

調節池・調整池の計算 Ver.9

Operation Guidance 操作ガイダンス

本書のご使用にあたって

本操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

©2020 FORUM8 Co., Ltd. All rights reserved.

目次

6 第1章 製品概要

- 6 1 プログラム概要
- 9 2 フローチャート
- 10 第2章 操作ガイダンス(防災調節池等技術基準)
- 10 1 モデルを作成する
- 10 1-1 新規入力
- 11 1-2 適用基準
- 11 1-3 基本データ
- 15 1-4 施設配置
- 16 1-5 流域
- 181-6貯留施設211-7洪水吐き
- 25 2 計算を確認する
- 25 2-1 流域
- 26 2-2 貯留施設
- 26 3 計算書を作成する
- 27 3-1 入力データ
- 27 3-2 結果データ
- 28 4 基準値(降雨強度式の登録)を設定する
- **30 5** ファイルを保存する

32 第3章 操作ガイダンス(林地開発基準)

- 32 1 モデルを作成する
- 32 1-1 新規入力
- 33 1-2 適用基準
- 33 1-3 基本データ
- 38 1-4 施設配置
- 38 1-5 流域
- 40 1-6 排水施設
- 45 1-7 貯留施設
- 52 1-8 洪水吐き
- 58 2 計算を確認する
- 58 2-1 流域
- 58 2-2 排水施設
- 59 2-3 貯留施設
- 59 2-4 洪水吐き

60 第4章 操作ガイダンス(流域貯留施設等技術指針(案))

- 60 1 モデルを作成する
- 60 1-1 新規入力
- 61 1-2 適用基準
- 61 1-3 貯留施設

- 65 1-4 洪水吐き
- 69 2 計算を確認する
- 69 2-1 流域
- 70 2-2 貯留施設
- 70 2-3 洪水吐き
- 71 第5章 操作ガイダンス(簡便法のみの計算を行う入力)
- 71 1 モデルを作成する
- 71 1-1 貯留施設
- 74 2 計算を確認する
- 75 2-1 流域
- 75 2-2 貯留施設
- 76 第6章 操作ガイダンス(浸透施設に関する入力)
- 76 1 モデルを作成する
- 76 1-1 施設配置
- 77 1-2 浸透施設
- 86 2 計算を確認する
- 86 2-1 浸透施設
- 87 第7章 Q&A
- 87 1 システム編
- 88 2 流域データ(降雨強度式)編
- 91 3 浸透施設編
- 92 4 貯留施設編
- 99 5 洪水吐き編
- 100 6 出力編

第1章 製品概要

1 プログラム概要

概要

本製品は、「防災調節池等技術基準(案) 解説と設計実例 社団法人 日本河川協会」を主たる適用基準としており、「防 災調節池等技術基準(案)」(調節池)と「大規模宅地開発に伴う調整池技術基準(案)」(調整池)についての「貯留施設、浸 透施設」における、単独、複合設計および総合評価をおこなうことができます。

「林地開発基準」については、「愛知県 林地開発許可基準」を主たる適用基準としており、流域毎(排水施設)に調節池・ 調整池の設置が必要か不要かの検討および、調節池・調整池の設置が必要な場合は、設置する調節池・調整池の容量計算 をおこなうことができます。

「流域貯留施設等 技術指針(案)」については、貯留施設・浸透施設併用型の必要調節容量(簡便法)の計算および、貯留部 (U型側溝を設ける場合)の必要調節容量の計算(簡便法)、簡易式による湛水時間の計算をおこなうことができます。

浸透施設においては、「雨水浸透施設の設備促進に関する手引き(案)」平成22年4月に記載している「雨水浸透効果の概算 方法(簡便法) 流出抑制効果」について照査することができます。

機能および特長

■降雨強度式の名称

適用基準入力画面においてお客様のご利用されている降雨強度式の任意名称を変更・修正することができます。

①「防災調節池等技術基準(案) 解説と設計実例」、「流域貯留施設等 技術指針(案)」モデル

■施設設置

1. 流出制御施設(流域、浸透施設、貯留施設)数は、制限を設けていません。

2.流出制御施設(流域、浸透施設、貯留施設)の施設設置は、簡単な表形式で入力することができます。

3.流域制御施設の全体図をグラフィカルに描画します。

■流域

1.降雨強度式を指定するか、降雨強度を直接指定することができます。
 2.降雨強度式は複数の降雨強度式(合成、合計)を指定することができます。
 3.複数形態(流域係数、面積)を指定することができます。
 4.流域毎にハイドログラフ(合理式、修正RRL法、合成合理式)をグラフ表示形式で確認することができます。
 5.流量を割り増しすることができます。

■浸透施設

1.浸透施設毎に設計浸透量の詳細な入力および、計算結果を確認することができます。

2.浸透施設毎に流入量、流出量をグラフ表示形式で確認することができます。

3.「雨水浸透施設の設備促進に関する手引き(案)」平成22年4月に記載している「雨水浸透効果の概算方法(簡便法) 流 出抑制効果」について入力および、計算結果を確認することができます。

■貯留施設

1.貯留施設毎に詳細な計算結果を確認することができます。
 2.貯留施設毎に流入量、流出量をグラフ表示形式で確認することができます。
 3.貯留施設毎に総括表示形式で計算結果を確認することができます。
 4.最大5ケースまで放流施設(オリフィス情報および、せき、ポンプ容量の設置有無)の情報を設定することができます。
 5.ピーク時の1分毎の詳細な計算結果を確認することができます。

6.各放流施設毎の放流量の計算結果を確認することができます。

■洪水吐き
 1.降雨強度式は複数の降雨強度式(合成、合計)を指定することができます。
 2.貯留施設毎に詳細な計算結果を確認することができます。

②「林地開発基準」モデル

■施設設置

1.流出制御施設(流域、排水施設、貯留施設)数は、制限を設けていません。
 2.流出制御施設(流域)の施設設置は、簡単な表形式で入力することができます。
 3.流域制御施設の全体図をグラフィカルに描画します。

■流域

1.複数形態(流域係数、面積)を指定することができます。
 2.流域毎にハイドログラフをグラフ表示形式で確認することができます。
 3.開発におけるピーク量およびピーク増加量を確認することができます。

■排水施設(流域入力数分設置されます)

1.排水施設毎に現況流下能力、開発におけるピーク量、貯留施設の設置の有無を確認することができます。
 2.各計算結果(流下能力、許容放流量、水害防止の調整容量、災害防止の調節池・調整池からの許容放流量)を詳細に確認することができます。

■貯留施設(排水施設の計算で貯留施設の設置が必要と判断された個数分)
 1.貯留施設毎に詳細な計算結果を確認することができます。
 2.貯留施設毎に流入量、流出量をグラフ表示形式で確認することができます。
 3.貯留施設毎に総括表示形式で計算結果を確認することができます。
 4.最大5ケースまで放流施設(オリフィス情報および、せき、ポンプ容量の設置有無)の情報を設定することができます。

■洪水吐き(排水施設の計算で貯留施設の設置が必要と判断され、洪水吐きの計算を行う個数分)
 1.降雨強度式は複数の降雨強度式(合成、合計)を指定することができます。
 2.貯留施設毎に詳細な計算結果を確認することができます。

適用範囲

■降雨強度式の名称

適用基準入力画面においてお客様のご利用されている降雨強度式の任意名称を変更・修正することができます。

■施設設置(林地開発基準時には、流域のみ指定可)1.貯留、浸透施設を併用する場合も対応しています。2.洪水吐きは、最大で貯留施設数と同数を作成します。

■流域

1.降雨強度式は、タルボット、シャーマン、久野・石黒型、クリーブランド型、近畿地方整備局型(林地開発基準は指定不可)、 山梨県型の式を指定可能で、これらの式を複数式の合成および合計(林地開発基準は複数式合成、合計は指定不可)することも可能です。

2.降雨強度式は、別途降雨強度式ファイルへ保存できます。

3.実雨降雨について降雨強度、降雨量、流量の何れかで指定することが可能です(林地開発基準は指定不可)。

4.降雨波形タイプは、前方集中、中央集中、後方集中が指定可能です。

5.中央集中型の降雨波形時は、左側が大きい、左右同値、右側が大きいを指定可能です。

6.洪水到達時間算出方法は、等流流速法、土研式、Kinematic Wave理論を指定可能で、これらの計算結果を確認後に入力 指定することができます。 7.流出ハイドログラフの計算は、合理式、修正RRL法、合成合理式が指定可能です(林地開発基準時は合理式のみ)。
 8.流量を割り増しすることが可能です(林地開発基準、修正RRL法、実雨降雨以外でハイドログラフが合理式、合成合理式の場合のみ)。

■浸透施設(林地開発基準時は指定不可)

1.浸透計算は、有効降雨モデル、一定量差し引きモデル、貯留浸透モデルが指定可能です。

2.浸透施設の断面諸元は、浸透トレンチ、浸透ます、透水性舗装、浸透側溝、大型貯留槽が指定可能です。

3..設計浸透量を直接入力することも可能です。

4.「雨水浸透施設の設備促進に関する手引き(案)」平成22年4月に記載している「雨水浸透効果の概算方法(簡便法) 流出 抑制効果」を照査することができます。

■排水施設(防災調節池等技術基準(案)時は指定不可)

1.排水施設に設置する場合の調節池、調整池の種別が指定可能です。

2.現況流下能力の指定方法を直接入力するか、Manning式で指定するかが指定可能です。

3. Manning式で指定する場合は、断面形状(長方形、台形、放物線形、三角形、円形)より流量を自動算出することができます。

■貯留施設

1.オリフィス断面形状は、放流管(矩形)1段/2段、放流管(円形)1段/2段、小型(矩形)、小型(円形)、大型(矩形)、大型(円形)、も ぐり(矩形)、もぐり(円形)を設置することが可能です。

