

Operation Guidance 操作ガイダンス

本書のご使用にあたって

本操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2025 FORUM8 Co., Ltd. All rights reserved.

目次

第1章 製品概要 5 5 1 プログラム概要 6 2 フローチャート 第2章 操作ガイダンス 7 7 1 モデルを作成する 8 1-1 初期入力 8 1-2 検討条件 9 1-3 材料・基準値 10 1-4 本体形状 11 1-5 護床工の検討 1-6 護床工のブロック重量 11 1-7 荷重 12 14 1-8 部材 2 ファイルを保存する 15 3 計算・結果確認 16 19 4 計算書作成 20 5 図面作成 20 5-1 基本条件 21 5-2 形状 22 5ー3 かぶり 5-4 鉄筋(簡易) 22 23 5-5 図面生成 5-6 図面確認 23 25 5-7 3D配筋生成 第3章 Q&A 26 26 1 適用範囲・制約条件 26 2 入力 3 水理計算

- 28
 3
 水理計算

 31
 4
 安定計算

 32
 5
 断面計算
- 33 6 その他

第1章 製品概要

1 プログラム概要

概要

本プログラムは、「床止めの構造設計手引き(財)国土技術研究センター 編」、「河川砂防技術基準 設計編 床止め 令和4年6月改訂版 国土交通省」に従い、落差工の設計計算および図面作成を行うプログラムです。 護床工の設計については、上記文献と「土地改良事業計画設計基準及び運用・解説 設計「頭首工」 平成20年3月 社団法人 農業農村工学 会」から選択可能です。

1. 一般的な形状の落差工(直壁型、緩傾斜型)について、水理計算及び安定計算を行うことが可能です。

2. 直壁型の場合は本体・水叩き一体式構造と分離式構造を選択可能です。

3. 基礎形式は直接基礎と杭基礎(別売の基礎製品との連動が必要)に対応しています。

4. 護床工の区間長及びブロック重量の算定を行うことが可能です。

5. 本体・水叩き一体式構造の場合は、断面計算(許容応力度法による照査)を行うことが可能です。

6. 安定・断面計算の荷重ケースは、常時・洪水時・地震時について行うことができます。また、検討水位は3ケースまで指定可能です。

7. 本体・水叩きの照査位置は任意の位置を3個所まで指定することが可能です。また、それぞれの照査位置で配筋を入力することができます。

8. 水理計算は実流量か単位幅流量で行うかを選択することができます。

実流量で計算する場合には、各断面位置(上流部、中流部、下流部)ごとに使用する平均流速公式の設定が可能です。

平均流速公式は、レベル1(単断面), レベル1a(単断面), レベル2(複断面), レベル2a(複断面), レベル3(複断面)に対応しています。各公式については、「平均流速公式」をご参照ください。

9. 落差工本体及び水叩き部の形状を自動的に決定することが可能です。

10. 直壁型かつ一体式構造の場合は本体及び水叩き部の配筋を自動的に決定することが可能です。

11. 水理計算を実行すると、メイン画面の形状図に水位ラインを描画します。

12. 計算書は、画面上でのプレビュー機能の他、Word, HTML, テキスト出力を行うことも可能です。

【適用基準および参考文献】

・河川砂防技術基準 設計編 床止め 令和4年6月改訂版 国土交通省

- ・建設省河川砂防技術基準(案)同解説 設計編 山海堂 平成19年7月改訂版 建設省河川局監修
- ・床止めの構造設計手引き(財)国土技術研究センター編

・土地改良事業計画設計基準設計「頭首工」 令和6年3月 農林水産省

・河川構造物の耐震性能照査指針・解説─Ⅳ.水門・樋門及び 堰編─, 令和 2 年 2 月(令和 2 年 6 月一部追記) 国土交通 省水管理・国土保全局

・道路橋示方書・同解説 Ⅳ下部構造編 平成24年3月 (社)日本道路協会

・杭基礎設計便覧 平成27年3月 (社)日本道路協会

2 フローチャート

第2章 操作ガイダンス

1 モデルを作成する

使用サンプルデータ:「Sample1.F9W」

「床止めの構造設計手引き(財)国土技術研究センター編」に記載される設計例をモデル化したものです。

(1)河道条件

川幅	B=100m	河床勾配	I=1/400
計画流量	Q=600m ³	粗度係数	n=0.035
(2)地盤条件			
基礎地盤土質	粗砂	土質定数	$\gamma = 18$ kN/m ³
			γ_{bw} =9.81kN/m ³
			$\varphi = 30^{\circ}$

(3)設計荷重

床止めの構造設計手引き「2-4-1設計条件」より

(a)自重

鉄筋コンクリートの単位体積重量:24.520kN/m³

(b)設計震度

κ=0.2

(4)落差工

上下流河床差 (D ₁)	1m
天端突出高(D₂)	0.3m
水褥池水深 (D ₃)	0.3m
総落差高(D)	1.6m

■各入力項目の詳細については製品の【ヘルプ】をご覧ください。

操作ガイダンスムービー
 Youtubeへ操作手順を掲載しております。
 落差工の設計・3D配筋
 操作ガイダンスムービー(7:29)

1-1 初期入力

初期入力を行います。

1-2 検討条件

落差工の形式や構造形式、河道条件など、基本的な情報を設定します。

美討条件	×	
検討ケース名称 [床止めの構造設計手引き計算例] 落差工の形式 6 直撃型 (緩体料型) 本体・水叩き構造形式 0 (女性手構造) (公共学生構造)	「 本D2 D1 D3 D3 D3 D2 本D2 本D2 本Z1	
	総落差高D(m) 1.600	
	天端突出高D2(m) 0.300 水振池水(空D3(m) 0.300	
基礎形式 ○ 直接基礎 ○ 杭基礎(連動)	上流河床標高Z1(m) 1.300	
自動決定 「本は・水切き部形状 「本は・水切き部配筋(直壁型かつー体式構造) 「河道条件 計画派量Q(m ³ /s) <u>600.000</u> 川幅E(m) <u>100.000</u>	「パー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ロー・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン	
河床勾配XI1/#) 粗度係数n 上流部 400.00 0.0350 中流部 400.00 0.0350 下流部 400.00 0.0350	読床工の検討方法 (テ 床しめの構造設計手引き (テ 土地20見事業計画設計基準「顔首工」 と要か10年長の計算方法	
緩傾斜上の粗度係数n1a 0.0850	(* Randの式) C ブライの式	
○ 分数表記(1/年) ○ 小数表記(###) ○ 分数表記(1/年) ○ 小数表記(###) ○ 分数表記(1/年) ○ 小数表記(###) ○ 最大規圧力以以求去る厚さを確保する ○ 剛(辛熙吉夫)(求去る厚さを確保する)		
	【 ✔ 曜定 ★ 取消 ? ヘルブ(出)	

検討ケース名称

半角30文字以内で任意入力

→「床止めの構造設計手引き計算例」

落差工の形式

直壁型(一体式構造)で鉄筋コンクリート部材の場合は、本体と 水叩き部について、断面計算(曲げ応力度、せん断応力度)を行 うことが可能です。

コンクリート材質

直壁型(一体式構造)で鉄筋コンクリート部材の場合は、本体と 水叩き部について、断面計算(曲げ応力度、せん断応力度)を行 うことが可能です。

河道条件

計算流量 600.000Q(m³/s) 川幅 100.000B (m)

	河床勾配I(1/#)	粗度係数n
上流部	400.00	0.0350
中流部	400.00	0.0350
下流部	400.00	0.0350

落差工

総落差工D(m)	1.600
天端突出高D2(m)	0.300
水褥池水深D3(m)	0.300
上流河床標高Z1(m) ※標高の基準点	1.300

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q2-5

水理計算

(Q2-5参照)

水理計算を実流量で行うか、単位幅流量で行うかを設定してくだ さい。単位幅流量を選択すると、下流部水深スイッチが自動で切 り替わります。

(Q2-2参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q2-2 (Q2-3参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q2-3

護床工の検討方法

床止めの構造設計手引き 「床止めの構造設計手引き」(P.61~)に準じた護床工の区間 長、ブロック重量の算定を行います。

1-3 材料·基準値

水理計算や安定・断面計算に用いる材料データや許容値などを設定します。

「読込」ボタンより、既に作成されている設計データファイル (*.F9W) から、本画面の設定値のみを取り込むことができます。

重力加速度

水理計算に用いる重力加速度gを設定してください。

単位重量

重量や慣性力、土圧・水圧の計算に用いる各単位重量を設定し てください。

基礎地盤

安定計算時の基礎地盤の種類を選択します。選択した地盤に応 じて、「床止めの構造設計手引き」(P.47)の表2-3に従い、摩擦 係数及び「荷重状態」の許容支持力度の初期値を自動的に設定 します。

該当する地盤がない場合は、「その他」を選択し、摩擦係数及び 「荷重状態」の許容支持力度を直接設定してください。 (Q4-10参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q4-10

