiin	0.0	0.0	66.9	0.0	0.0		
増力	N	kN	0.0	0.0	80.4	0.0	0.0		
芯力度	00	H/m1	0.00	0.00	10.38	0.00	0.00		
	0.1	#/ mi-	0.00	0.00	0.009	0.00	0.00		
125 24 25 4	402	ont			0.132				
TIA SAUGE	As	cnt			0.192				
更用跌筋量		cn2			D13 5.0本 0— —本 6.335				
机铁制量		cn2			0				

曲げモーメント	Md	KN 'D	-73.2	-18.4	0.0	-18.4	-73.2		
轴力	Nd	1.1	102.7	114.4	0.0	114.4	102.7		
	外側	ent	D19 5.0本 D本 6-335	D19 5.0本 D— —本 6.335	D- 二本 D- 二本	D19 5.0本 D本 6-335	D13 5.0本 D— —本 6.335		
史用默肋量	内側	onz	D18 5.0本 D本 6.335	D13 5.0本 D	D 二 二本 D 二 二本	D18 5.0本 D本 6.335	D13 5.0本 D本 6.335		
使用鋼材量		ont	#21.0 5.000本 17.920	タ21.0 5.000本 17.920	0.000本 0.000	#21.0 5.000本 17.920	タ21.0 5.000本 17.320		
曲げ耐力	Mu	k8 m	-300.2	-143.8	0.0	-143.B	-300.2		
Mu/Md			4.104	7.812		7.812	4.104		

クター日 曲げモーメント	Md	单12 k8 'n	52100BP	1.0	105.B	D.0	-16 1918P		
輪力	Nd	H.M	0.0	0.0	102.7	D-0	0.0		
(# == \$+\$7 =	外側	ent		D- 二本 D- 二本	D13 5.0本 D本 6-335		D= =*		
1327日144月51里	内側	onz	B= <u>=</u> ∰	D— —本 D— —本	D13 5.0本 D本 6.335	0 *			
使用鋼材量		onž	本000.0 000.0	0.000本 0.000	¢21.0 5.000本 17.920	0.000本 0.000	0.000本 D.00D		
曲げ耐力	Mu	k8 in	0.0	0.0	169.5	0.0	0.0		
Mu/Md					1.601				

破壊安全度 1. 外側引張

2. 内側引張

2. 内側引張

断面力図

検討ケースごとに曲げモーメント図、せん断力図、軸力図を確認します。

応力度/耐力 1. M図 (曲げモーメント図)

2. N図 (軸力図)

3. S図 (せん断力図)

1. M図 (曲げモーメント図)

2. N図 (軸力図)

破壊安全度① 1. M図 (曲げモーメント図)

2. N図 (軸力図)

破壊安全度② 1. M図 (曲げモーメント図)

2. N図 (軸力図)

破壊安全度③ 1. M図 (曲げモーメント図)

2. N図 (軸力図)

3-2 FRAME

断面方向検討のFRAME入力,結果を確認することができます。

断面方向

断面方向の解析結果を表示します。

 荷重

] FRAME解析編集 (計算単位系:SI単位)				
入力から、教堂 匠力 天位 BM AF SF 5	Ali 7 AinPt			
实代 1 2 3 4	17-9 107-9 10.0005 0-0455 0-0455 10.0005 0-0455 0-70423 10.0005 0-0455 0-70423 10.0005 0-0455 0-70423 0.0005 0-0005 0-7050 10.0005 0-07050			
		29-2	103 20	6.778

		- AF							-	- ^
カナータ 微重 反力 沈位 BM AF SA	F	AinPt								
	0	Loren March	an Maral	Manhan						
	1.141	TOOS PAND	ALL MAN	mencer						
	部科	オデー:	\$							
	8548	枯点番号	#0.5	9698 AN	自げモーメント	ぜん新力	1拍 力			
	8- 7	1 - 1	10 C /m	DEPE OU	M 008-10	S (140)	N OND			
			1	0.000	-32.333	10.310	-45.634			
			2	0.228	-12.391	00.007	-40.834			
			8	0.300	-6.788	16.343	-45.834			
			-	0.845	4.494	27.114	-40.034			
++			-	0.407	10.000	59.001	- 45 004			
			2	0.000	00.000	40.000	45.004			
			1	1.1/2	28+028	96.0.46	-45.624			
			8	1.931	41.901	19,759	- 45 894			
	1	1 - 2	10	1.610	42.855	0.000	-45.834			
			11	1.829	41-301	-13.423	-45.634			
			12	2.057	36,699	-26.846	-45.624			
			13	2.288	29.028	-40.269	-45.834			
			14	2.514	18,290	-53.891	-45.634			
			15	2.748	4.484	-67.114	-45.684			
* *			16	2.825	-1.227	-71.538	-45.634			
			17	2.900	-6.788	-78.343	-45.634			
			18	2.971	-12-391	-80.537	-45.884			
			18	8.200	-32.833	-93.960	-45.884			
	_					-				
	18.4	×爆得	00 Y 55	1 (a) Efi	會積 訪函 2 次 3	モーメント				
		0.000		A	(62)]	(14)				
	1803	9,000	5	750 0	250 0.4	101				
	1005	g 3-200	2.	130 0-	230 0.4	101	1			
	ε, :	3.100 p+	7 Gevez							
	Line	Expansio	n Of =	1.000 e-	5 (210)					
1077 and the ministers mer-	2 40	FE-1			1			8912.0	Ch 2	ALTY

BM (曲げモーメント)

AF (軸力)