2.最大5ケースまで放流施設(オリフィス情報および、せき、ポンプ容量の設置有無)の情報を設定することが可能です。

3.1ケースに最大10個までオリフィスを配置することが可能です。

4.洪水調節方式は、自然調節方式かピークカット方式を指定可能です。

5.四角せき、三角せき、台形せき(洪水吐き)を配置して放流することが可能です。

6.複数のポンプ(排水量固定)を設置して放流することが可能です。

7.流下過能力(許容放流量)は、Manningの平均流速公式で算出するか、直接入力することができます。

8.水位容量計算は、せつ頭錐体、平均面積を有する柱体の何れかを指定することができます。

9.設計堆積土砂量(土地造成中、土地造成完了後)を算出することができます。

■洪水吐き

1.降雨強度式は複数の降雨強度式(合成、合計)を指定することができます。

2.設計洪水流量を算出することができます。

3.洪水吐きおよび非越流部天端高を算出することができます。

4.通常式、矩形、台形、正面越流、横越流を選択して洪水吐きの流量(越流量)を算出することが可能です。

5.余裕高を算出することができます。

6.減勢工の設計(接近水頭、跳水水深、跳水の長さ)を算出することができます。

7.洪水吐きの入力及び計算は必須項目ではありません(計算するかしないかを指定することができます)。

参考文献

1)防災調節池等技術基準(案) 解説と設計実例 社団法人 日本河川協会

2)增補改訂 雨水浸透施設技術指針[案] 調查·計画編 公益社団法人 雨水貯留浸透技術協会 編

3)下水道雨水調整池技術指針(案) 解説と計算例 昭和59年 社団法人 日本下水道協会

4)下水道施工計画・設計指針と解説前編 2001年版 社団法人 日本下水道協会

5)水理学の基礎(第二版) 吉岡幸雄 著 技報堂出版株式会社

6)雨水浸透施設の設備促進に関する手引き(案) 平成22年4月 国土交通省 都市・地域整備局 下水道部 国土交通省 河川局 治水課

7) 増補改訂 流域貯留施設等 技術指針(案) 平成19年3月 社団法人 雨水貯留浸透技術協会

8)土地改良事業設計指針「ため池整備」平成18年2月 農林水産省農村振興局整備部設計課監修 社団法人 農業土木学会 発行

9)土地改良事業設計指針「ため池整備」平成27年5月 農林水産省農村振興局整備部設計課監修 公益社団法人 農業農村 土木学会発行

2 フローチャート

第2章 操作ガイダンス(防災調節池等技術基準)

1 モデルを作成する

「防災調節池等技術基準(案)」の設計例を例題として作成します。 (使用サンプルデータ:Sample防災調節池等技術基準(案)) 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 新規入力

1-2 適用基準

1 2 #			
法用其法	「熱雨温」「使さの名数116字		「「「「「「「「」」」では、「「」」」では、「」」」では、「」」では、「」」、」、「」」では、「」」、」、「」」、」、「」」、」、「」」、」、「」、」、」、」、「」」、、」、」、、」、
C FLOURISIANELLINE	Menufoldial 2.007-ENT-18-05		< 的 次 詞 即 池 報
	20周期全定	入力設定	
○ 林地開発基準	タルボット型 r = a / (t + b)	タルボット型	
○ 流域貯留施設等扶衛指針(案)	シャーマン型 r = a / t'n	シャーマン型	
	久野・石黒型 r = a / (f t + b)	久野・石黒型	貯留施設の種
野留施設の種類	クリーブランド型 r = a / (t "n + b)	クリーブランド型	「日」「日」「日」「日」「日」「日」「日」「日」「日」「日」「日」「日」「日」「
• 4004 P	近畿地方整備局型 r = a / (√t + b) n	近畿地方整備局型	<オフサイト>
C 42411	山梨県型 r = a · (b / t) în t:時間	山体和思想	
	2万萬利德國政定	レジストリ読込 レジストリ保存	①オフサイト
			雨水を集水し
			オ「取った」、抜った
		✓ 確定 × 肥油 ? ヘルプ	の日子の、近水
	<u> </u>		― 「基本データ
			マレバマナナ
			ことか ぐきま
			のオンサイト
			場所で貯留し
			ひ、公園、連
			ひ、公園、連 設あるいは、
			ひ、公園、連 設あるいは、
			ひ、公園、連 設あるいは、 「基本データ
			ひ、公園、連 設あるいは、 「基本データ コトレス調節
			ひ、公園、連 設あるいは、 「基本データ 可として調節
			ひ、公園、連 設あるいは、* 「基本データ 可として調節 ます。
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。
			ひ、公園、連! 設あるいは、 「基本データ 可として調節: ます。 隆西論度式の
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 和期値設定:
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 初期値設定ポ
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 役下で強度式の 初期値設定す 表の左側(初)
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 初期値設定す 表って、 「
			び、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 初期値設定す 表の左側(初 戻すことがで
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 初期値設定が 表の左側(初 戻すことがで
			ひ、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の や雨強度式の 初期値設定ポ 表の左側(初期 戻すことがで ーーーレジストリ読:
			い、公園、連 設あるいは、 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 初期値設定が 戻すことがで レジストリ読
			い、公園、 、公園、 、公園、 、 、公園、 、 、 、 、 、 、 、 、 、 、 、 、 、
			 ひ、公園、連 設あるいは、? 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 一初期値設定ボで 一初期の左し(初期 戻すことがで レジストリ読ず お度式の名利
			ひ、公園、連 (型) (記) (記) (記) (記) (記) (記) (記) (記
			 ひ、公園、連! 設あるいは、? 「基本データ 可として調節 ます。 降雨強度式の 降雨強度式の 一初期の左側(初) 戻すことがで レジストリ環境 強度式の名称 レジストリ保?
			 ひ、公園、連 設あるいは、1 「基本データ 可として調節: ます。 降雨強度式の 一一初期値22 一一のジストリ読 お度式の名称 ーーレジストリ保 キのた例に20
			 ひ、公園、連! 設あるいは、? 「基本データ 可として調節: ます。 降雨強度式の 一一初期の左足がで 一一レジストリに歩って レジストリ保護 表の右側に入

1-3 基本データ

● 現料他の作用 Ver0-(使用) - × ファイ化の 巻き曲(3) オフッコン(3) へん7(3)	「基本データ」ボタンをクリックし、基本データと流域の初期 値を設定します。 ここで設定した入力データは、施設配置で設置される各流域 データの初期値として設定されます。
	※流域データを入力後にこの基本データを修正しても、入力し た流域データには何ら影響しません。

適用基準、貯留施設の種類を設定します。 本画面の「適用基準」に従い、以降の入力項目(入力画面)、 計算結果、出力書式が変更されます。 なお、「防災調節池等技術基準」および「流域貯留施設等技術 指針(案)」と「林地開発基準」の適用基準を変更しても両者の

入力データについては互換性がありませんのでご注意くださ い。

します。 支術基準>

を選択します。

域の下流部等に河川・下水道・水路等によって 貯留し、流出を制御するもので現地外貯留と 防災調節池等はこれに当ります。

入力画面で調節池、調整池の種類を指定する

永の移動を最小限におさえ、雨が降ったその 雨水の流出を抑制するもので、現地貯留とも呼 易、駐車場、集合住宅の棟間等の流域貯留施 □貯留施設などこれに当ります。

入力画面で調節池、調整池の種類の指定を不 調整池の呼び名を「流域貯留施設」と固定し

称指定

称を変更・修正することができます。

`/ B定)に表示している本製品の推奨する名称に ます。

ドタン

(パソコンのレジストリ)に保存している降雨 取得します。

ドタン

・修正した降雨強度式の名称をお客様の環境 ・ジストリ) に保存します。

t & (1 12 - T - T - T - T - T - T - T - T - T -	1000000000000	FORENI	
PARTY PARAMENTAL INCOMENTATION OF A CONTRACT	I PAPPLICTS 71-1	10997	
副前の他、副語語他の理由			
• 防汛调的他(恒久施設)			
○ 大規模宅地開発に伴う調整池(暫定施設)			
降雨強度の計算			
• 陆雨驻旗式			
○ 陸雨強度直接入力			
流出係数、面積をKinematic Wave理論に反映			
* する			
C Lau			
ビーク流量の計算			
□ 開発約を計算する			
□ 開発後を計算する			

—最終貯留施設名称

最終貯留施設名称を指定します。本名称は、入力、計算結果、 計算書出力時に用いられます。(半角64文字以内) <春日貯留施設>

基本条件

調節池、調整池の種類 池の種別を選択します。 <防災調節池 (恒久施設) >

降雨強度の計算

<降雨強度式>

流域係数、面積をKinematic Wave理論に反映 <する>

 ①する:流域係数、面積で入力したデータを常にKinematic Wave理論の入力データに反映します。
 ②しない:流域係数、面積で入力したデータを無視して、 Kinematic Wave理論の入力データを直接入力することができます。

ピーク流量の計算

チェックを入れると、開発前、開発後のピーク流量を計算しま す。

<開発前を計算する:チェックなし> <開発後を計算する:チェックなし>

協雨強度式数(最大5式) 1	補助式の算定方法 (F 合計 C 合成 C 平均		
(雨強度式(1式)			
#4 (4):			
陸雨速度式選択 ○ タルボット型 ○ シャーマン型 ○ 久野・石黒型			
算式 [クリーブランド型]	一式のパラメーター		
クリーブランド型	a :	2590.0000	
r =	b:	12.9000	
$t^n + b$	n :	0.7500	
基準値から選択する	降雨壯続時間 t(時):	24.00	
	式中tの単位 (* 分単位 C #	間單位	
基準値から選択する	 □ 踏雨継続時間 t (時): □ 式中tの単位 ○ 分単位 	24.00	

「基準値から選択する」ボタン(お勧め機能)

降雨強度式を基準値から取得する場合には、このボタンを 選択してください。

基準値(降雨強度式)より取得した降雨強度式データを自 動的に設定します。

選択した基準値の降雨強度式は入力データ等の保存対象と しておらず、指定した降雨強度式データ情報(どの番号の降 雨強度式を用いたか等のリンク情報)は保持しておりません。

降雨強度式

流域の計算に必要な降雨強度式データを入力します。

降雨強度式数(最大5式)

降雨強度式数をスピンボックスにて指定します。 各式の入力切替は、スピンボックス右側の1~5ボタンにて行っ てください。 <1>

複数式の算定方法

本入力は、降雨強度式数の指定が2式以上の場合に入力可能 となります。

確率年 (年)