荷重状態

安定計算時の許容値や安全率、断面計算時の許容応力度の割増 し係数等を設定してください。

コンクリート

本体及び断面計算時のコンクリートに関する諸値を設定してくだ さい。

鉄筋

本体及び断面計算時の鉄筋に関する諸値を設定してください。

※「初期設定」ボタンにより、変更した設定値を一度破棄し、初 期状態へ戻すことができます。

(1) TH # 887				×
11 ノアイルを開く				X
ファイルの場所(I): 📘	Sample		- 🗧 🖆 📰	
(人) 名	前	^	更新日時	種類
1 I I I I I I I I I I I I I I I I I I I	Sample1.F9W		2024/04/23 14:36	F8 落差工の設計・3
-1A	Sample2.F9W		2024/04/23 14:38	F8 落差工の設計・3
	Sample3.F9W		2024/04/23 14:39	F8 落差工の設計・3
デスクトップ	Sample4.F9W		2024/04/23 14:40	F8 落差工の設計・3 F8 落美工の設計・3
	a samples. Sw		2023/03/24 13:34	10 清注土の認識1.5
ライブラリ				
<u> </u>				
PC				
ネットワーク				
ファ	イル名(N):	1	~	開く(O)
77	イルの種類(T);	落差工の設計・3D配筋 Ver.2(*.	F9W) -	キャンセル
		,		
製品名:				
製品バージョン: 0.0.0.	0			
ファイルバージョン: 0.0.0.	0			
作成日:2025/0	3/26			
会社名:				
部署名:				
11:12者名:				

「読込」むファイルを選択します。 そそでは、サンプルファイルからSomplo1 EC

ここでは、サンプルファイルからSample1.F9Wを選択し、デー タを読み込みます。

1-4 本体形状

落差工の本体形状寸法およびしゃ水工に関する情報を設定します。

形状寸法

画面ガイド図を参考に各寸法を設定してください。 ここでは、数値の変更は行いません。

しゃ水工

	lc(m)	X(m)
上流側	2.500	0.000
下流側	2.500	0.000

下流側に水抜き穴を設置する

チェックした場合、下流側のしゃ水工は浸透路長には考慮しま せん。

(Q2-15参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q2-15

クリープ比

しゃ水工の根入れ長を計算するレイン式におけるクリープ比を 設定します。

※「形状表示」ボタンで形状の確認が可能です。

1-5 護床工の検討

「護床工の検討」ボタンをクリックし、上流側、下流側に設置する護床工に関する情報を設定します。

護床工検討

水理計算結果から求まる護床工長および補助構造物の検討結 果が表示されます。

表示値を参考に各護床工長などを決定してください。

今回は入力変更項目がありません。

1-6 護床工のブロック重量

「護床工のブロック重量」 ボタンをクリックして、上流側、下流側に設置する護床工のブロック重量に関する情報を設定します。

Vd=(V2+V1a)/2 Vd=(V2+V1a)/2 image: mail of the system L2/2 L2/2 Image: mail of the system Ima					
水の密度 ρ w(kg/m³) ブロックの密度 ρ bを2,3	水の密度 ρ.ω(u∉/m3) 1000.000 「A区間が不要な場合も計算 係数等初期値セット」 「ブロックの密度 ρ.bを2.300 (u∉/m3)とする ▽ 法連を直接指定				
	護床工B 跳水発生区間後半 本(在直下流~ 跳水発生区間前半 上流側線床工				
ブロック種別	E: 長方形	E: 長方形	E: 長方形	E: 長方形	
ゴロックの比重った/のッ					
Juny Juny Juny Luny Juny Juny Juny Juny Juny Juny Juny J	2.090	2.090	2.090	2.090	
「係数a(×10⁻3)	2.090	2.090	2.090	2.090	
(係数a(×10-3) 割り引き係数A	2.090 0.790 2.800	2.090 0.790 2.800	2.090 0.790 2.800	2.090 0.790 2.800	
(系数a(×10-3)) 書明引き係数。 近傍流速Vd(m/s)	2.090 0.790 2.800 2.536	2.090 0.790 2.800 5.198	2.090 0.790 2.800 7.859	2.090 0.790 2.800 3.889	
「係数a(×10 ⁻³) 書小引き係数 & 近傍流速Vd(m/s) ブロック重量W(kN)	2.090 0.790 2.800 2.536 0.007	2.090 0.790 2.800 5.198 0.543	2.090 0.790 2.800 7.859 6.491	2.090 0.790 2.800 3.889 0.095	

流速

水理計算結果による各位置の流速が表示されます。 表示値を参考に各近傍流速Vdを設定してください。

ブロックデータ

	護床工B	跳水発生 区間後半	本体直下 流~跳水 発生区間 前半	上流側護 床工
ブロック 種別	長方形	長方形	長方形	長方形
ブロックの 比重	2.090	2.090	2.090	2.090
係数	0.790	0.790	0.790	0.790
割り引き係 数	2.800	2.800	2.800	2.800
近傍流速	2.536	5.198	7.859	3.889
ブロック 重量	0.007	0.543	6.491	0.095

※近傍流速値を入力するとブロック重量値に反映されます。

ブロックの密度 pbを2,300(kg/m3)とする

チェックなしの場合は「床止めの構造設計手引き」(P.73)(表 2-6、表2-7)に従い *pb/pwの*初期値を設定します。

流速を直接指定

近傍流速を直接指定する場合にチェックしてください。 チェックしない場合は、「流速」項目の計算値を自動的に反映し ます。

1-7 荷重

「荷重」ボタンをクリックし、荷重計算における考え方や検討ケースの条件などを設定します。

共通

荷重ケースに依存しない共通の考え方を設定します。 設計水平震度 0.20kh

揚圧力の算定方法

「床止めの構造設計手引き」に準じる場合は、「簡易モデル」と してください。

十斤算定用

土圧算定時の土圧式や摩擦角、震度の考え方を設定します。

- ・土圧式 クーロン/修正物部・岡部
- ・土質タイプ 砂質土
- ※土圧式がクーロン/修正物部・岡部の場合に有効となります。
- ・土の内部摩擦角 30φ

・「水位以下に見かけの震度を適用する」にチェックをし 地震時の土圧算定において、水位を考慮するケースでは、見か けの震度kh'を用いて土圧係数を算定します。 + 圧を考慮しない高さ

岩盤上に根入れし設置される場合など土圧を考慮しない区間を 本体底面からの高さで設定してください。

常時/洪水時/地震時

荷重ケースに依存する情報や考え方を設定します。

水位ケース

水位ケースに依存する情報や考え方を設定します。 (Q2-11参照) https://www.forum8.co.jp/faq/win/rakusako-ga.htm#g2-11 (Q4-13参昭) https://www.forum8.co.jp/fag/win/rakusako-ga.htm#g4-13

安定・断面計算時の水位

安定・断面計算時の水の重量や水圧、揚圧力の算定などに用い る水位の考え方を設定します。 (Q4-2参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q4-2

- (常時)
- ·常時-計画水位

安定・断面計算時の水位において「上流部と中流部の水位線を 連続とする」にチェックをし、「上流部、中流部、下流部、越流長 (直壁型のみ)」について設定します

・常時-揚圧力無し

安定・断面計算時の水位において「上流部と中流部の水位線を 連続とする」にチェックをし、計算に用いる水位を設定します (洪水時)

·洪水時-計画水位

「水理計算の結果」を選択し、水理計算の結果より、以下のよう に水位を自動的に設定します。

(洪水時)

・洪水時-揚圧力なし

「揚圧力無しケースとして検討する」にチェックをし、「水理算 計の結果」を設定します。

揚圧力を無視したケースとして計算します。

水平方向任意荷重

本体背面に作用する任意の水平荷重を最大5個所まで設定する ことができます。

載荷位置

任意水平荷重の載荷位置を本体底面からの高さで設定してくだ さい。

※本体背面の区間外に設定された荷重も考慮します。

荷重強度

上流側から下流側の方向に作用する任意水平荷重を奥行き1m 当たりの強度で設定してください。

※落差工本体に衝突する流木等の荷重など「水平方向任意荷 重」をご利用下さい。 (Q4-11参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q4-11

(地震時)

・地震時-計画水位

安定・断面計算時の水位において「直接指定」を選択し、計算に 用いる水位を「上流部、中流部、下流部、越流長(直壁型のみ)」 について設定します。

水位

上流部水位 hwb(m)	0.000
中流部水位 hwm(m)	0.000
下流部水位 hwf(m)	0.000
越流長 lbf(m)	0.320

(地震時)

・地震時-揚圧力無し

安定・断面計算時の水位において「上流部と中流部の水位線を連続とする」にチェックをし、計算に用いる水位を設定します。

水位

上流部水位 hwb(m)	0.000
中流部水位 hwm(m)	0.000
下流部水位 hwf(m)	0.000
越流長 lbf(m)	0.320

1-8 部材

「部材」ボタンをクリックし、本体及び水叩き部の断面計算における考え方や配筋情報などを設定します。

本体

共通

部材の種類に依存しない共通の考え方を設定します。

曲げ応力度照査時の計算方法

断面の引張側と圧縮側に鉄筋が配置されている場合の考え方 を選択してください。 圧縮側鉄筋を無視する場合は「単鉄筋」を選択します。

ヤング係数比の考え方

応力度算定時のヤング係数比の考え方を設定します。

主鉄筋の入力方法

断面計算に用いる主鉄筋の入力方法を選択します。 →ピッチによる入力

奥行き1m当たりの配置ピッチを入力します。鉄筋量は、 1000(mm)×入力ピッチ(m)×1本分の鉄筋量(mm^2)として計算 します。

本体について、照査位置ごとに照査項目や配筋情報を設定してください。

主鉄筋

<u> </u>		かぶり(mm)	鉄筋径	ピッチ(mm)
土坎肋	月凹	150	D16	250
子研放	北田	かぶり(mm)	鉄筋径	ピッチ(mm)
土驮肋	別囬	150	D16	250

斜引張鉄筋

必要斜引張鉄筋の自動配筋条件(最小・最大値,変化量)を設 定してください。鉄筋量の算定に用いるピッチについては直接指 定してください。斜引張鉄筋を無視してせん断照査を行う場合、 鉄筋量Aw」を「0.00」として下さい。 (Q5-5参照) https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q5-5