変位

FRALLE###645年(計算単量系:31単位) FRALLE###645年(計算単量系:31単位) #100 AF SF	T F	All AinPt						-	0	×
	Previ	cus Vent	ter Nezt	Neaber						
	B전 B전	協力会号	¥ €8.4	ien w	自げモーメント Micost-v2	せん新力 8 040	相力 N GMD			
			1	0.000	-32.333	83.960	-45.834			
	1		2	0.228	-12.391	80.537	-45.884			
	1		8	0.300	-6.788	76.343	-45.884			
			4	0.375	-1.227	71.938	-45.634			
			5	0.457	4.484	87-114	-45.834			
			8	0.688	18-290	53.891	-45.884			
			7	0.914	28+028	40.258	-45.684			
			8	1.143	36.699	26.846	-45.634			
			9	1.371	41-301	13.423	-45.834			
1	1	1 - 2	10	1.800	42.835	0.000	-45.884			
1 1			11	1.828	41.301	-13,423	-45.884			
			12	2.057	36.699	-26.846	-45.634			
1			13	2.286	29-028	-40.269	-45.834			
			14	2.514	18-290	-58.691	-45.884			
			15	2.748	4.484	-67.114	-45.684			
× *			16	2.825	-1.227	-71.538	-45.634			
			17	2.900	-6.788	-78.343	-45.834			
	1		18	2.971	-12.391	-80.537	-45.834			
			18	8,200	-32,333	-93,960	-45.884			
	格点 iNode iNode	× 建禄 0.000 3-200	00 ¥ 98 2. 2.	標 (x) A 750 0. 750 0.	葡糖 断面 2 次モ (x2) 1 (.250 0.00 .250 0.00	ーメント #0 01 01				
	E, = S Line	3.100 e+ Expansio	7 (www.b) in Of =	1.000 e	-5 (/%)					
]#存 212月 出力 単位系統督 商量ケース	2. JEA	<u>₹</u> -1			• ±			13:30	9 ?	1671

SF (せん断力)

4 計算書作成

計算結果をまとめた結果一覧と設計条件等詳細な内容を含んだ結果詳細を用意しており、 その内容を画面, プリンタに出力します。 出力箇所の指定, 章節番号およびタイトルの編集を行うことができます。

4-1 結果一覧

計算結果一覧を表示します。

48

結果詳細

計算結果詳細を表示します。

	▶ 断面力図
☑ 応力度/耐力照査用	☞ 応力度/耐力照査用
▶ 引張鉄筋量照査用	▶ 引張鉄筋量照査用
▶ 破壊安全度照査用	▶ 破壊安全度照査用
照査結果表の後に、全検討ケース	の結果を出力
「応力度照査用	
□ 耐力照査用	
[]引張鉄筋量照査用	
□ 破壞安全度照查用	
ガション	

出力指定

チェックが付けられた箇所を出力します。

オプション

チェックが付けられている項目を 計算書の設計条件に出力します。

「プレビュー」ボタン 印刷プレビュー画面を表示します

全検討ケースの結果を出力」に各照査毎のスイッチを設けてい ます。

こちらのスイッチにチェックが付いている項目は、照査結果表 の最後に全検討ケースの結果を出力します。 (Q4-3参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q4-3

(Q4-5参照) https://www.forum8.co.jp/faq/win/PCBOX2-qa.htm#q4-5

章 跟对条件 1997年 注目19月1日よび 主日7月1日よび 水道 0 4 木匠 5 鉄振かぶり 8 新軍力計算条件 7 地震時検討条件 1章 設計条件 1.1 構造寸速図 1 第至の総合せ 死消量(case-1 10 105 市内室(cha 地震対抗() 地震対抗() 100 PA 12 estilia Rian 78. 08 部1 1 1 1 日 70 1 800 हर्त 3 00 图/时力9 3 400 8.2 号 開鉄協動総直 6.3 野物辺全営総会 8.4 駅等安全度総直 > 1 2 Alt H ####1#2) # c2#502##

・印刷プレビュー画面

第3章 Q&A

1 適用範囲、制限条件

Q1-1 プログラムで参照している基準や文献を教えてください。

A1-1

- 本プログラムは、以下の基準、文献を参考にしております。
 - ・道路土エカルバート工指針(平成21年度版)(平成22年3月)(社)日本道路協会
 - ・道路橋示方書・同解説 | 共通編(平成14年3月) (社)日本道路協会
 - ・道路橋示方書・同解説IIIコンクリート橋編(平成14年3月)(社)日本道路協会
 - ・道路橋示方書・同解説Ⅳ下部構造編(平成14年3月)(社)日本道路協会
 - (参考文献)
 - ・共同溝設計指針 昭和61年3月 (社)日本道路協会
 - ・駐車場設計・施工指針 同解説 平成4年11月 (社)日本道路協会
 - ・下水道施設の耐震対策指針と解説-2006年版-(社)日本下水道協会
 - ·下水道施設耐震計算例-管路施設編-後編 2001年版 (社)日本下水道協会

Q1-2 温度荷重は考慮可能でしょうか。

- A1-2 申し訳ございませんが、現プログラムでは温度荷重の考慮には対応しておりません。
- Q1-3 カルバート工指針P.143にあるPC構造150型/300型/600型の3タイプは対応可能か?

A1-3 可能です。 但し内寸に応じた形状寸法自動セット等には対応しておりませんので、各寸法を直接入力していただく必要があります。

Q1-4 地震時の検討は可能か

- A1-4 「共同溝設計指針」「駐車場設計施工指針」「下水道施設の耐震対策指針」を参照した応答変位法による地震時の検討 が可能です。 レベル1地震時、レベル2地震時の検討が行えます。 「初期入力」画面に「地震時の検討:しない/する」、「レベル2地震時の照査:しない/する」のスイッチを用意していま す。
- Q1-5 コンクリートや鉄筋の材料強度などは任意に設定可能か?
- A1-5 以下の項目について設定することが可能です。
 - ■コンクリート
 - ·設計基準強度 (16.00~50.00)
 - ・ヤング係数 (0.01~9.99)×10^4
 - ・許容応力度
 - ■鉄筋
 - ・鉄筋材質(SD295/SD345)
 - ・設計降伏強度
 - ・許容応力度

Q1-6 多層の地盤条件での検討は可能か?