<50>

地域名称 <新町地区>

降雨強度式選択

<クリーブランド型>

式のパラメータ

<a:2590.000> <b:12.9000> <n:0.7500> <降雨継続時間t(時):24.00>

<mark>式中tの単位</mark> <分単位>

	地形名称	流出係数f	土地利用状况定数C	流域面積A(ha)	
1	市街地	0.840	60.000	247.900	7
2					
3					
4					8
5					1
6					8
7					ı
8					1
9					1
10					

流出係数、面積

流域の計算に必要な流出係数、面積を入力します。

	地形名称	流出係数f	土地利用状況 定数C	流域面積A(ha)
1	市街地	0.840	60.000	247.900

土地利用状況定数C

流域の土地利用状態等で決まる定数を入力します。 この入力値はKinematic Wave理論の入力および計算で用いられま す。

【表入力時の注意】

1.行を削除したい場合は、「Delete」キーを押してください。 2.途中行の挿入を行う場合は、「Insert」キーを押して挿入してくだ さい。

3.101行以上の入力を検討する場合は、メニューバーの「オプション (O)」から「入力制御パラメータの設定」を変更します。「可変表最 大入力数」を適切な値に変更してください。

流域の計算に必要な洪水到達時間データを入力します。

計算式の選択

<等流流速法:チェック> <土研式:チェック> <Kinematic Wave理論:チェック>

等流流速法

等流流速法の計算に必要な入力データを指定します。

流入時間t1

雨水が流域上流部斜面から河道に入るまでの流入時間 t1を指 定します。

流入時間t1の指定方法 <直接入力>

直接入力

<流入時間t1(分):7.0>

流路流下時間t2

流路流下時間t2の指定方法 <開発後>

管路や開水路の条件

<未定である(Kraven式)>

	流路延長L(m)	河道高さ H(m^2)
1	1000.000	2.300
2	750.000	5.500
3	990.000	17.200

計算式の選択 IF 等流流速法 IF 主研式 IF Kinematic Wave理論	2014年1、回転、パウス303年11日 [1497](近年) (パドロクラフ) 等点活動法)上北京 (Kinestic Bivor理論) 結果確認] [進入時間 11] 法加減 Fiel間 12] 二人時間 11日(均能定方法) クリーベイ(Kerky)氏 6 直接入力)	
	<u>温入時間 t1 (分): 7.0</u>	

「条件 陸雨速度式 流」 計算式の選択	出係款、面積 等流流速法	法研究 Kinemati	和波形 ハイドロ c Wave理論 結果	グラフ 編22	
☑ 等流流速法 ☑ 土研式	流入時間 t1 (派超流下時間 t2) 法認法下時間 t2の指定方法 ○ 開発前 ○ 開発後 ○ 直接指定				
KINematic Taves	開発後 (管路や ()明朝	欄水路の条件 である(Manning式) @ 未定であ	55(Kravengt)	
		流路延長L (m)	河道高さH (m)	^	
	1	1000.000	2.300		
	2	750.000	5.500		
	3	\$\$0.000	17.200		
	4				
	5				
	8				
	7				
	8			~	

*****	留地設 www.men 注水和G和AM [remient]。	V KOHENI	
4-901F PARTISEUCUS 2023	Bife級、面積 パイルの単小面 Papelのたり 施造造連法 土研式 Kinematic Wave理	14 Fロクラフ 論 結果確認	
☑ 等流流速法 ☑ 十研究	土地利用状况 ○開発約 (• 開	1Rit	
▼ Kinematic Waves∰im	計算式 tc = 2.40×10 ⁻⁴ ×(L/√	-S) ^{0.7}	
	河川延長L (n)	河遗斋低差△H (m)	
	2740.000	25.000	

土研式

土研式の計算に必要なデータを入力します。

土研利用状況 ピーク流量を計算しない場合のみ選択可能です。 <開発後>

河川延長L(m)	河道高低差∆H(m)
2740.000	25.000

算式の選択 等流流速法 土研式	 等流流速法 土研式 Kin 「路雨強度式の選択 「1: クリーブランド型」 	ematic Wave理論 結果 (r = a / (t'n + b) (宝	(中(:分))	
Kinematic Wave理論	土地利用状况定数C	這城面積A (ha)	演出係数f	
	60	247.900	0.840	

Kinematic Wave理論

Kinematic Wave理論の計算に必要なデータを入力します。 今回入力する項目はありません。

計算式の選択 ▽ 等流走連法	等流流速法 洪水到速	土研式 Kinemat 時間(分)	ic Yave理論 結果確	12	
▼ 土研式	補	乱 遗法	土研式	Kinematic Wave理	iA .
Z Kinematic Maxwillia		23.8	19.0	14.2	
	波路 流1	F時間 t2 開発	1ê		
	Kraven3€ H/L ≧ 1, 1/200 ≦ H/L < 1/2	(管路や開水路の条 100 v=1 H/L<1/100 v=1 00 v=1	(時小赤)) 3.5(m/s) 3.0(m/s) 2.1(m/s)		
	Kraven∃€ H/L ≥ 1, 1/200 ≦ H/L < 1/2 No	(管路や欄木路の集 /100 v = H/L<1/100 v = 00 v = 流路流下速度 v 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(中か未定でめる) 3.5(a/s) 3.0(a/s) 2.1(a/s) (a/s) 達下時間	ti(min)	

結果確認

画面上部に各洪水到達時間を表示し、下側に等流流速法の詳 細結果を表示します。

降雨波形

降雨波形の計算に必要なデータを入力します。

洪水到達時間(参照値)

本項目は入力することはできません。 洪水到達時間タブで計算した計算結果を表示します。 この参照値を確認し、適切な洪水到達時間を入力することを お勧めします。

計算時間単位Δt(分)

降雨波形及びハイドログラフを計算する洪水到達時間を入力 します。 降雨強度直接入力時は、本入力は入力不可となります(降雨 強度直接入力」タブ内の計算時間単位Δtを用いるため)。 <20>

降雨波形タイプ

降雨強度直接入力時は、本入力は選択不可となります。 <後方集中>

-ハイドログラフ

流域のハイドログラフの計算タイプを指定します。

ハイドログラフ計算スイッチ <合理式>

各時間の流量割増値(%)

割増値(%)を入力します。入力値が0.0の場合には流量の割 増は行いません。 ハイドログラフ計算スイッチが合理式、合成合理式の場合にの み入力できます。 <0.0>

1-4 施設配置

🌉 調節治・調整治の計算 Ver.9 - (新規) (更新)	- 🗆 X	
77イルビ 基準値図 オブション(2) ヘルプ出 D 谷 日 書 誌 空 団 一番 地理モードの激軟: 入力 計算期間 計算書	837 🔲 🗒 💕 🦹 😝 🖬 🛓	
 2 適用基準 2 基本デーク 		
		──「施設配置」ボタンをクリックし、施設配置(流域、浸透施 設、貯留施設)データを入力します。
□ (Factor) □ (Factor) □ (Factor)		

名称

各施設の名称を入力します。(半角64文字以内) <新町(流域-1)>

形式

浸透施設、貯留施設をリストボックス形式で選択します。 <流域>

下流施設番号

下流施設の番号(施設配置表入力の右側の番号)を入力しま す。

最終貯留施設の下流施設番号は「0固定」としており、必ず最 終貯留施設は設置されます

<0>

施設配置データを入力後、「描画」ボタンを押してください。 画面下側に施設配置図が描画されます。

【施設配置のルール】

1.最終貯留施設の設置は不要です(必ず最後に設置されます)。

2,流域は、流域を上流、下流施設へ設置(流域⇔流域)すること はできません。

3.浸透施設の上流に設置できる流域数は1つだけです。

4.浸透施設は、浸透施設を上流、下流施設へ設置(浸透⇔浸透) することはできません。

5.貯留施設の下流施設には、浸透施設を設置(貯留→浸透)することはできません。

※「防災調節池等技術基準」、「流域貯留施設等技術指針 (案)」指定時には、「浸透施設」を設置することができま す。

浸透施設に関する入力については、第6章 操作ガイダンス (浸透施設に関する入力)を参照してください。

1-5 流域

本データでは、入力を変更する必要はありません。計算結果の みを確認します。

1-6 貯留施設

- 「貯留施設」 ボタンをクリックし、 貯留施設の計算に必要な データを入力します。

施設切替: 春日貯留施設	
「ッチ制御 入力 計算結果	
洗水調節方式 ● 自然調節方式 許容波流量 「 Maroningの平均流量公式で算出する	せき放流 で 放流しない で 放流しない で 放売社会 で 医角形せき で 三角形せき
直接入力 Qo (m*S/s): 6.0000	 ボンブ放流 「 放流する
水垣容量無縁の入力方法 ○ 水位と容量を直接入力する ○ 水位とその時の湛水面積を与え容量を算定する	洪水吐きの計算 ↓ 計算する
□ 算定式 ○ せつ機構体 (* 平均服績を有する柱体	計算を行うケース数
- 水位の小数点以下入力和数 (〒3桁) ○ 4桁(容量計算3桁) ○ 4桁	洪水調節計算結果のピーク時の1分毎の出力
野留施設の満出量あり ▽ 下流へ飲造する	ビーク1時の1分類の出力を行う 出力する時間範囲 t(分): ± 5
決大調除容量の計算 (7) 使形法の計算 「対応熱点の計算で加容量の総称(n ⁻³): 「市加減点の計算で加容量の総称(n ⁻³): 「市加減点の計算で加容量の総称(n ⁻³): 「0.0000 用地能理EMの(2本)(201年(n ₀)): 0.0000	
設計増積土砂量の計算 反 計算する	