.ups.//www.iorumo.co.jp/iaq/win/rakusako-qa.num

水叩き

水叩きについて、照査位置ごとに照査項目や配筋情報を設定してください。

照査位置数

断面計算を行う照査位置数を設定してください。 最大3断面(基部+中間部×2)まで設定可能です。 → 照査位置数 2 とし、基部・中間部1の照査位置を設定します。

-水中部材として扱う

チェックした場合、鉄筋の許容引張応力度として水中部材の値 を基本値とします。

照查項目

照査位置ごとに曲げ照査の有無、せん断照査の有無を指定して ください。

基部_照査項目

「せん断照査を行う」のチェックを外します

主鉄筋

照査位置ごとに、主鉄筋の入力方法に応じて、かぶり、鉄筋径等 を設定します。

基部_主鉄筋

下田	かぶり(mm)	鉄筋径	ピッチ(mm)
山田	150	D16	250
노프	かぶり(mm)	鉄筋径	ピッチ(mm)
「山	150	D16	250

ヤング係数比の考え方 で 15とする	実比率を用い	13	○ 本数 ○ 鉄筋	こよる入力 量の直接指	定	
本体 水叩き	ţ	服査位置調	女: 2	•	┏ 水中部株	なして扱う
基部 中間部1 照查位置(m) 0.000	部高/2設定	「三日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	項目 曲げ照査を行 ;	⇒ ⊓t	せん断照査を行	ŦÒ
× 7.000	→ 1,600	上面 No. 1 2	かふう(mm) 150	鉄筋径 D16	ピッチ(mm) 250	鉄筋量(mm ²) 794.40 0.00
(上面) 1	TE	下面 No. 1 2	かぶり(mm) 150	鉄筋径 D16	ビッチ(mm) 250	鉄筋量(mm ²) 794.40 0.00
<u>وم</u> ومعادم المعاد	22	斜引引	鉄筋 s(mm) 鉄館 150	6量Aw(mm 126.70	2) 下 (注) 下 (注)	前断面をコピー 主鉄筋と斜引張 筋をコピーします

2 ファイルを保存する

🧾 名前を付けて保存 保存する場所(I): 📄 Sample - 🗧 🖆 🖬 🚽 更新日時 名前 種類 **↑** *⋆*-*ム* Sample1.F9W 2024/04/23 14:36 F8 落差工の設計・3. 2024/04/23 14:38 F8 落差工の設計・3. Sample3.F9W 2024/04/23 14:39 F8 落差工の設計・3. F8 落差工の設計・3. F8 落差工の設計・3. Sample4.F9W 2024/04/23 14:40 デスクトップ Sample5.F9W 2025/03/24 15:34 ライブラリ PC **シー** ネットワーク Sample1.F9W ▼ 保存(S) ファイル名(N): ファイルの種類(T): 落差工の設計・3D配筋 Ver.2(*.F9W) • キャンセル -ファイル情報 製 品 名: <u>落巻工の設計・30配筋 Ver.2(x64)</u> 製品パージョン: <mark>2.0.0.0</mark> accon - ジョン: 2.0.0.0 ファルバージョン: 4.1.0.0 作成日: 2025/03/26 会 社 名: 部 署 名: 作成者名: コメント:

中間部1_照査項目

「せん断照査を行う」にチェックを入れます

照査位置

断面計算を行う照査位置を本体基部または水叩き基部からの距離(m)で指定します。

→ 照査位置 0.750(m)

中間部1_主鉄筋

L m	かぶり(mm)	鉄筋径	ピッチ(mm)
上山	150	D16	250
노품	かぶり(mm)	鉄筋径	ピッチ(mm)
下山	150	D16	250

斜引張鉄筋

せん断照査を行う場合、照査位置ごとに必要斜引張鉄筋量の算 定に用いる鉄筋情報を設定します。

間隔s(mm)	鉄筋量Aw(mm²)
150	126.70

ファイルメニューから、「名前を付けて保存」を選択し、必要に応 じてデータ保存が可能です。

また、既存データを「上書き保存」にて書きかえることも可能です。

−3Dモデルの保存が可能です。 画面を右クリックし、「3D出力」より出力形式を選択します。 (Q6-4参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q6-4

・保存する場所

(デスクトップ、指定フォルダ、SampleDataフォルダ等 任意 で選択可能) ・ファイル名 (任意のファイル名を入力可能)

3 計算・結果確認

計算実行

メニューバーの「計算実行」をクリックし、サブメニュー「全計算 (A)」を選択します。

結果確認

水理計算 / 安定計算 / 断面計算それぞれの結果を確認することができます。

-(NG)判定がNGとなっている状態を表示しています。 「Sample1.F9W」は参考文献を設計例としていますが、安定 計算の結果がNGとなることを確認しています。

							×
検討条件							-
落差工の形	式	直壁型					
計画流量Q		600.000 (m ³ /	(s)				
総落差高D		1.600 (m)					
天端突出高	D2	0.300 (m)					
水褥池水深	D3	0.300 (m)					
上流河床標	高Z1	1.300 (m)					
上下流河床	差D1	1.000 (m)					
	22:25	-kutori k	0.000 ()				
上流部	等流	水深hO	2.366 (m)				
上流部	等流 流速	水深hO VO	2.366 (m) 2.536 (m/	s)			
上流部	等流 流速 限界	水深h0 V0 水深hc	2.366 (m) 2.536 (m/ 1.543 (m)	s)			
上流部 落差工天端	等流 流速 限界	水深h0 V0 水深hc 流速Vc	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/	s) s)			
上流部 落差工天端 越流落下部	等流 下 一 で で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 で 、 の の 、 、 、 、 の 、 、 、 、 、 の 、 、 、 、 の 、 、 の の の	水深h0 V0 水深hc 流速Vc 落下水深h1a	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m)	s) s)			
上流部 落差工天端 越流落下部	等流跟界界流速	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/	s) s)			
上流部 落差工天端 越流落下部 跳水開始水	等流限限越流深h1b	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/ 0.940 (m)	s) s)			
上流部 落差工天端 越流落下部 跳水開始水 下流部	等流限限越流深h 源界界流速1b流	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a v深h2	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/ 0.940 (m) 2.366 (m)	(s) (s) (s)			
上流部 落差工天端 越流落下部 跳水開始水 下流部	等流限限越流深等流速界界流速1b流速	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a v 水深h2 V2	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/ 0.940 (m) 2.366 (m) 2.536 (m/	(s) (s) (s) (s)			
上流部 落差工天端 越流落下部 跳水開始水 下流部	等流限限越流深等流速界界流速的流速	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a 水深h2 V2	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/ 0.940 (m) 2.366 (m) 2.536 (m/	s) s) s)			T
上流部 落差工天端 越流落下部 跳水開始水: 下流部	等流限限越流深等流流速界界流速1b流速	水深h0 V0 水深hc 流速Vc 落下水深h1a V1a V1a 水深h2 V2	2.366 (m) 2.536 (m/ 1.543 (m) 3.889 (m/ 0.763 (m) 7.859 (m/ 0.940 (m) 2.366 (m) 2.536 (m/	s) s) s) s)	1991 " Z	2 41	<u>▼</u>

水理計算

水理計算結果および護床工についての結果を確認できま す。

検討条件

落差工の主な検討条件を表示します。

各位置における水深と流速

各位置の水深h(m)と流速V(m/s)を表示します。 ※形状自動決定時の跳水開始水深「h1b」は、形状を確定 (形状自動決定を終了)し護床工の検討が行われるまで結 果は表示されません。

必 水理計算	-		×
水叩きの検討			-
越流状態の判断 (hc+D1+D2≧h2) 2.843 ≧ 2.366 (m) 完全越流状態と判断できる			
越流落下範囲W 計算値 6.681 (m) 決定値 7.000 (m) OK			
水叩きの必要厚さt 計算値 0.965 (m) 決定値 1.500 (m) OK			
しゃ水工の根入長			
必要しゃ水工長 計算値 2.299 (m) 決定値 2.500 (m) OK			
護床工の検討			
上流側護床工長 2.000 (m)			
h1a < h1bより、 進床工A区間長 L1 = 11.929 (m) L2 = 10.645 ~ 14.194 (m) L = L1 + L2 = 22.574 ~ 26.123 → 25.000 (i	m)		
護床工B区間長 LB = 7.097 ~ 11.828 → 10.000 (m)			
護床工のブロック重量			
<u>上流側護床工 0.095 (kN)</u>			
護床工A区間 離床工A区間 御水発生区間前半 6.491 (kN)			
			_
, , , , , , , , , , , , , , , , , , , ,			
	5(<u>0</u>)	?	<u>^いレブ(円)</u>

🥶 安定計算												×
底面下流側	先端にお	らける作用	力									
ケース	荷重状態	水位	鉛直:	力 V 0kN0	水平力	h Η ακνο	モー火	小 M aan	1-m)			
常時ケース	常時	計画水位		235.099		47.517		1248.7	715			
常時ケース	常時	揚圧力無し		417.312	-	47.517		2121.7	788			
洪水時ケース	洪水時	計画水位		143.412	-	-83.905		744.6	675			
洪水時ケース	洪水時	揚圧力無し		417.312	-	-83.905		2056.2	231			
地震時ケース	地震時	計画水位		233.209	-1	44.544		1130.2	258			
地震時ケース	地震時	揚圧力無し		415.422	-1	44.544		2003.3	332			
ケース	荷重状態	水位	判定	偏心 e[ea]	量 (m)	滑 Fs[f	動 Fsa]	地盤 P[Pa]	支持力](kN/m	I度 n2)		
常時ケース	常時	計画水位	ок	-0.811[.500]	2.969	[1.500]	40.253	[300.0	2001		
常時ケース	常時	揚圧力無し	ок	-0.584[1	.500]	5.269	[1.500]	64.434	[300.0	2000]		
洪水時ケース	洪水時	計画水位	NG	-0.693[*	.500]	1.026	1.500]	23.292	[300.0	2000]		
洪水時ケース	洪水時	揚圧力無し	ок	-0.427[.500]	2.984	[1.500]	59.577	[300.0	2000]		
地震時ケース	地震時	計画水位	NG	-0.347[3	3.000]	0.968[1.200]	31.899	[450.0	2000]		
地震時ケース	地震時	揚圧力無し	ОК	-0.322[3	3.000]	1.724	[1.200]	56.079	[450.0	000]		
							印刷	-	開	UZ(<u>C</u>	? 🗤	7°(H)