A1-6 可能です。 「初期入力」画面に「多層地盤:しない/する」のスイッチを設けています。 常時の場合、各層の土の単位体積重量を用いて水平土圧を算出します。 地震時については、基盤面までの表層地盤の情報を元に地震荷重を算出します。

Q1-7 隅角部に剛域を考慮した計算は可能ですか

A1-7 剛域を考慮した計算には対応しておりません。ご了承ください。

Q1-8 左右の土被りが異なる計算は可能か?

- A1-8 本プログラムでは、ボックス天端は地表面以深に存在し、地表面は水平として対応しています。
 そのため、左右の土被り厚が異なる場合について、直接的には対応しておりません。
 ただし、左右土被りの差分を任意死荷重として別途入力することでお考えと等価な状態で検討することは可能と考えます。
 また、本プログラムでは左右それぞれの水平土圧係数の入力を用意しています。
 水平土圧係数を0入力することで自動的に算出される水平土圧を無視し、予め算出しておいた水平土圧を任意死荷重で入力して検討することも可能です。
- Q1-9 静止土圧係数が0.5で設定されていますが、任意に変更することは可能ですか
- A1-9 「考え方」-「基本・荷重」画面に水平土圧係数の入力を設けています。こちらで変更することが可能です。

Q1-10 全部材がRC部材またはPC部材の検討は可能か?

- A1-10 本プログラムは頂底版をプレストレストコンクリート部材 (PC部材)、側壁を鉄筋コンクリート部材 (RC部材) としたPC ボックスカルバートの断面方向計算を支援するプログラムです。 全部材がRC部材またはPC部材のカルバートについては検討できません。
- Q1-11 側壁を上下分割し、PC部材で緊張して一体化した解析は可能ですか
- A1-11 上下分割した側壁部材をPC部材で緊張して一体化した解析には対応しておりません。ご了承ください。
- Q1-12 底版に張出を設けた形状は可能か?
- A1-12 底版への張出の設置には対応しておりません。ご了承ください。
- Q1-13 ブロック長は0.5mから入力可能だが、0.5mを入力しても断面照査では1mで計算される。0.5mでの計算は可能か。
- A1-13 断面方向の計算は、奥行き1mをモデル化して断面力を求め、部材幅1mとして断面照査を行っています。 奥行き長を0.5mでモデル化して計算した場合、奥行き1mで計算した場合と比較して、荷重強度が0.5倍になることにより 断面力も0.5倍となりますが、部材幅も0.5倍となることにより応力度計算結果は同値となります。

したがって、奥行き1m当たりの荷重を設定すれば、奥行き長に関係なく等価な計算結果となります。 なお、定型活荷重(鉛直方向)は車両占有幅(2.75m)から奥行き1m当たりの荷重強度を算出しています。 ご検討されている条件に適用できない場合は、任意活荷重あるいは任意死荷重として設定してください。 活荷重の計算方法につきましてはヘルプの「計算理論及び照査の方法」-「断面方向の計算」-「荷重」-「活荷重」を、 入力方法につきましては入力画面上の「ヘルプ」ボタンから開く説明画面をご参照ください。

上記の理由から、断面方向計算は奥行き1mあたりの計算のみをサポートしておりますので、1m未満の奥行き長で断面照 査を行うことはできません。ご了承ください。

Q1-14 インバート型は可能か?

- A1-14 底版内側が逆アーチ型をしたインバート形状に対応しています。
- Q1-15 定型2活荷重を載荷するケースを無視したいがどのように入力すればよいか
- A1-15 「荷重」→「定型活荷重」画面にて「定型2:荷重強度Pw(kN/m2)」に0を入力してください。 これにより定型2活荷重を含むケースは作成されません。

Q1-16 地表面から突出しているようなモデルは計算可能か。

A1-16 本プログラムでは地表面は左右同じ高さで頂版天端以上としており、地表面から突出した状態での入力および計算を行う ことはできません。どうぞご了承ください。

ただし、常時につきましては、以下の方法で等価な荷重状態を作成することは可能かと存じます。

・「形状」--「土被り」画面で、盛土厚=0.0とします。

・「荷重」--「任意死荷重」で、地表面が頂版天端にあるときと地表面が頂版天端より下にあるときとの土圧の差分を土 圧の作用方向と逆向きに設定します。

なお、地震時については応答変位法にて行っており、地中に構造物が存在していることを前提としておりますので突出した状態には対応しておらず、また代用入力方法等についても適切な情報を持ち合わせておりません。 どうぞご了承ください。

Q1-17 土の単位重量はどこで入力すればよいか。

A1-17 「地震時の検討:しない」かつ「多層地盤:しない」の場合、「材料」画面の「単位重量」に土の単位重量の入力を設けています。こちらから設定を行ってください。 「地震時の検討:する」または「多層地盤:する」としている場合は「地盤」画面から各層の土の単位重量を設定してください。

Q1-18 付着応力度の照査は可能ですか?