施設切替

「施設配置」で入力した貯留施設分の入力が必要です。 貯留施設の切り替えは、「施設切替」リストボックスにて切り替 えることができます。

施設切替: 春日貯留施設	•
イッチ制御 入力 計算結果	
洪水調節方式 ◎ 自然調節方式 許容放洗量 計で Manningの干均流速公式で算出する	せき状態
直接入力 Qo (m ⁻ 3/s): 6.0000	- ポンプ放流
 水位容量曲線の入力方法 (*) 水位と容量を直接入力する (*) 水位とその時の湛水面積を与え容量を算定する 	洪水吐きの計算 (戸計算する
「算定式 ○ せつ頭鋒体 ○ 平均面積を有する柱体	計算を行うケース数
水位の小数点以下入力指数 (〒3桁 ○4桁(容量計算3桁)○4桁	ケース数: 1 ・ 2 洪水調節計算結果のピーク時の1分毎の出力
野留施設の満出量あり ▽ 下流へ放流する	ビーク時の1分費の出力を行う 出力する時間範囲 ((分) : ± 5
(決大調明を登金の計算 (7) 能が払うが計算 計量が出気にの計算で料金で加るない起来((n ⁻¹)): 引き活出だ((n ₁ /h ⁻¹)): (2):555年(2):555年(3):555((n ₁ -2)): (2):555年(2):555年(3):555((n ₁ -2)): (2):555年(2):555((n ₁ -2)): (3):555((2):55((2):55((2):555((2):5	
設計堆積土砂量の計算 ↓ 計算する	

スイッチ制御

洪水調節方式 <自然調節方式> 許容放流量 <Manningの平均流速公式で算出する:チェックなし> <直接入力 Qo(m^3/s):6.0000> 水位容量曲線の入力方法 <水位とその時の湛水面積を与え容量を算定する> 算定式 <平均面積を有する柱体> 水位の小数点以下入力桁数 <3桁> 貯留施設の流出量あり <下流へ放流する:チェック> 洪水調節容量の計算 <厳密解法の計算:チェック> 設計堆積土砂量の計算 <計算する:チェック> せき放流 <放流しない> ポンプ放流 <放流する:チェックなし> 洪水吐きの計算 <計算する:チェック> 計算を行うケース数 <ケース数:1> 洪水調節計算結果のピーク時の1分毎の出力 <ピーク時の1分毎の出力を行う:チェックなし>

(2) (クース) 1931-1940年 リフィス情報	10 X	1	調節池容量		池底の標高	(n):	24.00
量係数 C1 量係数 C2				水潭 (m)	面積 (m [*] 2)	容量 (m*	3)
1	計画水(jphu(m)	8.000	1	0.000	79.000	0.0	000
	CI	1.80	2	2.000	78.000	158.0	000
	62	0.60	3	2.010	18700.000	251.0	895
Hu			4	3.000	20920.000	19863.7	795
			5	3.010	41920.000	20177.5	995
			8	4.000	46666.000	84028.0	065
池底			7	5.000	49020.000	111871.0	065
へ放達するケーフ			洪水间的安全	+10			
するケース番号:1	\$		计定因素	81	算時間(時)	: [
			(* 1sn	81	算ビッチ(秒)	:	3
			C 0.1mm	潘	水水位 (m)		0.00
			C 0.01mm	81	算最大時間(時) :	12
				81	1000-000 (s'o/	/8/: 0.10	0.10
					stellenster die ov		

—入力

調節池

オリフィス情報

<計画水位Hu(m):8.000> <C1:1.80> <C2:0.60> ここで入力した流量係数C1、C2はオリフィス入力時の初期値 として用います。

下流へ放流するケース

<放流するケース番号:1>

調節池容量

<池底の標高(m):0.000>

	水深(m)	面積(m^2)
1	0.000	79.000
2	2.000	79.000
3	2.010	18700.000
4	3.000	20920.000
5	3.010	41920.000
6	4.000	46666.000
7	5.000	49020.000
8	6.000	51650.000
9	7.000	54640.000
10	8.000	57450.000
11	9.000	60100.000
12	10.000	63110.000

容量は自動計算しますので、入力する必要はありません。 面積の数値を入力後にEnterキーを押し、次の行にマウスまた は矢印キーで移動してください。

洪水調節容量計算

<許容誤差:1mm>

「防災調節池等技術基準(案)解説と設計実例」P.155の洪水 調節計算フローチャート内の許容誤差を指定します。 誤差を小さくすると、計算精度を高くすることができます。

<計算時間(時):0> 流出量を0にするまで計算を行う場合は計算時間を0としま す。

<計算ピッチ(秒):30> 計算ピッチが短いほど、洪水調節計算の計算精度が向上しま すが、処理時間は長くなります。

<湛水水位(m):0.000>

<計算最大時間(時):120>

<計算終了条件(m³/s):0.1000000> ここで指定した流出量より小さな流出量を検出した際には、洪 水調節計算を終了します。

<調節後流量(m^3/s)>は「スイッチ制御」タブの「洪水調節方式」で「ピークカット方式」選択時に入力可能となり、洪水調節計算時に、入力した値以上の流量は流出しないようにします。

集水面積は工事面積を用いる

設計堆積年数(年):

設計值 (n'3/ha-年):

土地造成完了彼

•

✓確定 業取済 ?へルプ(出)

0.0

年 遺成面積 (ha) ^

施設切替: 春日貯留施設

設計堆積年数(年): 3 設計値(m'3/hm·年): 150.0

年 造成面積 (ha) ^

30.000

20.000

スイッチ制御入力 | 計算結果 | 調約池 | ケース1 [設計増積土砂量]

計算方法 ○ 増積土砂量は毎年半減する

1

2

土地造成完了後 「レ計算する

土地造成中

-ケース1

「スイッチ制御」タブで計算を行うケース数に指定したケース 数分のケース番号タブが表示されます。 ケース番号タブの入力データは、各ケース異なる放流施設(オ リフィス情報および、せき放流、ポンプ放流)を入力することが できます。

ケース名称

ケース名称を入力します。(半角64文字以内)

オリフィス形状

<放流管(矩形)>

自動計算

放流管(矩形)、放流管(円形)選択時のみに入力することができます。 <チェックなし>

下段計算

放流管(矩形)2段、放流管(円形)2段選択時のみに入力すること ができます。 下部排水口のみで処理する場合にチェックします。

詳細

選択したオリフィスの寸法に関するデータを指定します。 「…」ボタンをクリックすると「オリフィス詳細入力」 画面が表示されます。 <断面下端高HI(m):0.000> <断面高DI(m):0.900> <断面幅BI(m):0.900>

<流量係数C1:1.80>

<流量係数C2:0.60>

せき放流

「スイッチ制御」タブでせき放流を選択(四角せき、三角せき、 台形せき、矩形2段せき)している場合に入力することができま す。

ポンプ放流

「スイッチ制御」タブで「ポンプ放流」を「放流する(チェック)」としている場合に入力することができます。

本入力は、「スイッチ制御」タブの「設計堆積土砂量の計算」を 「計算する」とした場合にのみに表示されます。

計算方法

<集水面積は工事面積を用いる>

<u>土砂造成完了後</u> <計算する:チェック>

土地造成中

<設計堆積年数(年):3> <設計値(m³/ha・年):150.0> 造成面積(ha) <1年:30.000> <2年:50.000> <3年:20.000>

最終調節池名称 直接遠域 (注水調等本本)	春日貯留施設 新町(法地-1)		
直接流域	新町(流城-1)		
200 - day 200 000 - day - 40	and a second rest of a		
洪水調節力式	自然調節方式		
洪水到達時間(min)	20		
許容放流量(m³/s)	6.0000		
最大放流量(m ³ /s)	5.887		
必要洪水講節容量(厳密解法)(■3)	267810.388		
放流施設 ケース名称			
放流施設 断面形状	放流管(矩形)		
な流施設 オリフィス数高 HI(■)	0.000		
な流施設 オリフィス形状 幅(m)	0.910		
な流施設 オリフィス形状 高(m)	0.900		
池底の標高(=)	24.000		
計画高水位H.W.L(m)	31.836		
非越流部禮高(m)	34.000		
調節泡水面積(m²)	57270.220		
上流施設総面積(ha)	247.900		
洪水調節容量(=3)	267810.388		
単位面積当り講節容量(m³/ha)	1080.316		
b計堆積十砂量 造成中 3年(∎3)	22125.000		

—計算結果

- ここでは計算結果を即時に確認することができます。
- ・総括表
- ·上流施設
- ·水位容量曲線
- ・洪水調節計算
- ・設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

1-7 洪水吐き

入力一設計洪水流量

<mark>降雨強度の計算</mark> <降雨強度式からの計算>

降雨強度式(年確率)の選択

<1/100年降雨強度(1.2倍)>

降雨強度(直接入力)

「降雨強度の計算」が「直接入力」選択時に、設計洪水流量計 算で用いる降雨強度の値を入力してください。 今回入力はございません。

流量

<洪水到達時間(分):20> <流出係数:0.840> <流域面積:247.900>

比流量

<比流量を計算する> <流域面積A'(km2):20.0> <地域係数:54>

高さ、水深、幅の小数点以下桁数 <3桁>

計洪水道量 陽雨建度式 洪水吐きおよび 降雨速度式数(最大5式) 1 <u> </u> 1 <u> 2 3 4 5</u>	○川越流部天端高 洪水吐きの流量(補助式の算定方法 ○ 合計 ○ 合成 ○ 平均	越流量) 余裕高 減勢	9 工
降雨建度式(1式) 確率年(年): 100 年編年;	1/100年		
国南张度式選択	式のパラメータ		
C タルボット型		2920.0000	
(シャーマン型)	b:	13.5000	
(クリーブランド型	n:	0.7500	
○ 近畿地方整備局型	為兩組統時間 t(時)		
C 山梨県型 クリーブランド型	式中にの単位	寺間単位	
$r = \frac{a}{t^n + b}$	基準値から選択する		

施設切替:春日貯留施設 上流施設からの運動 • 入力 |計算結果| 設計洪水流量 「騎雨強度式 洪水吐きおよび非越流部天端高 | 洪水吐きの流量(越流量) | 余裕高 | 演勢工 | 計算スイッチ 「計算する」 一越流幅・越流水深曲線 越流幅L(m) ^ No 6.000 放流能力 流量係数 C: 1.800 36.000 2 8,000 遺成高 (a): 32.000 10.000 約法高 (n); 12.000 □ 超流水深(直接入力) 14.000 越流幅 (m): 12.000 曲約計算 □ 流量から越流中計算 ✓ 確定 X 取消 ? ヘルプ(出)

入力一降雨強度式

洪水吐きの設計洪水流量計算に必要な降雨強度式データを入 力します。

降雨強度式数(最大5式)