水叩きの検討

落差工の形式が直壁型の場合に「越流落下状態の判断」 「越流落下範囲W」「水叩きの必要厚さt」の水叩き部の照査結 果を「OK」、「NG」で表示します。

しゃ水工の根入長

必要しゃ水工長について「OK」、「NG」で表示します。

護床工の検討

床止め構造設計手引き: 各護床工長(上流側、護床工A、護床工B)の検討結果を表示 します。 土地改良事業計画「頭首工」: 各護床工長(上流側、護床工上流側区間11、護床工下流側区間 12)及び護床エブロックの配列(護床工上流側区間11、護床工 下流側区間12)の検討結果を表示します。

護床工のブロック重量

床止め構造設計手引き:

計算された護床工のブロック重量について表示します。

·上流側

・護床工A区間 (本体直下流〜跳水発生区間前半、跳水発生区 間後半)

・護床工B区間

土地改良事業計画「頭首工」:

計算された以下の護床工のブロック重量について表示します。

•上流側

•護床工上流側区間I1(露出射流区間)

・護床工上流側区間I2

安定計算

作用力の集計および直接基礎に対する安定計算結果の一覧を 確認できます。

底面下流側先端における作用力

荷重集計位置における各荷重ケースの作用力一覧を表示しま す。

・鉛直力

鉛直下向きの荷重の集計値を正(+)として表示します。

・水平力

水平右向き(下流側から上流側)の荷重の集計値を正(+)として表示します。

・鉛直力

右回りのモーメントの集計値を正(+)として表示します。

安定計算

各荷重ケースの安定計算(転倒、滑動、地盤支持力)の結果及 び判定を「OK」、「NG」で表示します。 ・偏心量

転倒の照査における偏心量eと許容偏心量eaを表示します。「| e| > ea」となる場合は、結果を赤字で表示します。

・滑動

滑動の照査における安全率Fsと許容値Fsaを表示します。「Fs < Fsa」となる場合は、結果を赤字で表示します。

・地盤支持力度

地盤支持力度の照査における鉛直最大反力Pと許容支持力度 Paを表示します。「P > Pa」となる場合は、結果を赤字で表示 します。

木体の	設計断面力

<u>照査位置</u>ケース 荷重状態 水位 せん断力 曲ifモーメン (m) キーメン 常時 15.110 782 福圧力無し 15.110 782

	12185777	10.84			
	mun / /	49 V T	揚圧力無し	15.110	7.828
0.000	沖水時ケーフ	计水中	計画水位	39.798	27.578
0.000	ALCONT /	/36/JCMT	揚圧力無し	39.798	27.578
	地雲時ケーフ	抽靈時	計画水位	35.132	22.482
	ACREMY / A	NC BEENT	揚圧力無し	35.132	22.482

本体の曲け照査結果

照査位置 (m)	ケース	荷重状態	水位	判定	曲げモーメント M (kN.m)	圧縮応力度 σc(σca) (N/mm2)	引張応力度 ♂s(♂sa) (N/mm2)
	堂時ケーフ	学時	計画水位	ОК	7.828	0.03[8.00]	4.70[160.00]
	mor /	-0-17	揚圧力無し	ОК	7.828	0.03[8.00]	4.70[160.00]
0.000	オシートレーフ	ittak ett	計画水位	ОК	27.578	0.12[8.00]	16.55[160.00]
0.000	·共///04-7X	洪小山寺	揚圧力無し	ОК	27.578	0.12[8.00]	16.55[160.00]
	地の時ケーフ	抽壶哄	計画水位	ОК	22.482	0.10[12.00]	13.49[300.00]
	地展町ノス	No. Re nut	提住力無し.	OK	22.482	0.10[12:00]	13.49[300.00]

本体のせん断照査結果

照査位置 (m)	ケース	荷重状態	水位	判定	せん断力 S (kN)	せん断応力度 てm[てa1,てa2] (N/mm²)	斜引張鉄筋量 Aw[Awreq] _(mm2)
	逆時ケーマ	带店	計画水位	ОК	15.110	0.007[0.390,1.700]	126.70[]
	휴며() ~ ㅅ	4 H	計画水位 揚圧力無し	ОК	15.110	0.007[0.390,1.700]	126.70[]
0.000	沖水時ケーフ	sttrak/unij	計画水位	ОК	39.798	0.018[0.390,1.700]	126.70[]
0.000	MAN A	796/JC04	揚圧力無し	ОК	39.798	0.018[0.390,1.700]	126.70[]
	物雪時ケーフ	抽靈時	計画水位	ОК	35.132	0.016[0.585,2.550]	126.70[]
	CRAFT / X	2 Clare ort	揚圧力無し	ОК	35.132	0.016[0.585,2.550]	126.70[]
						CORI DR	-7 (0)

- 開じる(C) ? ヘルブ(H)