A1-18 可能です。 「考え方」-「応力度照査」画面の「付着応力度の照査(RC部材)=する」と設定することで、RC部材を対象に付着応力 度照査を行います。照査位置はせん断応力度照査位置とします。

Q1-19 底部半径Rからインバート部高さhへの変換式を教えてください。

- A1-19 インバート部高さhは以下の式で算出します。 1. Wからハンチ部までの角度θを求める。
 - θ = sin²-1(W ÷ R)
 2. θからインバート部高さhを求める。
 インバート部高さh = W × tan(θ ÷ 2)
 ここに、
 R:インバートの底部半径
 W:インバートの底部中心から端部までの距離(内空幅÷2)

Q1-20 地震動(慣性力)の向きを指定したいが可能か。

A1-20 「荷重」-「地震荷重」画面の「慣性力の向き」にて慣性力の方向を指定することができます。 また、両方を選択していただくことで右向き、左向きそれぞれのケースの慣性力の照査を一度の計算で行えるようにして います。 左右非対称のBOXの場合に両方向を選択することで、計算書を分けることなく検討することができます。

2 荷重

Q2-1 カルバート内空に荷重を載荷するにはどうしたらよいですか

A2-1 本プログラムでは、内空に荷重を載荷するケース等を想定して、「任意死荷重」の入力を用意しています。 「荷重」-「任意死荷重」画面で設定してください。 入力方法につきましては、入力画面上の [ヘルプ] ボタンから開く説明画面をご参照ください。

Q2-2 死荷重のみ(活荷重無し)の条件で計算可能ですか

A2-2 「初期入力」画面で「定型活荷重=考慮しない」と設定してください。 これにより定型活荷重(定型1、定型2)を無視します。 また、任意活荷重を入力している場合は、任意活荷重を削除してください。 以上により、死荷重のみの計算を行うことが可能です。

Q2-3 任意活荷重(縦断方向)で入力する輪荷重(kN)は2輪分か?それとも1輪分か?

A2-3 1輪分の輪荷重(kN)を入力してください。入力された輪荷重を2倍して荷重強度を算出します。

Q2-4 任意死荷重で設定した荷重の慣性力は自動計算で考慮されますか

- A2-4 慣性力の算出は躯体自重のみを対象としており、任意死荷重で設定された荷重の慣性力については自動で考慮しており ません。 任意死荷重分の慣性力を考慮する場合には、地震時の任意荷重として「任意地震荷重Lv1」、「任意地震荷重Lv2」にてレ ベル1地震時、レベル2地震時毎に設定してください。
- Q2-5 地下水位以下の土の単位重量はどのように算出していますか。 また、水中重量を任意に設定することはできますか。
- A2-5 地下水位以下の土の単位重量 y'は y'=ysat-yw ysat:盛土(飽和)の単位重量 yw :水の単位重量

により算出しております。 水中重量は上記のように算出しており、任意に設定することはできません。

お考えの水中重量を γ "とした場合、盛土(飽和)重量 γ satを γ sat= γ "+ γ w で算出していただき、この値を γ satに設定することでご対処していただきますようお願いいたします。

- Q2-6 地震時の設計応答速度Svは線形補間で算出していると思いますが、手計算結果と一致しません
- A2-6 設計応答速度Svは線形補間ではなく対数線形補間で算出しています。 詳しくはヘルプ「計算理論及び照査の方法」→「断面方向の計算」→「荷重」→「地震荷重」→「地震荷重」→「(1)設計応 答速度」に各レベル地震時毎の算出式を記載しておりますのでこちらをご参照ください。
- Q2-7 任意活荷重の「活荷重生成」で車輪1載荷位置=支間中央を指定して確定したが、設定される位置が内空中央位置になっていない
- A2-7 支間中央は、内空の中央ではなく軸線支間中央を指しています。 支間中央位置=(左側壁厚/2+内空幅+右側壁厚/2)/2 任意活荷重の入力画面での距離はBOX左端(左側壁外面)からの距離となっていますので支間中央位置に左側壁厚/2 を加えた値となります。
- Q2-8 任意活荷重の「活荷重生成」で車輪1載荷位置=支間中央を指定して確定したが、設定される位置が内空中央位置になっていない

A2-8

任意死荷重、任意地震荷重Lv1、任意時死荷重Lv2で設定された荷重は以下のように考慮しています。 ・任意死荷重

死荷重に追加して考慮

・任意地震荷重Lv1 レベル1地震時の荷重に追加して考慮

・任意地震荷重Lv2

レベル2地震時の荷重に追加して考慮

地震時のケースは、死荷重+地震荷重として取り扱いますので、任意死荷重も地震時ケースの死荷重に含まれることとなり、結果的に地震時ケースに考慮されます。 そのため、任意死荷重と任意地震荷重に同じデータを入力された場合は重複して考慮することとなります。

- Q2-9 複数の水位ケースを設定することは可能か。
- A2-9 Ver.3.0.0より複数の水位ケース(最大5ケース)の設定に対応しました。 「荷重」-「死荷重」画面で水位ケース数を設定し、各水位ケースの内水位、外水位を設定してください。

Q2-10 外水位がBOX全高より高いケースは計算できるか。

- A2-10 外水位が路面以下であれば、計算可能です。 また、外水位が路面より上にある場合には「外水位=路面」とし、 ・入力された盛土厚、外水位 ・実際の盛土厚、外水位 の荷重の差分を「任意死荷重」で設定することで計算可能です。
- Q2-11 雪荷重を死荷重の路面荷重で設定すると全死荷重ケースに考慮される。 雪荷重を考慮するケースと考慮しないケースを同時に計算することは可能か。
- A2-11
 「死荷重」画面の路面荷重で設定された荷重は、死荷重扱いとして常に載荷されることとなり、考慮、無視の2ケースの計算を同時に行うことはできません。
 以下の手順で雪荷重による影響を任意死荷重として設定することで考慮、無視を同時に検討することが可能です。
 「荷重」-「死荷重」画面で同じ水位を2ケース設定し、雪荷重は0.0とします。
 「荷重」-「任意死荷重」画面で雪荷重による
 ・頂版に作用する鉛直方向荷重
 ・側壁に作用する水平方向荷重
 を入力し、「同時に載荷する死荷重ケース」で「ケース2」をチェックします。
 以上により、死荷重ケース1は雪荷重なし、死荷重ケース2は雪荷重ありの荷重状態となります。