降雨強度式数をスピンボックスにて指定してください。式数は、最大5式まで指定することができます。</l>

複数式の算定方法

①合計:降雨継続時間と洪水到達時間より、降雨強度式を決 定して降雨強度を算出します。

②合成:入力指定された降雨強度式を用い算出した降雨強度 の和を設計洪水流量を算出する場合の降雨強度としていま す。

③平均:和歌山県などの降雨強度式に用いられています。入力 指定された降雨強度式を用い算出した降雨強度の平均値をそ の時間の降雨強度としています。

「合成」と同様に、入力指定された降雨継続時間の最大値が 降雨継続時間として用いられます。

降雨強度式(1式)

<確率年:100>

<降雨強度式選択:クリーブランド型>

式のパラメータ

降雨強度式の式のパラメータ及び、降雨継続時間を指定しま す。式により入力項目の不要な箇所がありますが、その値は入 力不要としております。

降雨継続時間tは、降雨強度式を2式以上指定し、かつ複数式 の算定方法に「合計」を指定した場合のみ入力可能です。 <a:2920_0000>

<b:13.5000>

<c:0 7500>

式中tの単位

降雨強度式のtの取り扱いを、分単位、時間単位から指定します。

<分単位>

入力ー洪水吐きおよび非越流部天端高

洪水吐きの非越流部天端高の計算に必要なデータを入力しま す。

計算スイッチ

このスイッチは、洪水吐きおよび非越流部天端高の計算を行うか否かを指定することができます。 <計算スイッチ:チェック>

放流能力

放流能力の計算に必要な計算パラメータを入力してください。 <流量係数C:1.800> <造成高(m):36.000> <越流高(m):32.000> <越流高(m):32.000> <越流水深(直接入力):チェックなし> <越流幅(m):12.000> <流量から越流巾計算:チェックなし>

越流幅・越流水深曲線

越流水深を「越流幅・越流水深曲線」より内部計算する場合に 入力してください。

No.	越流幅L(m)
1	6.000
2	8.000
3	10.000
4	12.000
5	14.000

施設切替:利	日行留地政		•	上這建設からの運動
(カ)計算結果	820 1 (8-404-9-10 - F778	14:205-2399-2 注水时变 小 志曼	(統法學)]@ssax1.oren	r 1
ー計算スイッチ	art more pace			-1
- 越流量計算タイプ の 通常式 の 長方形	C 台形 C 正面純素	 ・検越流(研堤) ・検越流(越水) 		
流量係数 C : 下幅 B (n) :	0.000			
上幅 Bu (m) :	0.000			
倒壁勾配 n :	0.000			
國流水深 № (m) :	0.000			
河床勾配 1 :	0.000000			
			√ ₩2 X	取消 ? ヘルブ(日)

入力一洪水吐きの流量(越流量)

洪水吐きの流量(越流量)の計算に必要なデータを指定しま す。

計算スイッチ

このスイッチは、洪水吐きの流量(越流量)の計算を行うか否か を指定することができます。 <計算スイッチ:チェックなし>

入力 計算結果 設計:A水洗量 福田福建式 洪水吐きおよび詳細点部天陽高 洪水吐きの洗量(結洗量)	第1977年:春日拧留	516		•	上法施設からの連載
▲ 「「「「「「「「」」」」」 ● 「「」」」 ● 「」」 ● □」」 ● □」」 ● □」」 ● □」」<				_	
20日本大学大学(14年2月17日) 「新田子学校会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	り「計算結果」				
計算スイッテ 「計算支」 フィルダム形式 風速(16)個子句) ×(s/s): 注理変類 f(s): 270.000 水子数法 (0): (他木部水位 (s): 280.000 「 余利添売さは3.6mLLととする	計決水電量 輸用等重度式 洗	水吐きおよび	非認識部夫場而 洪水吐きの	定量(起流量) Hirama (派5	6T
(▼ #13.53) 「 フィルグム形式 風速(16)個野中的、√(√): 30 力力理認識 f(s): 370.000 水子環旋 k: 0.15 地震風波 r(3ec): 1.0 (化力量式(a): 38.000 「 弁弁編巻(お).6aに上とする	計算スイッチー				
□ フィルダム形式 風速(105)間平均) √(s/s): 10年28月 (s): 200.000 水子観度(s): 408周度 (108c): 1.6 低大型水位(s): 20.000 □ 余裕高さ(20.6k)Lととする	N 111 9 2				
風速(19分間平均) √(x/a): 20 17年20年 (4): 270.000 水平鏡度 k: 0.15 地鏡間度 ¢ (5ec): 1.0 低水部水位 (a): 28.000 庁 余裕添さけお.6akLLとする	フィルダム形式				
21年第25編 F(a): 270,000 水子鏡葉 k: 0.15 地震調測 k: (Go): 1.0 低小部水道 (a): 28,000 庁 余裕和志引は5.64以上とする	【速(10分間干均) v(m/s):	30			
水子義変 :: 0.15 地震風波 <(Sec): 1.0 低地域な(a): 28,000 □ 余行転為さお.6a以上とする	対岸距離 F(a):	370.000			
提問論 て(Sec): 1.0 低小型水位(ω): 28,000 「 弁利前志さは3.6転以上とする	水平震度 k:	0.15			
低小部水位(w): [28.000 厂 非拘縮低さは3.6wLLとする	地震图波 て(Sec):	1.0			
□ 希利義当初、68以上とする	低水部水位 (m):	28.000			
	余裕高さは0.6m以上とする				

入力一余裕高

洪水吐きの余裕高計算に必要なデータを指定します。

計算スイッチ

このスイッチは、余裕高の計算を行うか否かを指定することができます。 <計算スイッチ:チェック>

フォルダム形式

<風速(10分間平均)v(m/s):30> <対岸距離F(m):370.000> <水平震度k:0.15> <地震周波τ(sec):1.0> <低水部水位(m):26.000> <余裕高さは0.6m以上とする:チェックなし>

施設切替: 春日貯留	(UMI)?		-	上流施設からの運動
 (力) 計算結果 (設計決水流量 降雨強度式) 決 (計算スイッチ) (一) 計算する 	水吐きお。	はび非越流部天端高 洪水吐き	の流量(越流量) 余裕高 演赞]	r
水器の深き Pu (m)	: [0.000		
水叩きの幅 B (m)	: [0.000		
▶ 水叩き給幅の遠速(直接入) 水叩き始幅の遠速 VI (m/s)	ŋ) ec) : [0.000		
堤頂と水叩きとの標高差 9	(a);	0.000		
フールド数 Fi	: [0.000		
			1 mm 4	

入力一減勢工

減勢工の計算に必要なデータを指定します。

計算スイッチ

このスイッチは、減勢工の計算を行うか否かを指定することができます。 <計算スイッチ:チェックなし>

計算結果一設計洪水流量

設計洪水流量の結果を確認出来ます。

計算結果一洪水吐きおよび非越流部天端高

洪水吐きおよび非越流部天端高の結果を確認出来ます。

計算結果一余裕高のチェック

余裕高の結果を確認出来ます。

2 計算を確認する

- 「計算確認」 ボタンをクリックし、計算および計算結果の確認 をします。

2-1 流域

流域の計算結果を表示します。 流域の計算結果は、流域入力データ(ハイドログラフの計算タ イプ)によって表示が異なります。

①合理式

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
- ·時間降雨分布曲線
- ②修正RRL法
- ・降雨強度~継続時間曲線
- ・有効降雨曲線
- ・流入ハイドログラフ
- ・流出ハイドログラフ
- ·時間降雨分布曲線

③合成合理式

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ·単位時間経過流量表
- ・流出ハイドログラフ
- ・時間降雨分布曲線

_表示設定

曲線図(背景色、線色、線種、線の太さ)、HTML表示関係 (色、文字サイズ等)、結果表示、流量図の流量を表示・出力 する際の小数点桁数を変更することができます。

-印刷

HTML表示時のみこのボタンでプリンタ及びファイルへ出力す ることができます。

2-2 貯留施設

上流施設 水位容量曲線 洪水調節計算 設	計堆積土砂量 洪水吐きおよび放流施設 ハイドログ	57
最終調節池名称	春日貯留施設名称	
直接流域	新町(流城-1)	
洪水調節方式	自然調節方式	
洪水到達時間(∎in)	20	
許容放流量(∎³/s)	6.0000	
最大放流量(∎3/s)	5.887	
必要洪水調節容量(厳密解法)(m3)	267810.388	
放流施設 ケース名称		
放流施設 断面形状	放流管(矩形)	
放流施設 オリフィス数高 HI(■)	0.000	
放流施設 オリフィス形状 幅(m)	0.900	
放流施設 オリフィス形状 高(■)	0.900	
池底の標高(m)	0.000	
計画商水位H.W.L(m)	7.936	
非越流部標高(■)	10.000	
調節泡水面積(∎²)	57270.220	
上流施設総面積(ha)	247.900	
洪水調節容量(=3)	267810.388	
単位面積当り調節容量(m ³ /ha)	1080.316	

計算結果の判定結果を表示します。

貯留施設の計算結果を表示します。

施設切替スイッチにて貯留施設を切り替えて確認してください。

入力データの指定方法により表示されない項目があります。

貯留施設計算結果の詳細(1ケース指定時)

- ・総括表
- ·上流施設
- ·水位容量曲線
- ・洪水調節計算
- ・簡便法
- ・設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

貯留施設計算結果の詳細(複数ケース指定時)

- ・全ケース
- ・結果一覧
- ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・ハイドログラフ
- ·上流施設
- ・水位容量曲線
- ・簡便法
- ・設計堆積土砂量
- ・ケース1~5(入力指定したケース数分表示します)
- ・総括表
- ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

3 計算書を作成する

- 「計算書出力」 ボタンをクリックし入力データ、結果データを 出力することができます。

3-1 入力データ

「基本&施設配置」タブ~「貯留施設」タブまで確認し、出力 したい入力データの項目を選択して、「プレビュー」ボタンをク リックします。

※適用基準により出力項目及び出力スイッチが変更されます。

F8出力編集ツール

FORUM8製品から出力されたデータをプレビュー、印刷、他の ファイル形式への保存を行うことができます。また、ソースの 編集を行うことで文章を修正することができます。