査位置 (m)	ケース	荷重状態	水位	せんき	新力 曲 N)	Hfモーメ M 0kN.m	シト				
	学時ケーフ	當時	計画水位	33.	.140	10.	966				
	11 IT / TA		揚圧力無し	33.	.140	10.	966				
000	洪水時ケーフ	进水陆	計画水位	41.	502	65.	701				
	Notest / A	NOT ONLY	揚圧力無し	41.	502	65.	701				
	地震時ケース	地雷時	計画水位	45.	762	98.	082				
			揚圧力無し	45.	762	98.	082				
	常時ケース	常時	計画水位	20.	492	-9.	.005				
			揚圧力無し	20.	492	-9.	005				
0.750	洪水時ケース	洪水時	計画水位	30.	315	38.	873				
		<u> </u>	陽圧力無し	30.	.315	38.	873				
	地震時ケース	地震時	計画水位	35.	./21	67.	803				
1日主々	の曲(「昭本)	注里									
回きの 春位暦	り曲け照査	結果		10100	曲げモ	ーメント		1 31	服応力原	专	
叩きの 査位置	り曲げ照査	結果 荷重状態	水位	判定	曲げモ M @	ーメント kN-m)	圧縮応力度 σc(σca) (N/mm)	51 z) σs(l張応力加 σsa) (N/	<u>寛</u> (mm2)	
叩きの 査位置 (m)	り曲(「照査 ケース	結果 荷重状態	水位 計画水位	判定 OK	曲げモ M (r	ーメント kN.m) 10.966	圧縮応力度 σc(σca) (N/mm) 0.10[8.00	z) σs(1] 1	張応力版 ♂sa) (N/ 0.67[160	<u>変</u> (mm2) 0.00]	
ロロきの 査位置 (m)	り曲(「照査 ケース ^{常時ケース}	結果 荷重状態 常時	水位 計画水位 揚圧力無し	判定 OK OK	曲げモ M (x	:ーメント kN.m) 10.966 10.966	圧縮応力度 σc(σca) (N/mm 0.10[8.00 0.10[8.00	2) 5 1 2) 5 5(1] 1 1] 1	限応力度 ♂sa) (N/ 0.67[160 0.67[160	変 (mm2) 0.00]	
ロロきの 重位置 (m)	D曲(f照査) ケース 常時ケース 洪水時ケース	結果 荷重状態 常時 洪水時	水位 計画水位 揚圧力無し 計画水立	判定 OK OK	曲Ifモ M (k	ーメント kN.m) 10.966 10.966 65.701	圧縮応力度 σc(σca) (N/mmi 0.10[8.00 0.10[8.00 0.61[8.00	2) 5 1 2) 5 5(1] 1 1] 1 1] 6	限応力度 σsa) 01/ 0.67[160 0.67[160 3.91[160	費 (mm2) 0.00] 0.00]	
ロレきの 電位置 (m)	り曲(f照査) ケース 常時ケース 洪水時ケース	結果 荷重状態 常時 洪水時	水位 計画水位 揚圧力無し 計画水位 揚圧力無し	判定 OK OK OK	曲Ifモ M (x	ーメント 4N.m) 10.966 10.966 65.701 65.701	圧縮応力度 σc(σca) (N/mmi 0.10[8.00 0.10[8.00 0.61[8.00 0.61[8.00) σs(] 1] 1] 6] 6	限応力度 σsa) 01/ 0.67[160 0.67[160 3.91[160 3.91[160	g mm2) 0.00] 0.00] 0.00]	
叩き の 査位置 (m)	ウ曲(f照査) ケース 常時ケース 洪水時ケース 地震時ケース	結果 荷重状態 常時 洪水時	水位 計画水位 講正力無し 計画水位 諸正力無し 計画水位	判定 OK OK OK OK	曲げモ M (x	ーメント 41m) 10.966 65.701 65.701 98.082	圧縮応力度 σc(σca) (N/mmi 0.10[8.00 0.61[8.00 0.61[8.00 0.90[12.00) σs(] 1] 1] 6] 6] 9	限応力度 σsa) (M/ 0.67[160 0.67[160 3.91[160 3.91[160 5.41[300	g mm2) 0.00] 0.00] 0.00] 0.00]	
印きの 査位置 (m) 0.000	ウ曲(ブ照査) ケース 常時ケース 洪水時ケース 地震時ケース	結果 荷重状態 常時 洪水時 地震時	水位 計画水位 揚圧力無し 計画水位 揚圧力無し 計画水位 揚圧力無し	判定 のK のK のK のK のK	曲げモ M (x	ーメント 44m) 10.966 65.701 65.701 98.082 98.082	圧縮応力度 σc(σca) 01/mm 0.10[8.00 0.61[8.00 0.61[8.00 0.90[12.00 0.90[12.00	0 σs(1 1 1 1 1 6 1 6 1 9 1 9	張応力度	g mm2) 0.00] 0.00] 0.00] 0.00] 0.00]	
回きの	 ウ曲(f照査) ケース 常時ケース 洪水時ケース 地雲時ケース 地雲時ケース 	結果 荷重状態 常時 洪水時 地震時	水位 計画水位 抹圧力無し 計画水位 計画水位 計画水位 抹圧力無し	判定 OK OK OK OK	曲げモ M ();	-×>+ (N.m) 10.966 10.966 65.701 65.701 98.082 98.082	すでぱでする 04/mm 0.10(8.00 0.61[8.00 0.61[8.00 0.961[8.00 0.961[2.00 0.90[12.00	p) σs(] 1] 1] 6] 6] 9] 9	限応力度 σsa) 0// 0.67[160 0.67[160 3.91[160 3.91[160 5.41[300 5.41[300	g mm2) 0.00] 0.00] 0.00] 0.00] 0.00]	
ロリきの 査位置 (m) 0.000 ロリきの 査位置	D曲(f照査) ケース 常時ケース 洪水時ケース 地震時ケース Dせん断照う ケース	桔果 荷重状態 常時 洪水時 地震時 蒼結果 荷重状態	<u>水位</u> 計画水位 計画水位 計画水位 講正力無し 計画水位 課正力無し 水位	判定 OK OK OK OK T C K		-メント (N-m) 10.966 65.701 65.701 98.082 98.082) <u>す</u>) <u>す</u>) <u>す</u>) <u>1</u> 1 1 1 6] <u>6</u>] <u>9</u>] <u>9</u>] <u>9</u>	限応力度 σ sa) 0// 0.67[160 0.67[160 3.91[160 3.91[160 5.41[300 5.41[300 5.41[300 6]限鉄前 Awreal (度 (mm2)).00]).00]).00] 0.00] 0.00] 0.00]	
ロレきの 査位置 (m) 0.000 ロレきの 査位置 (m)	D曲(f照査) ケース 常時ケース 洪水時ケース 地震時ケース Dせん断照] ケース	桔果 荷重状態 常時 洪水時 地震時 蒼毛果	水位 計画水位 場正力無し 計画水位 講座水位 揚正の水位 湯計画水位 湯計画水位 計画水位	判定 OK OK OK OK M Z K	曲げモ M (x し し し し し	ーメント 4Nm) 10.966 65.701 65.701 98.062 98.062 98.062	庁移応力度 でく(♂ca) 0.10[800 0.10[800 0.61[800 0.61[800 0.90[12.00]] [[β σs(1 1 1 1 1 6 1 6 1 9 1 9 1 9 1 9 1 9	限応力度 σ sa) 0// 0.67[160 0.67[160 3.91[160 5.41[300 5.41[300 5.41[300 6]限鉄約 Awreq] (126.70[-	度 mm2) 0.00] 0.00] 0.00] 0.00] 0.00] 0.00] 5.00] 5.00]	
叩きの ^{査(m)} 0,000 叩きの ^{査(m)}	D曲(f照査) ケース 常時ケース 洪水時ケース 地震時ケース のせん(新照音) ケース 常時ケース	洁果 荷重状態 常時 洪水時 地震時 在結果 荷重状態 常時	水位 計画水位 場正力水位 場正方水位 講画水位 計画水位 計画水位 計画正力無し	判定 OK OK OK OK OK	曲げモ M (), せん断 S (), 20.4 20.4	ーメント 4Nm) 10.966 65.701 65.701 98.082 98.082 98.082	(するで、する) 0//mm; す。(する。) 0//mm; 0.10[8.00 0.61[8.00 0.61[8.00 0.90[12.00] 0.90[12	β σs(1 1 1 1 1 6 1 6 1 9	張応力度 の30 04/ 0.67[160 0.97[160 0.97[160 3.91[160 5.41[300 5.40] 5.41[300 5.41[300 5.40] 5.41[300 5.41[300 5.41[300 5.41[300 5.41[300 5.40] 5.41[300 5.40] 5.40[300 5.40[300 5.40] 5.40[300] 5.40[300] 5.40[300] 5.40[300] 5.40[300] 5.40[300] 5.40[300	度 mm2)).00]).00]).00]).00]).00]).00]).00]).00]).00]).00]	

紙査位置 (m)	ケース	荷重状態	水位	判定	せん断力 S (kN)	せん断心力度 てm[てa1,てa2] (N/mm2)	新515長鉄筋量 Aw[Awreq] (mm2)	
	堂時ケーフ	受贴	計画水位	ОК	20.492	0.015[0.390,1.700]	126.70[]	
	1997 X	up int	揚圧力無し	ОК	20.492	0.015[0.390,1.700]	126.70[]	
0.750	進水時ケーフ	计水时	計画水位	ОК	30.315	0.022[0.390,1.700]	126.70[]	
0.750	7770 4 7 ×	177/UMP	揚圧力無し	ОК	30.315	0.022[0.390,1.700]	126.70[]	
	地震時ケーフ	物壶時	計画水位	ОК	35.721	0.026[0.585,2.550]	126.70[]	
	Section of the sectio	2C Stend	揚圧力無し	ОК	35.721	0.026[0.585,2.550]	126.70[]	
								-
						印刷 - 開	:30 ?	₩7 °⊞

断面計算

各照査位置の断面力の集計および断面計算結果の一覧を確認 できます。

本体の設計断面力

落差工本体の照査位置における各荷重ケースの断面力一覧を 表示します。

・せん断力

水平左向き(上流側から下流側)の荷重の集計値を正(+)とし

て表示します。

・曲げモーメント

左回り(背面側引張)のモーメントの集計値を正(+)として表示します。

水叩きの設計断面力

水叩き部の照査位置における各荷重ケースの断面力一覧を表示します。

・せん断力 鉛直上向きの荷重の集計値を正 (+) として表示します。

品置工内との利重の来 ・曲げモーメント

石回り(下面側引張)のモーメントの集計値を正(+)として表 示します。

本体(水叩き)のせん断照査結果

せん断照査を行う位置における各荷重ケースのせん断応力度 照査(せん断応力度、必要斜引張鉄筋量)の結果及び判定を 「OK」、「NG」で表示します。

・せん断応力度

せん断応力度τmとコンクリートのみでせん断力を負担する場合の許容せん断応力度τa1、斜引張鉄筋と協同で負担する場合の許容せん断応力度τa2を表示します。以下の場合は、結果を赤字で表示します。

・「Tm > Ta2」となる(斜引張鉄筋と協同でせん断力を負担しても照査を満足しない)。

・すべての照査位置において、斜引張鉄筋を無視(Aw=0.00)し た場合に「τm > τa1」となる

·斜引張鉄筋量

斜引張鉄筋量Awとコンクリートのみでせん断力を負担できない場合の必要斜引張鉄筋量Awreqを表示します。以下の場合は、結果を赤字で表示します。

 「rm > ra1」かつ「Aw < Awreq」となる(部材厚または斜引 張鉄筋量が不足している)。

※すべての照査位置において、斜引張鉄筋量Awが0.00(mm^2)の場合、斜引張鉄筋量Awは出力されません。

·「印刷」ボタンから、計算結果の画面を印刷することが可能で す。

※各結果確認画面では、HTML形式によるファイル保存に対応 しています。

画面上で「右クリック→HTMLファイル出力」または「印刷」を 「保存」に変更しボタンを押下してください。

HTMLファイルをMicrosoft Excelで読み込み、編集も可能です。

(Q6-1参照)

https://www.forum8.co.jp/faq/win/rakusako-qa.htm#q6-1

4 計算書作成

出力項目の設定/選択	×
出力項目の設定/選択 オブション 結果詳細 「一般事項 「 検討条件 「 タイトル 「 水理計算 「 コント 「 安定計算 結果一覧 「 本体の設計 「 安定計算 「 本体の設計 「 本体の設計 「 酸床工の検討 「 水叩きの設計 「 自動決定 出力ケース 「 常時	×
 ▼ 計画水位 ▼ 排画水位 ▼ 揚圧力無し ▼ 地震時 ▼ 計画水位 ▼ 揚圧力無し 	
形状図の寸法値フォントサイズ 10	
	D