Q2-12 群衆荷重の設定方法を教えてほしい。

A2-12 2種類の設定方法があります。
 <群集荷重を死荷重として扱う場合>

 (1)「初期入力」で、『定型活荷重=考慮しない』を設定します。
 (2)「荷重」-「死荷重」で、『路面荷重qd』にお考えの群集荷重強度を入力します。

<群集荷重を活荷重として扱う場合> (1)「荷重」-「定型活荷重」で、『GH(m)=0.00』と設定します。 (2)同画面の『Qw(kN/m2)』にお考えの群集荷重強度を入力します。

- 3 配筋
- Q3-1 配筋の入力において、外側、内側に各々2種類ずつ鉄筋径とピッチが入力できるが、これは何を意味するのか
- A3-1 1段に異なる鉄筋径を交互に配筋する場合に用いる入力です。同一鉄筋径を使う場合は1種類だけ入力してください

Q3-2 配筋の各部位のかぶりは入力が1つしかないが、2段配筋することは可能か

A3-2 申し訳ございませんが、2段配筋による計算には対応しておりません。 本プログラムで計算する場合は、1段目と2段目の鉄筋の重心位置を算出していただき、1段として近似していただく方法し かございません。

鉄筋の重心位置
重心位置=(As1×d1+As2×d2)/(As1+As2)
As1:1段目の鉄筋量(cm2)
d1:1段目のかぶり(cm)
As2:2段目の鉄筋量(cm2)
d2:2段目のかぶり(cm)
この場合、鉄筋の応力度は、入力されたかぶり位置(2段配筋の重心位置)での値になり、最遠鉄筋位置での値ではあり
ませんのでご注意ください。

- Q3-3 丸鋼 (SR235) に対応しているか
- A3-3 丸鋼 (SR235) には対応しておりません。 現プログラムで丸鋼での計算を行いたい場合は、 ・「許容値」で、鉄筋の許容応力度を変更 ・「配筋」で、ピッチまたは本数を調整して鉄筋量を近似 の入力でご対応くださいますようお願いいたします。

Q3-4 PC鋼棒について任意の鋼材を指定可能か?

A3-4 可能です。 「材料」画面→「PC鋼棒」→「種類・記号」に任意鋼材の選択を設けています。 任意の鋼材名称、引張強度σpu(N/mm2)、降伏点強度σpy(N/mm2)、引張応力度σpt(N/mm2)、断面積Ap(mm2)、リラク セーション率γ(%)を設定してください。

Q3-5 安定計算は可能か?

- A3-5 安定計算には対応しておりません。
- Q3-6 せん断補強鉄筋はどのように入力すればよいか?
- A3-6 「鉄筋量Aw(cm2/m)」には奥行1m当りに見込めるせん断補強鉄筋量を入力してください。

Aw(cm2/m)=せん断補強鉄筋1本当りの断面積(cm2)×奥行1m当りにせん断効果が見込める本数

「間隔(cm)」にはせん断補強鉄筋の部材軸方向の間隔を入力してください。

せん断補強鉄筋の画面ヘルプにも記載しておりますので併せてご参照ください。

Q3-7 鉄筋の入力方法は?

A3-7 本製品ではブロック長当りの本数を入力していただく仕様としています。 断面方向の計算は奥行き1m当りで行いますので、入力された本数をブロック長で除して奥行き1m当りの本数を内部算出 し計算に用います。

Q3-8 側壁外側隅角部の鉄筋について頂底版外側鉄筋の端部鉄筋ではなく単独の側壁外側鉄筋として考慮可能か。

A3-8 可能です。

「配筋」→「側壁」画面に「外側鉄筋の端部:本画面の①②を使用/頂底版外側の端部鉄筋(①③)を使用」スイッチを 用意しており、「本画面の①②を使用」選択時は単独の側壁外側鉄筋として考慮します。 「本画面の①②を使用」の①は左側壁外側鉄筋、②は右側壁外側鉄筋を指します。

Q3-9 インバート形の時、端部の部材高はどのように算出されるのか。

A3-9 インバート形の底部については、インバートの円弧により底版が厚くなった部分(=インバート高)を45°の仮想ハンチと考え、この仮想ハンチの1:nの傾きまでを有効と考え部材高を算出します。

4 断面照查

Q4-1 曲げ耐力の算出方法(レベル2地震時照査用) N一定/(M/N)一定 とは?

A4-1 「曲げ耐力の算出方法=N一定 / (M/N)一定」は、曲げ耐力Mu算出における収束条件の指定となります。 「道路橋示方書・同解説 Ⅲ コンクリート橋編 (H14.3)日本道路協会」(P.142)図-解4.2.4 M-N相関関係図を元に 説明しますと、以下のようになります。 ・N一定:Md, Nd点を通り水平軸(M軸)に平行な線がNM曲線と交差する位置でMuを算出します。

・(M/N)一定:原点OとMd, Nd点を結ぶ線がNM曲線と交差する位置でMuを算出します。

なお、「昭和61年制定 コンクリート標準示方書 設計編 土木学会」(P.44)では、「e=Md/N'dを一定として求めた設計曲 げ耐力Mudが式(6.1.1)を満足することを確かめることによって行うものとする。」と記述されていますが、平成3年版以降 より上記のM/N一定の記述は無くなり、NM曲線の内側(原点側)にあればよいとのみ記述されています。 N一定/(M/N)一定の指定につきましては、設計者の方の判断で決定して頂きますようお願い申しあげます。