F8出力編集ツールが起動し、入力データの報告書プレビューが表示されます。

3-2 結果データ

「設計条件」タブ~「総括表」タブまで確認し、出力したい結 果データの項目を選択して、「プレビュー」 ボタンをクリックし ます。

※適用基準により出力項目及び出力スイッチが変更されます。

F8出力編集ツールが起動し、結果データの報告書プレビューが表示されます。

4 基準値(降雨強度式の登録)を設定する

-メニューバー「基準値(K)」より「降雨強度式の登録」を選択す ると、降雨強度式の新規登録及び編集(修正)が行えます。

ここで流域毎に指定可能な降雨強度式(確率年、降雨強度式 種類、各パラメータ、コメント)を入力していただくことにより、 降雨強度式をその都度入力指定する手間が省けます。

サンプルフォルダーの下に愛知、千葉、福岡、福島、広島、兵 庫、熊本、京都、宮崎、岡山、滋賀、栃木、山口の都道府県毎の フォルダーがあります。そのフォルダーに各県ごとの基準値ファ イル(降雨強度式)を保存していますのでご利用ください。

新規登録

- 陈志华度式设护	- オのパライータ
C タルボット型	a 0.0001
0 シャーマン型	b 0.0001
○ 久野・石黒型	n 0.0001
● クリーブランド型	
○ 近畿地方整備局型	式中tの単位
○ 山梨県型	 ○ 分単位 ○ 時間単位
- 計算式	

降雨強度式のパラメータを入力・修正します。

新規登録を行うと、すでに式の登録がある場合は、最後の行 へ追加されます。

※降雨強度式を登録・編集した場合には、必ず「確定」ボタン を選択して画面を閉じてください。ここで「取消」キーを選択し て画面を閉じた場合には、編集したデータが破棄され修正前 のデータに戻ります。

※ここで入力した基準値の降雨強度式は入力データの保存対 象としていません。

登録済みの降雨強度式の修正

降雨強度式一覧表にて、修正する行にマウスまたはキー入力 (矢印キー等)で移動し、ダブルクリックまたは「Enter」キー を押します。「降雨強度式(編集)」画面が表示されますので、 修正を行ってください。

追加登録

降雨強度式一覧表にて追加したい行にマウスまたはキー入力 (矢印キー等)で移動して、「Insert」キーを押します。 「降雨強度式(編集)」画面が表示されますので、入力を行っ てください。

なお、追加登録する場合は、選択した行の上側に追加されま す。

削除

降雨強度式一覧表にて、削除する行にマウスまたはキー入力 (矢印キー等)で移動し、「Delete」キーを押します。

基準値(降雨強度式)ファイルの操作方法

この画面で入力した値は、ファイル(降雨強度式データ (*.rit))として保存することが可能です。 画面左下の「保存」ボタンよりファイル保存を実行してくださ

い。 また、ファイルを読み込む場合は、「読込」ボタンから実行して ください。

基準値として登録した降雨強度式を利用する方法

「基本データ及び流域の初期値」、「流域」、「洪水吐き」の 「降雨強度式」タブで利用できます。

- 路雨強度式数(最大5式) 1 1 1 2 3 4 5	補助式の算定方法		
協雨強度式(1式) 確率年(年): 50			
地城名称 : 新町地区			
 □ 陸雨強度式違択 ○ タルボット型 ○ シャーマン型 ○ 久野・石黒型 	○ クリーブランド型 ○ 近最地方整備局型 ○ 山梨県型		
計算式 [クリーブランド型]	式のパラメータ		
クリーブランド型	a :	2590.0000	
$r = \frac{a}{t^n + b}$	b:	12.9000	
	1. 降雨継続時間 t (時):	24.00	「甘淮はわら翌田士子」ギタンちタリック」ホ
空岸道から運営する	式中tの単位 (*分単位) (*) B	和簡単位	

降雨	強度式							
No	曜本年	陸雨建度式	算出式	0.	b	n	t	地域名称 ^
1	50	クリーブランド型	r = a / (t^n + b)	0.0001	0.0001	0.0001	分単位	
2	50	クリーブランド型	$r = a / (t^n + b)$	0.0100	0.0001	0.0001	分単位	
								·
								_ ✔ 確定 _ ★ 取消 _ ? ヘルブ(H)

マウスまたはキー入力(矢印キー等)での移動で使用する降雨 強度式を選択後、「確定」ボタンを押します。 選択した式の値が入力されます。

5 ファイルを保存する

- 44 69 6 19 19 C PA 19				
保存する場所([):	Sample		- + 🗈 💣 🔳	-
4	名前	^	Entil Bit	種類
-	Aichi	2	020/04/28 14:45	ファイル フォルダー
0190 POEX	Chiba	2	020/04/28 14:45	ファイル フォルダー
	Fukuoka	2	020/04/28 14:45	ファイル フォルダー
770had	Fukushima	2	020/04/28 14:45	ファイル フォルダー
12111	Hiroshima	2	020/04/28 14:45	ファイル フォルダー
-	Hyougo	2	020/04/28 14:45	ファイル フォルダー
ライブラリ	Kanagawa	2	020/04/28 14:45	ファイル フォルダー
	Kumamoto	2	020/04/28 14:45	ファイル フォルダー
	Kyoto	2	020/04/28 14:45	ファイル フォルダー
PC	Miyagi	2	020/04/28 14:45	ファイル フォルダー
-	Miyazaki	2	020/04/28 14:45	ファイル フォルダー
-	Okayama	2	020/04/28 14:45	ファイル フォルダー
ネットワーク	Shiga	2	020/04/28 14:45	ファイル フォルダー
	Tochigi	2	020/04/28 14:45	ファイル フォルダー
	Wakayama	2	020/04/28 14:45	ファイル フォルダー
	<			>
	ファイル名(N):		•	保存(5)
	ファイルの種類①:	調節池・調整池の計算データファイル	(*.f7a) •	キャンセル
ファイル情報				
₩ 品 名: 顾	節池・調整池の計算	Ver.9		
副品パージョン: 9.1	0.0.0			
77/10 -7 =7: 9.1	0.0.0			
PE 55 FI : 200	20/05/11			
* * * * :				
5 8 8 :				
作成者名				

任意のフォルダを指定して保存します。 既存データを「上書き保存」にて書きかえることも可 能です。

「名前を付けて保存」では、ファイル情報の作成、修 正も行えます。

製品名・製品バージョン、ファイルバージョン、作成日 については、自動的に製品側で付加されます。 会社名、部署名、作成社名、コメントについては、ユー ザ定義の項目ですので、必要に応じて設定してください。

🌉 調節池・調整池の計算	K Vet.9 - (新規)(更新).17a (更新)				
ファイル(F) 基準値(K)	オブション(O) ヘルプ(H)				
0 🔗 🖬 🛔 🛍 🗌	入力制御パラメータの設定(I)	計算編記 計算書出力 🛄 🗒 🛒	? 1	🗈 🛓	
スカボーク	動作環境の設定 (Z)				_
結果ゲーク	表示項目の設定 (V)				
1000 2	電子的品対応文字列チェック(C)				
		時町(正知-1)			_
		春日評論施設名称		/	/

バックアップファイルの作成

_メニューバーの「オプション(O)」より「動作環境の設定」 を選 択します。

 デンボラリフォルダロンドックアップする データフォルダロンドックアップする
履歴: 「 」 10

-----「ファイル・バックアップ」を選択します。

バックアップ

バックアップファイルを作成する場合、保存先として、作業領域 で指定されているテンポラリフォルダ上かデータフォルダ上か を指定できます。

履歴

バックアップ履歴に1世代~2世代までの間で設定できます。 デフォルトでは、データフォルダ上に1世代前のファイルまで バックアップします。

バックアップファイルは、A~? (?は1~2の数字) という拡張子 で作成されます。

(例) sample.f7aを読み込んで上書き保存した場合

・1世代前のバックアップファイル = sample.A~1 ・2世代前のバックアップファイル = sample.A~2

ジェビマ(mo) パワファファイルは、拡張子を「f7a」に変更することで本 製品での読み込みが可能となります。

第3章 操作ガイダンス(林地開発基準)

1 モデルを作成する

「林地開発基準」の設計例を例題として作成します。 (使用サンプルデータ:Sample林地開発基準.f7a) 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 新規入力

1-2 適用基準

14 77 49 10	A THE R. P. O. P. MICH.		
· 連用基準	陸南強度式の名称指定		適用基準を選択します。
(1)防灭旗和他等获用叠单	2四萬糧安定	入力設定	<林地開発其進>
○ 林地開発基準	タルボット型 r = a / (t + b)	タルボット型	514261用元坐十2
○ 流域貯留施設等技術指針(案)	シャーマン型 r = a / t'n	シャーマン型	
	久野・石黒型 r = a / ({『t + b)	久野・石黒型	時空体設の種類
行留施設の種類	クリーブランド型 r = a / (t'n + b)	クリーブランド型	
C	近畿地方整備局型 r = a / (√ t + b) n	近畿地方整備局型	適用基準を「林地開発基準」に指定した場合には、「オフ
1 1291 C	山南朝堂 r = a · (b / t) 'n t:時間	印建始建造	ト」固定とたります
	27.887(#1015)	レジストリ時込 レジストリ保存	
	Tarringerow	Diversited Diversity	
			隆雨強度式の名称指定
			欧王没安子の存在す 使工まです しいてきます
		/確定 × 取油 ? ヘルプ(日)	降雨独良式の名称を変更・修正することかできます。
			この入力値は入力データファイルへ保存」ますが お安頼
			境ト(ハソコンのレジストリ) に保存する場合には、 「レシ
			リ保存」ボタンを選択してください
			旧ハーション、サンノルテータを読み込んた場合には、私
			定(推奨)状能に戻ります、お客様の指定した降雨強度式の
			に変更する際には、「レンストリ読込」ホタンを選択してく
			$\langle v \rangle_{a}$
			• 0
			初期値設定ボタン
			表の左側(初期設定)に表示している本製品の推奨する名
			戸すてとができます
			レジストリ読みボタン
			とうべい ションションのし ジューロン ににたしていて
			お各棟の塓項ト (ハソコノのレンストリ) に保存し(いる
			強度式の名称を取得します。
			―――レジストリ保存ボタン
			衣の石側に入力・修止した降雨強度式の名称をお客様の
			下(パソコンのレジストリ)に保存します。
			下(パソコンのレジストリ)に保存します。
			下 (パソコンのレジストリ) に保存します。