処理モードで「計算書作成」を選択し、出力設定を行います。

表示された出力設定画面から、出力したい項目を選択します。 出力項目を選択し、

- 「プレビュー」 ボタンを押下することで、計算書の確認・印刷・保存を行うことが可能です。

※出力項目スイッチ上で右クリックすると単独プレビューが可能です。

出力ケース 出力する荷重ケースおよび水位ケースを選択することができま す。

結果が同一となるケースの省略、決定根拠となる特定ケースに みを表示したい場合などを想定しています

印刷プレビュー画面が表示されます。 続けて実際に印刷を行う場合は、 - 「印刷」 ボタンをクリックしてください。

5 図面作成

処理モードで「図面作成」を選択します。

――基本情報、形状、かぶり、鉄筋の情報を設定します。

5-1 基本条件

図面作成モードの基本情報の入力を行います。 一般図の作図有無

一般図の作図有無を指定します。

図面生成条件	×
生成条件1 生成条件2 生成条件3	
本体配力筋	水叩き上面配力筋
	○内側
で 外側	○ 外側
水叩き腹部配力筋	水叩き下面配力筋
○ 内側	○ 内側
◎ 外側	○外側
確定	× 取消 【? ∿/プ(H)】

図面生成条件 縮尺 断面図 50 前面図 50 背面図 50 平面図 50 図面表題 落差工一般図 2 407°(円)

図面生成条件

(配筋図) 配筋図の各図形を生成する際の諸条件の指定を行います。

図面生成条件

- (一般図)
- 一般図の各図形を生成する際の諸条件の指定を行います。

基礎材

基礎材の諸寸法の指定を行います。

基礎材の張出し長 (B1)	0.100
均しコンクリート高 (H1)	0.100
基礎材厚(H2)	0.200

5-3 かぶり

5-4 鉄筋(簡易)

鉄筋(簡易) 本体 水叩き			×
		0	曲げ長計算 ○ 図面作図条件 ○ 土木構造物設計?=ュ7ル ○ 定着長-直線長+円孤長
①天端主鉄筋 D13 ②天端記力筋 なし	①配力筋(前面) ②配力筋(背面) ③組立筋	D13 D13 D13	定尺鉄筋 維ぎ手倍率 20.00 鉄筋種類数 0
鉄筋記号先頭文字 本体 ₩ 組立筋 S	t ^e ッチ(mm) 基準 主鉄筋 250.0 配力筋 250.0	最小 51.0 51.0	配置方法 千鳥 配力筋 主鉄筋 ビッチ 2 2
		✓ 確定	X取消 【? ∿7℃H)

主鉄筋

主鉄筋かぶり(天端かぶり、先端かぶり)の指定を行います。

C1	100.00
C2	100.00

配力筋

外形左右端からの離れを入力します。 本入力により配力筋の左右端を止める位置がきまり、鉄筋長 算出が行われます。

C1	0
C2	0
C3	0
C4	0

本体

鉄筋径

①天端主鉄筋	D13	①配力筋(前面)	D13
②天端配力筋	なし	②配力筋(背面)	D13
		③組立筋	D13

鉄筋記号先頭文字

鉄筋記号は、本体鉄筋・組立筋でグループ分けし、それぞれ で指定された先頭文字(アルファベット)に番号(数字)を カウントアップしながら付加していく方法で自動付けされま す。

本体 W 組立筋 S

配筋ピッチ

ピッチ (mm)	基準	最小
主鉄筋	250.0	51.0
配力筋	250.0	51.0

定尺継ぎ手倍率

本体主鉄筋に定尺鉄筋を使用する場合の本体主鉄筋と本体 天端主鉄筋の継ぎ手長倍率を指定します。

継ぎ手倍率	20.00
鉄筋種類数	0

組立筋

配置方法 千鳥

	配力筋	主鉄筋
ピッチ	2	2

「単鉄筋」

単鉄筋で配筋する場合、チェックボックスをチェックしてください。

5-5 図面生成

生成された図面は、図面の編集、出力を行うことができま す。

「編集」 ボタンをクリックします。

5-6 図面確認

ファイル出力時の対象図面の選択とファイル名の指定を行い ます。

出力ファイル

「基準類の命名規則に従ったファイル名で出力する」 を チェックします。

出力形式

出力形式を「DWGファイル形式」にチェックを入れて下さい。

「設定」 ボタンから図面データを出力する際の各種条件を設定します。

「確定」ボタンをクリックし出力します。

出力しない場合は終了(×)で図面確認画面を終了し、図面 生成メイン画面へ戻ります。

5-7 3D配筋生成

- 「3D配筋生成」 を選択します。

「はい」を選択し、3Dモデルを生成します。

3DモデルIFC変換ツールで配筋状態を確認します。 マウス左ボタンでドラッグ: 視点が回転 Shift + マウス左ボタンでドラッグ: 上下左右に視点が移動 マウスホイール: 手前に回すと視点は前へ移動(拡大表示) 奥に回すと視点は後ろに移動(縮小表示)

第3章 Q&A

1 適用範囲・制約条件

Q1-1 本体形状の横断面がU型となる形式は可能か?

A1-1 現行バージョンでは、横断面がU型となる形式には対応しておりません。
 対応している形式は、「床止めの構造設計手引き(財)国土技術研究センター編」に記載されている下記の2つで横断面は常に矩形となります。
 ・直壁型
 ・緩傾斜型

Q1-2 多段落差工に対応しているか

A1-2 申し訳ございませんが、多段落差工には対応しておりません。

Q1-3 土地改良事業「水路工」の跳水型落差工に対応しているか

A1-3 「水路工」の跳水型落差工には対応しておりません。 恐れ入りますが、別途ご検討下さい。

Q1-4 材料・基準値の初期値の出典を教えてほしい。

A1-4 初期値は「河川砂防技術基準 設計編 床止め 令和4年6月改訂版 国土交通省」を参考にしています。 最終的に用いる値は設計者の判断となります。

2 入力

- Q2-1 形状と配筋の自動決定機能を使うにはどうすればよいか
- A2-1 自動決定機能の操作手順及び自動決定ルールにつきましては、製品ヘルプの下記の項目をご覧ください。
 - ・「計算理論及び照査の方法 | 自動決定 | 形状自動」
 - ・「計算理論及び照査の方法 | 自動決定 | 配筋自動」
 - ※「検討条件」画面ヘルプの【自動決定】項目のリンクからも参照可能です。
 - 併せて、サンプルデータの「Sample3.F9W」を参考にしてください。
- Q2-2 河床断面の項目を入力することができない
- A2-2 「河床断面」の入力項目は、「検討条件」画面の「水理計算」を「実流量(Q)」としている場合に設定が必要となります。 「単位幅流量(q=Q/B)」としている場合は計算に使用しないため、設定不要としています。
- Q2-3 河床断面を上流・中流・下流など個別に入力可能か
- A2-3
 個別に入力可能です。

 「検討条件」画面の「水理計算」を「実流量(Q)」とし、「河床断面」画面で設定してください。

Q2-4 河床断面をCAD横断図などから取り込むことは可能か

A2-4 大変申し訳ございませんが、現在は常に直接指定としており、お考えの機能は有しておりません。 本件につきましては、今後の懸案事項とさせていただきたいと存じます。

Q2-5 標高の基準点はどの位置か

A2-5 「検討条件」 画面の 「落差高 | 上流河床標高Z1」 となります。

Q2-6 メイン画面の側面図や計算書で本体寸法が見づらいため護床工の表示を省略したい

- A2-6 以下の手順でご対応ください。 1.メイン画面の「オプション」メニューより「表示項目の設定」画面を開きます。 2.「形状図」の項目で「護床工A」や「護床工B」を非表示としてください。
- Q2-7 メイン画面のツリーで各入力・結果画面をシングルクリックで開きたい
- A2-7 以下の手順で設定を変更してください。
 1.メインメニューより「オプション|動作環境の設定」画面を開きます。
 2.「入力モード時のマウスによる項目選択方法」を「シングルクリック」へ変更してください。

Q2-8 鉄筋に丸鋼を使用したい

A2-8 「材料・基準値」画面の鉄筋表において、丸鋼の名称と断面積を追加してください。

Q2-9 「護床工の検討」の入力を行うことができない

- A2-9 「検討条件」画面の「自動決定 | 本体・水叩き部形状」がチェック(レ) されていないかをご確認ください。 この場合、形状の自動決定が完了するまでは、護床工に関する設定を行うことができません。
- Q2-10 「河床断面」で河床標高と最低標高が一致しない場合に警告がでるが計算時はどのように扱われるか。
- A2-10 警告は、座標の入力ミスがないかを注意喚起するためのものです。 計算時は座標で形成される断面形状をそのまま使用します。

Q2-11 揚圧力を無視した検討ケースの設定方法を教えてほしい

A2-11 下記の手順で設定を行って下さい。
 1.「荷重」画面の「水位ケース数」を一つ増やします。
 2.追加された水位ケースの「揚圧力無しとして検討する」をチェックして下さい。

Q2-12 「材料・基準値」 画面の材質が設定できない

A2-12 直壁型(一体式構造)の場合のみ設定可能です。 上記以外では、断面計算に対応していないため設定不可としています。

Q2-13 河床勾配を水平に近い条件としたい。

A2-13 計算理論上、水平とすることはできないため、計算可能な範囲で微小な勾配を設定して下さい。 但し、勾配が小さい場合は河床断面に対して水位が大きくなりエラーとなる傾向があります。

Q2-14 「検討条件」画面の「護床工の検討方法」が選択できない。

- A2-14 下記に該当する場合は、「土地改良事業計画設計基準「頭首工」」のサポート範囲外のため選択を制限しています。 ・強制跳水(補助構造物)を導入する場合 ・実流量で計算を行う場合
- Q2-15 しゃ水工に水抜き穴 (ウィープホール) を設けることは可能か。
- A2-15 下記の項目で、設定可能です。 水抜き穴を設置した場合、下流側のしゃ水工を浸透路長に考慮しません。 ・「本体形状」画面の「しゃ水工 | 下流側に水抜き穴を設置する」