- Q4-2 PC部材のせん断応力度照査について、道示IVやカルバート工指針(H21)に記載の補正係数を考慮した方法は可能か?
- A4-2 可能です。「考え方」→「応力度照査」画面で「せん断照査位置(PC部材)=部材内面から部材高/2の位置」を選択し、 「道示IV,土工指針(H21)の方法で照査」をチェック(レ点を付ける)することで道示IVやカルバート工指針(H21)に記載の 方法で検討を行います。

Q4-3 全検討ケースの照査結果を出力することは可能か

A4-3 可能です。 「計算書

「計算書作成」→「結果詳細」→「出力項目選択」 画面→「照査結果表の後に、全検討ケースの結果を出力」 に各照査毎 のスイッチを設けています。 こちらのスイッチにチェックが付いている項目は、照査結果表の最後に全検討ケースの結果を出力します。

Q4-4 ハンチを考慮した応力度照査は可能か?

A4-4 可能です。 「考え方」→「応力度照査」画面→「ハンチの影響」にて「1:n」の勾配を入力してください。 1:nより緩やかな部分を有効として計算します。 なお「1:n」は、曲げ照査, せん断照査ごとに入力を設けています。

- Q4-5 RC部材のせん断応力度照査の出力において、全ケース中で最大のせん断力ではないケースが抽出されることがあります。 抽出方法について教えてください。
- A4-5 本プログラムのせん断応力度照査では、各照査断面ごとに全検討ケースについてせん断応力度を計算し、(せん断応力度 /許容せん断応力度)が最大となるケースを抽出しています。

[入力]-「考え方」-「応力度照査」の入力画面で「せん断照査位置(RC部材)=部材内面から部材高/2の位置」が 選択されている場合、製品ヘルプの「計算理論及び照査の方法」-「断面方向の計算」-「断面照査」-「RC部材の応力 度照査」の『RC部材のせん断応力度照査』に記載していますように、有効高、引張主鉄筋比、軸方向圧縮力の影響を考慮 して許容せん断応力度の割増を行っており、軸方向圧縮力および曲げモーメントが影響しますので、必ずしも最大せん断 力時が『応力度/許容応力度』最大とはなりません。

なお、本プログラムでは全検討ケースについて応力度結果を出力することが可能です。 計算実行後、「計算書作成」→「結果詳細」から表示される「出力項目選択」 画面にて『照査結果表の後に、全検討ケースの結果を出力』で応力度照査用にチェックして頂くことで、計算書の「応力度計算」 に全検討ケースの結果が出力されま すので、こちらをご参照頂くことで抽出結果を確認することが可能です。

- Q4-6 道路土エカルバート工指針(H21年度版)(P.140)に記載のハンチを設けない場合の断面は、余裕としてコンクリートの曲げ 圧縮応力度が許容応力度の3/4程度となる部材厚にするのが望ましい。を選択する箇所はあるか。
- A4-6 「許容値」→「常時」、「レベル1地震時」画面→「コンクリート」の「許容曲げ圧縮応力度隅角部(ハンチ無)σca」がご 質問に該当します。
 「許容曲げ圧縮応力度隅角部(ハンチ有)σca」の3/4の値を初期値としており、また「許容曲げ圧縮応力度隅角部(ハンチ有)σca」の入力を変更した際にもその3/4値を自動セットします。
- Q4-7 RC部材の曲げ応力度照査で、鉄筋の許容応力度のsaがマイナスになっているのはなぜか
- A4-7 鉄筋の応力度σsは、σs>0.0のとき引張応力度,σs<0.0のとき圧縮応力度が生じていることを示しています。
 圧縮軸力(Nが正)に対して曲げモーメントがかなり小さい(0に近い)場合に、σsが圧縮応力度となる傾向がございます。
 鉄筋に引張応力度(σs>0.0)が生じる設計断面では、σsaとして「許容値」画面の「鉄筋の許容引張応力度」で設定されている値を出力し、圧縮応力度(σs<0.0)が生じる設計断面ではσsaとして「鉄筋の許容圧縮応力度」で設定されている値を応力度の符号にあわせて出力しております。
 なお、鉄筋に圧縮応力度が生じても(σs<0.0となっていても)、許容応力度内であれば問題ありません。
- Q4-8 RC部材 (側壁、底版)の曲げ応力度照査で必要鉄筋量が0.00(cm)となる場合があるのはなぜですか
- A4-8 必要鉄筋量が小数2位で表せないほど微小な値となっていることを示しています。 曲げモーメントに比して軸力が大きい場合にこのような状態となります。

Q4-9 RC部材の曲げ応力度照査と最小鉄筋量照査では決定ケースが異なる場合があるのはなぜか?

A4-9 曲げ応力度照査では、全検討ケースのなかで

・ σc/σca
 ・ σs/σsa
 が最大となるケースを抽出しています。
 曲げ応力度には曲げモーメントだけではなく軸力も影響しますので、最大曲げモーメント時が(応力度/許容応力度)最
 大とならない場合があります。
 また、最小鉄筋量照査では、全検討ケースのなかで
 ・ Mc/Mu
 ・ 1.7M/Mc
 ・ 0.008A1//As'
 が最大となるケースを抽出しています。

上記のとおり、曲げ応力度と最小鉄筋量では抽出方法が異なるため、曲げ照査と最小鉄筋量照査の検討ケースが異なる 場合があります。

Q4-10 死荷重時と設計荷重時とで許容値を別設定することは可能か

A4-10 常時と地震時それぞれの許容値入力を用意しておりますが、これ以外の荷重状態の許容値入力は用意しておらず、死荷重時と設計荷重時とで別設定とすることはできません。

Q4-11 「許容値」において「許容曲げ圧縮応力度隅角部(ハンチ無)」とは?