※「防災調節池等技術基準」および「流域貯留施設等技術指 針(案)」と「林地開発基準」の適用基準を変更しても両者の入 力データについては互換性がありませんのでご注意ください。

1-3 基本データ

【東部志:東京志の日本 Wed - (15年) 77(4)(日) 美学祖(15) オジャン(10) へいブ(10) 10 日 日 音 協 当 国 茶 悠然モードの潔称: 入力 日田田(12) 日田(13) 田 岡 留 ? 向 10 10 10 10 10 10 10 10 10 10 10 10	
■ 開始会本 (私子一) (私子一) (本子) (本子) (本) (*) (「基本データ」ボタンをクリックし、流域の初期値を設定しま す。 ここで設定した入力データは、施設配置で設置される各流域 データの初期値として設定されます。
	※流域データを入力後にこの基本データを修正しても、入力し た流域データには何ら影響しません。

たります。			
** (*): 30			
植名称 : 名古屋A地域			
降雨速度式選択			
「タルボット型	@ クリーブランド型		
シャーマン型	○山梨県型		
、久野・石黒型			
寛武【クリーブランド型】	式のパラメーター		
クリーブランド型	e :	2620.0000	
r =	b :	13.2100	
$t^n + b$	n :	0,7500	
基準値から選択する	陆雨继続時間 t(時):	24.00	
	- 式中(の単位 (F)単位 (F)時	關單位	

「基準値から選択する」ボタン(お勧め機能)

降雨強度式を基準値から取得する場合には、このボタンを 選択してください。

基準値(降雨強度式)より取得した降雨強度式データを自動的に設定します。

選択した基準値の降雨強度式は入力データ等の保存対象と しておらず、指定した降雨強度式データ情報(どの番号の降 雨強度式を用いたか等のリンク情報)は保持しておりません。

	地形名称	演出/兵数f	土地利用状况定数C	這城面積4(開発前)(ha)	這城面積A'(開発後)(ha
1	一般市街	0.830	53.000	62.800	76.900
2	山地	0.700	210.000	36.000	21.900
3					
4					
5					
6					
7					
8					
8					

降雨強度式

流域の計算に必要な降雨強度式データを入力します。

確率年 (年) <30>

地域名称

入力指定した降雨強度式の名称を入力します。(半角64文字 以内) <名古屋A地域>

降雨強度式選択

<クリーブランド型>

式のパラメータ

降雨強度式の式のパラメータ及び降雨継続時間を入力しま す。 降雨継続時間は、小数点を入力することにより分単位で降雨 継続時間を指定することができます。 例)入力値が1.5時間の場合は、90分と指定されます。 <a:2620.000> <b:13.2100> <n:0.7500> <降雨継続時間t(時):24.00>

式中tの単位

<分単位>

流出係数、面積

流域の計算に必要な流出係数、面積を入力します。

地形名称 地形名称

地形名称 (地形形態名称)を入力します。

流出係数f

流出係数を入力します。

土地利用状況定数C

流域の土地利用状態等で決まる定数を入力します。 この入力値はKinematic Wave理論の入力および計算で用いら れます。

流域面積A(開発前)(ha)

開発前の流域面積を入力します。

流域面積A'(開発後)(ha)

開発後の流域面積を入力します。

	地形名称	流出係数f	土地利用 状況定数C	流域面積A (開発前)
1	一般市街	0.800	53.000	62.800
2	山地	0.700	210.000	36.000

流域面積A' (開発後)

(17	τJ	'	С	ix.	

76.900

21.900

【表入力時の注意】

1.行を削除したい場合は、「Delete」キーを押してください。

2.途中行の挿入を行う場合は、「Insert」キーを押して挿入して ください。

3.101行以上の入力を検討する場合は、メニューバーの「オプ ション(O)」から「入力制御パラメータの設定」を変更します。 「可変表最大入力数」を適切な値に変更してください。

为明社	随雨強度式の選択 1:クリーブランド型	(r = a / (t^n + b) (¥	(中(:分))	Y	
Kinematic Wave理論 力法母な中国	[開発術] 開発後				
venatic Have3	土地利用状况定款C	浅城面積A (hs)	流出係数(
	110.206	98.800	0.764		

洪水到達時間

流域の計算に必要な開発前と開発後の洪水到達時間データを 入力します。

計算式の選択

洪水到達時間を計算する計算式を選択(チェック)します。 なお、Kinematic Wave理論は必ず入力が必要なために計算式 の選択から除外できないようにしています。 <等流流速法:チェックなし> <土研式:チェックなし>

ピーク流量算出用

ピーク流量を算出する際に用いる洪水到達時間を計算する計 算式を指定します。

ここで指定可能な計算式は、上記の計算式の選択でチェックした計算式だけを選択することができます。

また、「森林法の開発許可制度について 平成21年 9月作成 兵 庫県 農政環境部 環境創造局 豊かな森づくり課」P.101に準拠 する場合には、「等流流速法」を用いるように明記されていま す。

<Kinematic Wave理論>

Kinematic Wave理論

Kinematic Wave理論の計算に必要な入力データを入力します。

降雨強度式の選択

入力は不要です。確認のみ行ってください。

土地利用状況定数C

流域面積A(ha) 流出係数f 入力は不要です。確認のみ行ってください。 ここで表示される値は、「流出係数、面積」タブで入力した開 発前、開発後における面積の値の合計値を、流出係数、土地利 用状況定数は面積を考慮した加重平均で算出した値を設定し ます。

法 洪水即日	時間 (分)			
	将流流遗法	元時土	Kinematic Wavel	
o Veve理論 開閉			23.3	
	波		17.8	
8 8	仮定値ti(min)	降雨強度 r(mm/hr)	r-4.35	時間tp(min)
1	10.0	139.1	0.1778	21.5
2	21.5	113.0	0.1912	23.1
3	23.1	110.3	0.1928	23.3
4	23.3	110.0	0.1930	23.3
r = a a = 28 C = 11 CAF = CAF =	/ (ti* + b) 式中t:分 20.0000 n = 0.7500 b = 0 A = 0.388(km ²) f = 0.; C×A ^{0.22} ×f ^{-0.35} 120.7875 A ^{(×} (re) ^{-0.35}	13.2100 764		

結果確認

画面上部に洪水到達時間を表示し、下側にKinematic Wave理 論計算結果の詳細を表示します。 開発前、開発後の結果が、それぞれのタブをクリックすると確 認できます。

降雨波形

降雨波形の計算に必要な降雨波形データを入力します。

開発前

洪水到達時間

洪水到達時間以外は入力することはできません。 等流流速法~Kinematic Wave理論は、洪水到達時間タブで計 算した計算結果を表示します。 上記の計算結果を確認され、適切な洪水到達時間を入力する ことをお勧めします。 <洪水到達時間:30.0>

計算時間単位Δt(分)

上記で入力した値を参考値として表示しています。

降雨波形タイプ

計画対象降雨となる降雨波形タイプから選択します。 <中央集中>

流出係数f

土地利用状況定数C 流域面積(ha) 参考値を表示しています。

中央降雨波形タイプ

降雨波形タイプが中央集中の場合にのみに入力できます。 <右側が大きい>

「防災調節池等技術基準(案)」等に準拠する場合には、「右側 が大きい」を指定してください。「重要調整池の配置に関する 技術的基準及び解説 平成25年4月 兵庫県」に準拠する場合に は、「左側が大きい」を指定してください。

①左側が大きい:中央集中の降雨波形を生成する際に中央に 最大の降雨強度を、その中央より左側、右側の順番で降雨波形 を生成します。

②右側が大きい:中央集中の降雨波形を生成する際に中央に 最大の降雨強度を、その中央より右側、左側の順番で降雨波 形を生成します。

23.051	25.510	開発による増加加量の30 * 7030 (S 110.704	

――ピーク流量

「洪水到達時間」タブで指定したピーク流量算出用の計算式 での計算結果を確認することができます。 「開発前」、「開発後」のそれぞれのタブをクリックすると計 算の詳細が確認できます。

開発前	の30年確率降雨強度	8時のピーク流量030			
T C A	A/100/0.22 rg-0.35 共大印法時間(min) 和力応基内器度 = F・R10 土地利用状況(係数 = 110 素短面積 = 58,800(ha)	(mm/hr) ,2065			
F : ; 局研発動度 R10 = a = 26 1.を仮定し	additex - 0.784 伝 a / (ti*+b) 式中(i: 200.0000 n = 0.7500 b し左辺に代入する。計算	分 = 13.2100 結果として与えられる			
F :; 時雨時期 R20 = a = 26 1.を仮定し 左辺のは 回数	auzi+#xx - 0.764 はた ま/(ti*+b)式中に; 220.0000 n = 0.7500 b しを辺に代入する。計算 を一致するまで計算を絶 数定値ti(min)	分 = 13.2100 結果として与えられる り述す。 降画強度r(===/hr)	r=0.35	時間tp(sin)	
F : ; 時雨強度 R10 = 26 (を仮定し 左辺のしる	actives - 0.764 ほた。 ま/(ti*+b) 訳やれは: 200.0000 n = 0.7500 b しを辺こ代入する。計算 を一致するまで計算を操 電気値ti(min) 10.0	分 = 13.2100 結果として与えられる り述す。 降雨強度(e=/hr) 133.1	r-9.35 0.1778	時間tp(min) 21.5	
F :; 時雨強度 RB0 = a = 28 (を仮定し 左辺のた) 回数 1 2	actives - 0.764 伝え ま/(ti*+b) 訳やれは: 200.0000 n = 0.7500 b しを辺こ代入する。計算 を一致するまで計算を操 電気値ti(m) 10.0 21.5	分 18.2100 結果として与えられる り述す。 同時強度r(m-/hr) 189.1 113.0	r=0.35 0.1778 0.1912	時間tp(min) 21.5 23.1	
F :; 時本時期 RD0 = a = 26 1を仮定し 左辺のける 回数 1 2 3	acti max - 0.764 伝: a/((1*+b) 武中(i: \$20.0000 n = 0.7500 b とごいて代スする。計算 と一致するまで計算を優 優定値(i(=in) 10.0 21.5 28.1	分 = 18,2100 編集として与えられる り述す。 同研強度r(mail/nr) 188.1 118.0 110.3	r-0.35 0.1778 0.1912 0.1920	時間tp(min) 21.5 23.1 23.3	