Q2-16 「荷重」画面で水位を直接指定しているがメイン画面の描画に反映されない。

A2-16 メイン画面の水位は、水理計算より求められた水位ラインを表示しています。 「荷重」画面の水位は、安定・断面計算に用いており、同画面の水位描画に反映されます。

Q2-17 「河床断面」画面の下流部はどの位置の断面を入力すればよいか。

- A2-17 特に理由がなければ、「検討条件」の「D3」上側位置と一致するように入力して下さい。
- Q2-18 「水理計算」結果画面で表示される寸法の「決定値」はどのように算定されているのか。
- A2-18 「本体形状」画面の入力値となります。 上記画面の「参考」の必要長・必要厚より、最終的に設計者の判断で決定して下さい。
- Q2-19 「検討条件」 画面の「下流部等流水深h2」 を直接指定する場合はどのようなケースを想定しているのか
- A2-19 本体下流部で他の河川と合流しているようなケースを想定し、直接指定したh2で護床工の検討を行う場合を想定してい ます。 通常の場合は直接指定する必要はございません。

Q2-20 検討項目ごとに設計流量を変えることは可能か。

A2-20 下記の3項目について個別に指定可能です。

 (1)「基本条件|計画流量」(上流側護床工、下流側護床工B区間の算定)
 (2)「本体形状|設計流量」(水叩き形状、しゃ水工長の算定)
 (3)「護床工の検討|設計流量」(下流側護床工A区間の算定)

Q2-21 しゃ水工のコンクリート形状を入力して安定計算等に考慮することは可能か。

- A2-21 申し訳ございませんが、しゃ水工を荷重として考慮することはできません。 ※「床止めの構造設計手引き(財)国土技術研究センター 編」(P.56~)2-4-4 しゃ水工の計算方法に準じています。
- Q2-22 補助構造物の抗力係数Cdはどのような値を入力したらよいか。
- A2-22 「床止めの構造設計手引き(財)国土技術研究センター 編」の下記を参考に設定して下さい。
 ・抗力係数Cd: (P.67~)(ア),(イ)
 ・補正係数η: (P.69) ※初期値の「1.0」でよいと考えます。

Q2-23 しゃ水工を矢板ではなくコンクリートのカットオフ構造としたい。

- A2-23 現在は、種類の設定をご用意しておりません。 設置位置と長さより、水叩きの必要厚さ算定と揚圧力の計算に使用します。 また、安定計算時の重量や滑動抵抗等には考慮しません。
- Q2-24 「護床工の検討」 画面の粗度係数はどのような値を入力すれば良いか。
- A2-24 護床工Aの粗度係数は、越流落下後から跳水発生までの射流で流下する区間(L1)におけるシェジーの定数に用います。 従いまして、一般的には護床工Aに設置するブロックの粗度係数でよいと考えます。

3 水理計算

Q3-1 護床工A区間が(-)になり計算ができなくなる理由は?

A3-1 本製品の入力データ「検討条件」画面における河道条件が厳しい(流量が大きく、勾配が急)ため、「跳水開始水深h1b> 限界水深hc」と算出されていないかを確認して下さい。 このような条件下では、護床工A区間長の算定式を適用した際、L1(落下後から跳水発生までの射流で流下する区間)が 大きな負値となり、結果として区間長が負となる場合があります。 従いまして、まずは上記の河道条件をご確認いただき、問題ない場合は、落差工本体形状の見直しや強制跳水(補助構造 物)の設置等をご検討いただくことになるかと思われます。

Q3-2 実流量を用いた場合の護床工の検討において、跳水開始水深(h1b)計算時のフルード数が手計算と一致しない

A3-2 本製品では、実流量による計算を行う場合、フルード数算定時の水深として水理学的水深(流水断面積A/水面幅B)を 用いています。 流水断面積A,水面幅Bにつきましては、計算書の「結果詳細|水理計算|水叩き長の計算|流量条件」の下流部水深h2の 項目をご覧ください。

Q3-3 緩傾斜上の粗度係数は本体の粗度係数と側壁を考慮した合成粗度係数のどちらを用いるのか

A3-3 一般には本体上の粗度係数でよいと思われますが、最終的に設計者の判断となります。

Q3-4 土地改良事業計画設計基準・設計「頭首工」の護床工の検討は可能か

 A3-4
 対応しています。

 「検討条件」画面の「護床工の検討方法」で準拠基準を選択してください。

 ※「頭首工」に準じる場合、常に単位幅流量での計算となります。

 ※「頭首工」に準じる場合、補助構造物を設置することはできません。

Q3-5 護床エブロック重量の算定において、割引き係数βを1.0として計算したい

A3-5 「護床工のブロック重量」画面において、「割り引き係数β」の項目で値を直接変更してください。

Q3-6 護床工の区間長が「10m~14m」と算定されており、採用値を「15m」と設定すると判定ボタンが黄色となるのはなぜか

A3-6 他の判定がOKの状態で、護床工長の決定値のみが計算された範囲外の値となっている場合に黄色表示としています。 確認を促す意味で表示色を変えておりますが、決定した護床工長が意図したものであれば問題ありません。

Q3-7 護床工のブロック重量が0.0となる

- A3-7 設計流速が0.0となっていると考えられます。 「係数等初期値セット」ボタンで流速を設定するか直接入力してください。
- Q3-8
 「土地改良事業計画設計基準及び運用・解説 設計「頭首工」(平成20年3月)」の護床工の検討で突起高kを0.0(m)とすることは可能か
- A3-8 上記文献では、突起の配列の計算において「k>0.0(m)」であることが前提となっています。 従いまして0.0(m)とすることはできません。

Q3-9 限界水深の計算方法を教えてほしい

A3-9 「検討条件」画面の「水理計算」の選択に従います。 ・単位幅流量 「床止めの構造設計手引き(財)国土開発技術研究センター編」(P.124)の方法で計算しています。 ・実流量 設定された河床断面, 流水断面積, 流速等よりフルード数が1となる水深を収束計算で求めています。

Q3-10 補助構造物としてバッフルピアを設置することは可能か

A3-10 現在は計算上の取り扱いが不明なため対応しておりません。 本件につきまして、計算例等をご紹介いただければ幸いです。

Q3-11 水叩き厚を鉄筋量を増やすことで薄くできないか

A3-11 水叩きの必要厚さは、鉄筋量に依存せず、水理条件のみで決定されます。 従いまして、鉄筋量を増やしても厚さを薄くすることはできません。

Q3-12 上流部や下流部が射流となる場合に対応しているか

A3-12 本製品では、落差工天端で限界水位が発生し、跳水発生後の下流部は常流となるケースのみを想定しています。 従いまして、お問い合わせのようなケースはサポート外となります。

Q3-13 護床工A区間のブロック重量が2区間算定されているのはなぜか

A3-13 L1区間 (本体直下流〜跳数発生区間前半)とL2区間 (跳水発生区間後半) では、流速が異なるため個別に計算を行っています。

Q3-14 ブライの式による水叩き長の算定は可能か

A3-14 対応しています。 「検討条件」画面の「必要水叩き長の計算方法」で「ブライの式」を選択して下さい。

Q3-15 「下流部水深h2」を「直接指定する」とした場合に本体下流端水深h1aが変化しない

A3-15 上記のスイッチは、実流量による計算において、落差工本体の下流部で他の河川と合流しているようなケースを想定し、直接指定したh2で護床工の検討を行います。 この場合、下流部のフルード数も含め、水深が入力値「h2=1.85(m)」となるように以降の流量・流速・流水断面積等を再計算し計算を続行しています。 ※上記の方法で計算を行いたいというご要望により追加した機能であり、通常は直接指定する必要はありません。

Q3-16 河床断面を台形として実流量で計算した場合と単位幅流量で計算した場合の結果が異なるのはなぜか

A3-16 単位幅流量の場合の等流水深h2は、「床止めの構造設計手引き(財)国土技術研究センター 編」(P.124)の算定式を用いています。 上記の式は、川幅が大きく「h2≒径深R」となるような条件下に適用することができますが、川幅が小さい場合は実流量との結果に比較的大きな相違が発生する場合があります。

Q3-17 「検討条件 | 下流部水深h2」 画面の「マニング式 (河川幅大)」と「マニング式 (河川幅小)」の使い分けを教えてほしい。

A3-17 ・マニング式(河川幅大) 河川幅が大きく、潤辺長に対して河岸の影響が小さい(径深R≒h2と見なせる)場合に選択します。 この場合、「床止めの構造設計手引き」(P.124)のh2算定式を用います。

> ・マニング式(河川幅小) 河川幅が小さく、潤辺長に対して河岸の影響が大きい場合に選択します。 この場合、「床止めの構造設計手引き」(P.124)のh2算定式中の「h2」に代わり「径深R」を用います。

Q3-18 緩傾斜型で水理計算を実流量とした場合と単位幅流量とした場合で結果が大きく異なるのはなぜか。

A3-18 実流量かつ平均流速公式が「レベル1a単断面)」の場合、「河床断面」画面の「本体工下流端」で設定されている粗度係数を用いて本体下流端の計算を行います。 上記の粗度係数が緩傾斜上の本体の粗度係数となっているかをご確認下さい。

Q3-19 護床工Aのブロック重量が護床工Bの式で計算されているのはなぜか。

A3-19 現在は「床止めの構造設計の手引き」の下記を参考に、安全側となるBの式を適用しております。

- ・(P.70)の下から6行目以降の解説
- ・ (P.72) の下から8行目以降の解説
- ・(P.132)の計算例 (a) (i) (ii)