A4-11 ハンチのない隅角部のコンクリート許容曲げ圧縮応力度 σcaは、「道路土エカルバート工指針(平成22年3月)社団法人日本道路協会」(P.140)の内容に基づき、一般部の3/4を初期設定しています

Q4-12 側壁が必要鉄筋量不足でNGとなるため、使用鉄筋量を増やして再計算を行うと必要鉄筋量も増え、OKとならない

- A4-12 必要鉄筋量は、

 (1)コンクリートの圧縮応力度σcが許容応力度σcaとなるときの鉄筋量
 (2)鉄筋の応力度σsが許容応力度σsaとなるときの鉄筋量
 を求め、(1)、(2)のうち大きい方としています。
 ご質問のケースでは、(1)により必要鉄筋量が決定されているものと考えられます。
 (2)により必要鉄筋量が決定される場合は、鉄筋量を増やすことによりσsが小さくなりますが、
 (1)により必要鉄筋量が決定される場合は、鉄筋量を増やしてもσcの減少が僅かなため、
 ご質問のように必要鉄筋量が増えていきます。この場合、部材厚を大きくする方が有効と思われます。
- Q4-13 許容応力度の割り増しを行いたいが割増係数の入力はあるか
- A4-13 割増係数の入力は設けておりません。 「許容値」画面で割り増した値を入力していただくようお願いいたします。

Q4-14 計算確認画面の青色表示は何を表しているのか

A4-14 せん断応力度がコンクリートのみでせん断力を負担する場合の許容せん断応力度(τa)を超えても、斜引張鉄筋と協同し てせん断力を負担する場合の許容せん断応力度(τa2)以内にある場合に青色表示としています。

> なお、RC部材の側壁はせん断応力度がτaを超えた場合に必要スターラップ量を算出し、これを満たすせん断補強鉄筋 が入力されてなければ赤色表示となります。

Q4-15 レベル2地震時のRC部材の曲げ耐力Mudの値が「RC断面計算」で計算したMudと一致しない A4-15. 「考え方」-「応力度照査」画面の『曲げ耐力の算出方法(レベル2地震時照査用)』をご確認ください。 『曲げ耐力の算出方法(レベル2地震時照査用)=N一定』を選択されていないでしょうか。

A4-15 「RC断面計算」では限界状態設計法による通常の結果確認画面や計算書では、「M/N一定」で算出したMudのみ表示 され、「N一定」で算出したMudを確認することができません。 ただし、RC断面計算プログラムで「限界状態設計法」→「基本定数」タブ画面にて「曲げ耐力Mu (N一定で計算)の参考 出力=する」として計算実行後、「ファイル」メニュー→「印刷プレビュー」→「テキスト印刷プレビュー」で表示される計算 書の「#.終局限界状態の検討」→「●作用軸力と軸方向耐力を一致させた場合の、曲げ耐力の参考出力」でN一定時の Mudが確認できますので、こちらの値と比較することで一致することが確認できます。

Q4-16 許容軸圧縮応力度の値はどのように設定しているのか

 A4-16 「道路橋示方書・同解説 IV下部構造編(H14.3)日本道路協会」P.147の表-4.2.1
 「道路橋示方書・同解説 IV下部構造編(H24.3)日本道路協会」P.157の表-4.2.1
 を元に初期値を設定しておりますが、この表では設計基準強度σckが30(N/mm2)までしか記述されて おりませんため、σck>30(N/mm2)の場合につきましては上記表を元に線形補間で求めた値を設定しております。

Q4-17 PC部材のせん断応力度の照査方法で、旧カルバート工指針のk値を用いる方法での照査は可能か

A4-17 照査位置が部材高/2の位置で、道示IV、土工指針(H21)の方法で検討されているものと思われます。 「考え方」→「応力度照査」画面→「せん断照査位置(PC部材)」に「道示IV、土工指針(H21)の方法で照査」のスイッチを 用意しています。 こちらのチェックをはずすことで、k値を用いた許容値割り増しを行います。

Q4-18 周面せん断力の上限値 τ maxが計算されないのはなぜか。

A4-18 「形状」→「地盤」画面の「地盤のせん断強度を算出する」にチェックが付いているかご確認ください。 「地盤のせん断強度を算出する」のチェックがついている場合に周面せん断力の上限値τmaxを計算します。

Q4-19 「考え方」の「応力度照査」において「単鉄筋」、「複鉄筋」の選択肢があるが「単鉄筋」の指定するとどうなるか。

- A4-19 この選択肢は曲げ応力度照査、曲げ耐力照査、破壊安全度照査における主鉄筋の取扱いを指定するものです。これらの 計算は何れも「単鉄筋」と指定すると複鉄筋で配筋していても「単鉄筋」で計算します。但し応力度結果の印刷では複鉄 筋の配筋状態で印刷されます。そして表の下にコメントとして「上表は、単鉄筋による曲げ応力度結果を示す」と印字され ます。
- Q4-20 PC部材のせん断応力度照査で、隅角部のα:許容せん断応力度の割増係数は2で固定なのでしょうか?
- A4-20 「考え方」-「応力度照査」画面にてα=kと設定することも可能です。kは次式にて求めます。 k = 1 + Mo/Md ≦ 2

Q4-21 地震時の周面せん断力の算出位置はどのように決めていますか?