Q3-20 上流部の等流水深h0と流速V0の算出方法を教えてほしい。

A3-20 h0,V0は、製品ヘルプの下記項目に従い等流計算により求めています。
 ・「計算理論及び照査の方法 | 水理計算 | 平均流速公式」

Q3-21 「指定した流量に対する水位を断面範囲内で検索できませんでした。」の対処法を教えてほしい。

A3-21 現設計流量に対して河床断面が小さい状態です。 設計流量を少なくするか、河床断面が大きくなるように変更して下さい。

Q3-22 各断面位置の水位は断面高以下となっているが「水位高が断面高を超えました。」のエラーとなる。

A3-22 「床止めの構造設計手引き(財)国土技術研究センター 編」(P.63)の跳水開始水深「h1b」が河床断面高を超えている 状態と考えられます。 この場合、中流部と下流部の断面高を「h1b」より大きくすることでエラーを解消することができます。

Q3-23 水の密度*ρ*wの初期値の根拠を教えてほしい。

A3-23 初期値は「床止めの構造設計手引き(財)国土技術研究センター編」(P.71)を参考に1,000を設定しています。 最終的に用いる値は設計者の判断となります。

Q3-24 計算実行時に解が収束しない旨のメッセージが表示されるのはなぜか。

A3-24 本メッセージが表示される場合、断面幅に対して流量が少ないため、本製品が想定している収束精度では解が求まらない 状態となっていると考えられます。 恐れ入りますが、「検討条件」画面の「計画流量」の値をご確認下さい。 ※単位幅ではなく全流量を指定いただく仕様としています。

Q3-25 緩傾斜型で緩傾斜上の粗度係数を変更しても水理計算結果が変わらない。

A3-25 「検討条件」画面の粗度係数「n1a」は、「河床断面」画面の「本体工下流端」で粗度係数の設定が不要な場合に用いられます。 例えば、レベル1a(単断面)の場合、「河床断面」画面の「本体工下流端」の設定についても変更してください。 ※粗度係数の入力・適用ルールにつきましては、上記画面へルプの【河床断面】をご覧ください。

4 安定計算

Q4-1 「床止めの構造設計手引き(財)国土技術研究センター編」(P.43)の安全率の記述では、地震時は慣性力と水圧を同時 に考慮しないとされている。

> 上記に従うと地震時の水圧と揚圧力は無視して照査を行なうべきか? ※揚圧力が大きいため部材厚が非常に大きくなってしまう。

A4-1 直壁型の設計例(手引きのP.130)では、地震時のケースについても、水圧と揚圧力を両方考慮し検討しています。 本件について、手引きの記述と設計例の整合性及び適用の判断を弊社で行うことはできないため、設計者の判断により 荷重条件を設定してください。

Q4-2 水理計算時(計画高水位)の水位を用いて安定計算を行う場合の手順は?

A4-2 下記の手順で設定を行ってください。
 1.入力ツリーの「荷重」項目を開きます。
 2.該当する荷重ケースにおいて、「安定・断面計算時の水位」を「水理計算の結果」としてください。

Q4-3 サンプルデータ「Sample1.F9W」で安定計算結果がNGとなるのはなぜか

A4-3 「Sample1.F9W」は、「床止めの構造設計手引き(財)国土技術研究センター 編」(P.123~)を参考に作成しています。 上記の計算例では、複数の計算の誤りが確認されており、本製品の計算結果と相違が発生します。 詳しくは、製品ヘルプ「サンプルデータ」の「■Sample1.F9W」をご覧ください。

Q4-4 形状自動決定に失敗するのはなぜか

A4-4 自動決定機能は、与えられた条件下でトライアル計算を行います。 従いまして、全てのパターンで照査を満足しない場合、自動決定に失敗します。 この場合、トライアルの範囲を広げるか設計条件を見直していただくことになります。

Q4-5 緩傾斜型落差工の傾斜部底面に作用する揚圧力について、水平成分は考慮するべきか

A4-5 揚圧力は水圧と同じ圧力であるため、面に対して垂直に作用します。 従いまして、底面に傾斜がある場合は水平成分が発生すると考えられます。

Q4-6 緩傾斜型落差工の底面傾斜部に作用する土圧を考慮することは可能か

A4-6 現在は、緩傾斜側落差工の底面へ作用する土圧を想定しておらず、計算上も考慮しておりません。 本件につきまして、何らかの情報をお持ちでしたらご紹介いただければ幸いです。

Q4-7 断面計算を実行したが水叩き部の計算が行われていない

A4-7 水叩き部の断面計算を行うには安定計算が完了している必要があります。 安定計算を実行後に再度断面計算を実行してください。

Q4-8 作用鉛直力が負となってしまう

A4-8 緩傾斜型で自重が小さく、揚圧力が非常に大きくなると作用鉛直力が負になる場合があります。 このような場合、本体形状の見直しが必要となります。 ※作用鉛直力が負となる場合は、エラーかつ地盤支持力度をNGとするようにしています。

Q4-9 粘性土地盤のため粘着力を考慮した滑動照査を行いたい

A4-9 「床止めの構造設計手引き(財)国土開発技術研究センター編」の滑動照査は、地盤の種類ごとに規定される摩擦係数 を用いて「摩擦係数×作用鉛直力/作用水平力」で評価しています。 申し訳ございませんが、粘着力を考慮することはできません。

Q4-10 滑動照査時の摩擦係数を変更したい

A4-10 「材料・基準値」 画面の「基礎地盤」 で「基礎地盤の種類を変更」 するか「摩擦係数」 を直接指定して下さい。

Q4-11 落差工本体に衝突する流木等の荷重を考慮したい。

A4-11 「荷重」画面の「水平方向任意荷重」をご利用下さい。

Q4-12 地震時の検討を省略することは可能か。

A4-12 省略することはできません。
 「河川砂防技術基準 設計編 床止め 令和4年6月改訂版 国土交通省」では「常時、洪水時、地震時」が基本とされています。
 特に地震時は地震時土圧や動水圧等が作用するため必須と考えています。
 お手数ですが、下記の何れかの方法で計算書を編集する等の対応をご検討下さい。
 ・Microsoft Wordへ出力し編集する
 ・プレビュー画面の「ソース」より編集する

Q4-13 現在の「計画水位/揚圧力なし」以外にもう1ケース水位ケースを検討したい。

A4-13 「荷重」画面の「水位ケース数」を「3」に変更し3ケース目の水位設定を行って下さい。

5 断面計算

Q5-1 直壁型落差工で断面計算を行うことができない

- A5-1 「検討条件」画面の「落差工の形式」において、以下の設定をご確認ください。
 - ・「本体・水叩き構造形式」が「一体式構造」となっているか。
 - ・「コンクリート材質」が「鉄筋コンクリート」となっているか。

上記以外の形式の場合は断面計算を行うことはできません。

Q5-2 本体及び水叩き部の曲げ応力度を複鉄筋(圧縮側の鉄筋を考慮)として計算することは可能か

A5-2 可能です。 「部材」画面の「共通 | 曲げ応力度照査時の計算方法」で「複鉄筋」を選択してください。

Q5-3 許容応力度法の照査に用いるヤング係数比を実比率とすることは可能か

A5-3 可能です。 「部材」画面の「共通 | ヤング係数比の考え方」を「実比率を用いる」としてください。

Q5-4 配筋自動決定で主鉄筋量が同じ配置が複数見つかった場合どのように決定されるのか

A5-4 斜引張鉄筋の単位幅当りの鉄筋比(鉄筋量/部材軸方向の間隔)が最も小さくなる配筋を採用します。 上記も同値となる場合は、安全率(応力度/許容応力度)の小さい配筋を採用します。

Q5-5 斜引張鉄筋を無視してせん断照査を行いたい

A5-5 「部材」 画面の「斜引 張鉄筋 | 鉄筋量 Aw」 を「0.00」 として下さい。

Q5-6 直壁型の本体前面の鉄筋を無視した設計を行いたい

A5-6 前面側に入力されている主鉄筋を「Delete」キーで削除するか、曲げ応力度照査時の計算方法を「単鉄筋」として下さい。

6 その他

Q6-1 結果確認画面の一覧表をMicrosoft Excelで編集したい

A6-1 各結果確認画面では、HTML形式によるファイル保存に対応しています。 画面上で「右クリック→HTMLファイル出力」または画面下の「印刷」を「保存」に変更しボタンを押下してください。 上記で保存したHTMLファイルをMicrosoft Excelで読み込み、編集等を行ってください。

Q6-2 設計調書を作成することは可能か

- A6-2
 現在は対応しておりません。

 ご了承ください。
- Q6-3 データファイルが破損し読み込めなくなった場合の対処法はあるか
- A6-3 初期設定では、設計データファイルと同一フォルダにバックアップファイル(拡張子F9W~)を作成しています。 上記ファイルの拡張子を「F9W」へ変更しご利用ください。 ※バックアップファイルは1世代(最後に上書き保存を行う直前の状態)のみ作成します。

Q6-4 メイン画面より3Dモデルを保存したい。

A6-4 ファイル形式に応じて、下記手順で出力してください。 ■DXFファイル, DWGファイル、PDFファイル メイン画面の3D画面を右クリックし、「3D出力」より出力形式を選択し保存を行ってください。 ■bmpファイル、VRMLファイル、3dsファイル、IFCファイル メイン画面の3D図を右クリックし、「エクスポート」より出力形式を選択し保存を行ってください。

Q&Aはホームページ (https://www.forum8.co.jp/faq/win/rakusako-qa.htm) にも掲載しております

落差工の設計・3D配筋 操作ガイダンス

2025年 4月 第1版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へお問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。 https://www.forum8.co.jp/faq/qa-index.htm

落差工の設計・3D配筋 Ver.2 操作ガイダンス