A4-21 周面せん断力の算出位置(頂底版軸線位置/頂版上面・底版下面)の指定に応じて、頂版位置,底版位置での周面せん 断力を求めます。 ■頂底版軸線位置の場合

頂版天端と頂版軸線位置、底面と底版軸線位置とで地質が異なる場合で選択されている層データのγt、Vsiを用いて計算します。

・周面の地層が選択されている場合

頂版上面、底版下面位置の層データを用います。

・軸線位置の地層が選択されている場合

頂版軸線位置、底版軸線位置の層データを用います。 zには地表面から頂底版の軸線位置までの深さを用います。

■頂版上面・底版下面の場合

頂版:頂版上面位置の層データのγt、Vsiを用いて計算します。zには地表面から頂版上面までの深さを用います。 底版:底版下面位置の層データのγt、Vsiを用います。zには地表面から底版下面までの深さを用います。

Q4-22 「考え方」ー「応力度照査」ー「PC部材のMuの低減係数」とは何か。

A4-22 道路橋示方書・同解説IIIコンクリート橋編(P.139)に、「プレストレストコンクリート構造において、PC鋼材とコンクリートとの付着がない場合の破壊抵抗曲げモーメントは、(2)又は(3)の規定により算出する値の70%とする。」との記述があり、これに対応するため入力を用意しております。PC部材のMuに対する低減係数を入力してください。

5 その他

Q5-1 FRAME解析結果のデータをFRAME製品で利用することは出来ないのか?

- A5-1 可能です。「計算確認」→「FRAME」→「断面方向」で「FRAME解析結果」画面を開き、画面左下にある「保存」ボタン を押下してください。 弊社FRAME製品で読み込めるFRAMEデータ (*.\$O1) として保存します。 保存したFRAMEデータは、Engineer's Studio, Engineer's Studio面内, FRAME(面内), FRAMEマネージャ, FRAME(2D)で読み込み可能です。FRAME(3D)はサポートしておりません。
- Q5-2 メイン画面の正面図において、カルバートの全幅や全体の寸法線は表示されるが内空寸法や部材厚の寸法線は表示できないか?
- A5-2 メインメニュー「オプション」→「表示項目の設定」 画面→「表示・描画」→「詳細寸法線」 にチェックを付けていただくことで、内空寸法および部材厚を示す寸法線が描画されます。
- Q5-3 「形状」-「土被り」画面-「鉛直土圧係数の算定条件」の「通常の地盤」「良好な地盤」とは?
- A5-3 「道路土工カルバート工指針(平成22年3月)社団法人日本道路協会」(P.98)に鉛直土圧係数の表(解表5-3)があります。 良好な地盤はこの表の条件が「良好な地盤上〜」の場合、通常の地盤は条件が「上記以外の場合」を指しています。
- Q5-4 断面力計算のFRAMEモデルにおいて、ハンチがある場合でもハンチを無視してモデル化していますが、何か考慮するス イッチがありますか
- A5-4 本プログラムでのFRAME解析時の本体骨組みモデルにつきましては、 「道路橋示方書・同解説 Ⅳ下部構造編(H24.3)日本道路協会」P.211の 3)断面力を算出する場合の軸線は、ハンチを無視した部材断面の図心軸線に一致させる。 の内容を採用しており、ハンチの影響を考慮した骨組みモデル化は行っておりません。

Q5-5 ヤング係数を変更しても、断面力がヤング係数変更前と変わらない

- A5-5 ヤング係数を変更した場合、変位に影響が生じます。 部材分布バネを考慮する場合など変位が断面力に関係するケースでは、ヤング係数の変更により断面力値も変わります が、常時の検討では部材分布バネは考慮していないため、断面力値は変化しません。 なお、地震時の検討を行う場合の地震時のケースでは側壁、底版に分布バネを考慮するため、断面力値に相違が生じま す。
- Q5-6 メインメニュー「オプション」→「動作環境設定」 画面の「バックアップファイルを作成する」とは?
- A5-6 上書き保存時、または指定した保存ファイル名と同名のファイルが存在する場合に、バックアップファイル(*.F9C~)を作 成するかどうかを指定します。

Q5-7 「地盤」 画面に 基盤面直上の 層番号の 設定があるが 基盤面とは 何か。

A5-7 基盤面について、「下水道施設の耐震対策指針と解説 2014年版」および 「道路橋示方書・同解説V耐震設計編(H.24.3)」では下記のように記載されています。

> ---下水道施設の耐震対策指針と解説 2014年版(P.8)より------耐震設計時に想定する基盤層であって、表層地盤に比べて相対的に堅固な地盤が下方に続くとき、その地盤の上面の ことをいう。

---道示V(P.33)より------

耐震設計上の基盤面とは、対象地点に共通する広がりを持ち、耐震設計上振動するとみなす地盤の下に存在する十分 堅固な地盤の上面を想定している。ここで、十分堅固な地盤とは、せん断弾性波速度300m/s程度(粘性土層ではN値25、 砂質土層ではN値50)以上の値を有している剛性の高い地層と考えてよい。

- Q5-8 計算書の断面力値は小数点以下1桁までの表示となっていますが、小数点以下3桁に変更することはできないでしょうか?
- A5-8 「オプション」→「出力値の書式設定」画面の「仮数小数桁数」を「*.ddd」に変更することで、小数第3位まで出力することが可能です。 なお、本スイッチによる桁数変更は、計算書の「設計断面力」や「応力度照査」の結果表に反映されますが、「断面力図」には反映されません。どうぞご了承ください。

Q&Aはホームページ(http://www.forum8.co.jp/faq/win/PCBOX2-qa.htm)にも掲載しております

PCボックスカルバートの設計計算 Ver.3 操作ガイダンス

2024年 7月 第2版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へ お問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。 https://www.forum8.co.jp/faq/qa-index.htm

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

PCボックスカルバートの設計計算 Ver.3 操作ガイダンス