_ハイドログラフ

開発前、開発後のハイドログラフの計算結果を確認することが できます。

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ

1-4 施設配置

- 「施設配置」ボタンをクリックし、施設配置 (流域) データを 表入力形式で入力します。 浸透施設、貯留施設の指定はできません。

名称

各施設(流域)の名称を入力します。(半角64文字以内) <地点-1> <地点-2>

施設配置データを入力後、「描画」 ボタンを押してください。 画面下側に施設配置図が描画されます。

1-5 流域

8年末(年): 30 8年末(年): 30			
电输名称 : 名古屋A地板			
降雨速度式選択			
○ タルボット型	◎ クリーブランド型		
 ○ シャーマン型 ○ 久野・石黒型 	で山梨県型		
+寛式 [クリーブランド型]	式のパラメーター		
クリーブランド型	a :	2620.0000	
$r = \frac{a}{a}$	b:	13.2100	
t ⁿ +b	n :	0.7500	
基準値から選択する	路雨継続時間 t(時):	24.00	
	式中Iの単位 (*分単位 C M	國単位	

-「施設配置」で入力した施設(流域)分の入力が必要です。 施設(流域)の切り替えは、「流域切替」リストボックスにて切り替えることができます。

本データでは、2つの流域を設定していますので、まず「地点 -1」のデータを設定します。

数、面	橫表					
	地形名称	演出/兵数f	土地利用状况定数C	這場面積A(開発前)(ha)	這城面積A*(開発後)(ha) ^	
	一般市街	0.800	53.000	62.800	76,900	
	山地	0.700	350.000 -	36.000	21.990	└───山地の土地利用状況定数Cを変更し
						<十批利用状识定数C:350.00>
					Contraction of the local distance of the	
					~	

	地形名称	演出/纤数f	土地利用状况定数C	這坡面積A(開発前)(ha)	這城面積A"(開発後)(ha)	^
1	一般市街	0.800	53.000	909,600	\$19,900	
2	山地	0.700	350.000	547.400	537.100	
3						
4						
5						
6						
7						
8						
9						~

―「流域切替」で「地点-2」に切り替えます。

流出係数、面積

一般市街、山地の下記の入力値を変更します。

一般市街 <流域面積A(開発前)(ha):909.600> <流域面積A'(開発後)(ha):919.900>

山地

<土地利用状況定数C:350.00> <流域面積A(開発前)(ha):547.400> <流域面積A(開発後)(ha):537.100>

2.高重 開発初 開発波		
開発前030(=*/s) 209.584	開発後030*(■*/s) 211.426	開発による増加量030*/030(\$) 100.879

――ピーク流量

「流域切替」で流域を切り替え、それぞれの計算結果を確認し てください。 ・ピーク流量

- ・開発前 ・開発後
 - 用充伎

1-6 排水施設

イッチ制御「欧洲221年中計」計算結果	
FARER-CHY - =<>===================================	貯留施設の許容放流量への連動
現況流下能力の指定方法	- 流出係数、流域面積
☞ 直接入力 ── Manning式	調節(整)池の集水区域面積 a (ha) : 15.590
現況流下能力 Opc (m^3/s) : 11.918	直接放流域の面積 ay (ha) : 0.000
必要性の利定に用いるビーク流量の状態選択	集水区域の開発前流出係数 f : 0.714
 開発前 〇 開発後 	集水区域の開発後流出係数f': 0.798
qpcnを満たす調整容量算出スイッチ	直接販売域の開発前流出係数 f0'': 0.000
○現況流下能力(0pc) ○開発前流量(0n)	直接放流域の流出係数f'': 0.716
- 貯留施設の計算対象 ・ 水害防止1 C 水害防止2 C 水害防止3 C 災害防止	直接放流域の係数 C' : 181.350
直接該流域の流量計算方法	
(a ⋅ f + ay ⋅ f0'')	
災害防止の水路管理形態	
● 人工水路 ○ 野渓	

「施設配置」で入力した施設(流域)分の入力が必要です。 施設(流域)の切り替えは、「流域切替」リストボックスにて切り替えることができます。

本データでは、2つの流域を設定していますので、まず「地点 -1」のデータを設定します。

a政切替: 地点-1	•		
イッチ制御 陰雨強度式 計算結果			
排水施設名称 : 区間			
 調約池、調整池の種類 ・調約池 ・調約池 ・調整池 	- 野留施設の許容故流量への運動 - ほする つし	,tau	
現況進下能力の指定方法	· 流出係数、流域面積		
@ 直接入力 C Manning式	調節(整)池の集水区域面積 a (ha):	15.590
現況流下能力 Opc (m'3/s) : 11.919	直接放流域の面積 ay (ha)	:	0.000
必要性の利益に用いるビーク注量の状態遅択	集水区域の開発前流出係数 f		0.714
○ 開発前 ○ 開発後	集水区域の開発(後流出係数 f'	:	0.798
sponを満たす調整容量算出スイッチ	直接放流域の開発輸流出係数 f0*		0.000
(●現況流下能力(0pc) ○開発前流量(0n)	直接放流域の流出係数 f''	:	0.716
・ 貯留地設の計算対象 ◎ 水害防止1 ○ 水害防止2 ○ 水害防止3 ○ 災害防止	直接放流域の係数 C*	:	161.950
直接放流域の流量計算方法			
(* (a+ay) · f C a · f+ay · f0''			
災害防止の水器管理形態			
○ 人工水路 ○ 野渓			

スイッチ制御

排水施設名称 <A区間>

調節池、調整池の種類 <調節池>

現況流下能力の指定方法 <直接入力> <現況流下能力Qpc(m^3/s):11.919>

必要性の判定に用いるピーク流量の状態選択 <開発前>

qpcnを満たす調整容量算出 <現況流下能力(Qpc)>

貯留施設の計算対象 <水害防止1>

直接放流域の流出計算方法 <(a+ay)・f>

<u>災害防止の水路管理形態</u> <人工水路>

貯留施設の許容放流量への連動 <する>

流出係数、流域面積

<調節(整)池の集水区域面積 a (ha):15.590> <直接放流域の面積 ay (ha):0.000> <集水区域の開発前流出係数 f :0.714> <集水区域の開発後流出係数 f':0.798> <直接放流域の流出係数 f':0.716> <直接放流域の係数 C':161.950>

降雨強度指定	Sarria	我式いうメー	2表			
		墙丰年	8	b	n	^
最小级雨暖率a年: 1 / 5	1	1	281.2000	0.5510	0.6100	-
	2	2	811.6000	4.2450	0.7000	
降雨建度无道积	3	3	1112.7000	6.0790	0.7200	
C タルボット型	4	4	1332.9000	7.4120	0.7300	
C シャーマン型	5	5	1547.1000	8.8050	0.7400	
C 久野・石黒型	6	6	1651,6000	9,2510	0,7400	
¢ クリーブランド型	7	7	1742,3000	9,6350	0,7400	
C 山和泉型	8	8	1944.6000	11.0060	0.7500	
式中にの単位	9	3	2023.5000	11.3980	0.7500	
6 分単位 C 時間単位	10	10	2095.0000	11.7170	0.7500	
序集团的主要的	11	20	2973.5000	16.3450	0.7700	
降雨速度式: クリーブランド型 [クリーブランド型]	12	30	3587.2000	20.4750	0.7800	~
計算式 : r = a / (t'n + b)	54/5/3	度式パラメー	タ選択	表データコピー	1	
					_	

「降雨強度式パラメータ選択」ボタン 表内のマウス選択位置の入力行に、基準値(降雨強度式の選択) 画面より降雨強度式を選択して取得することができます。

降雨強度式

現況流下能力の確率年を算出に関するデータを入力します。

最小降雨確率m年

水害防止の計算時の最小降雨確率年m年を入力します。 1/<5>

入力した最小降雨確率年mより現況流下能力で算出したn年 確率が小さい場合のみ、qpcmを満たす調整容量(水害防止3) を照査します。

なお、入力した最小降雨確率年mより現況流下能力で算出した n年確率以上の場合にはqpcmを満たす調整容量(水害防止3) は照査を行いません。

降雨強度式選択

流域データで指定した降雨強度式を表示します(入力不可)。

降雨強度式パラメータ表

選択した降雨強度式の1/1~1/999年確率のパラメータを入力します。

	確率年	а	b	n
1	1	281.200	0.5510	0.6100
2	2	811.600	4.2450	0.7000
3	3	1112.700	6.0790	0.7200
4	4	1332.900	7.4120	0.7300
5	5	1547.100	8.8050	0.7400
6	6	1651.600	9.2510	0.7400
7	7	1742.300	9.6350	0.7400
8	8	1944.600	11.0060	0.7500
9	9	2023.500	11.3980	0.7500
10	10	2095.000	11.7170	0.7500
11	20	2973.500	16.9460	0.7700
12	30	3587.200	20.4750	0.7800
13	50	4444.300	25.1810	0.7900
14	70	4890.400	27.3220	0.7900
15	80	5425.100	30.6520	0.8000
16	100	6165.200	34.9740	0.8100
17	150	7350.900	41.4050	0.8200
18	200	8483.900	47.7340	0.8300

-- 「表データコピー」 ボタンをクリックします。

ください。

本ボタンをクリックすると、降雨強度式パラメータ表の入力 データを「地点-2」へコピーすることができます。 「現在の降雨強度式(クリーブランド型、式中t:分単位)と 同じ降雨強度式のケースに対してのみ表データをコピーしま す。」とダイアログが表示されますので、「はい」をクリックして

(イッチ制御 協雨強度式 計算結果			
排水施設名称 : 回区間			
- 調約池、調整池の種類 ・ 調約池	- 野留施設の許容放流量への運動 - ほする こし	,tell	
現況造下能力の指定方法	· 流出係数、流域面積		
@ 直接入力 C Manning式	調節(整)池の集水区域面積 a (ha)	: [15.590
現況流下能力 Opc (m'3/s) : 98.730	直接放流域の画種 ay (ha)	: [0.000
必要性の影响:用いるビーク法母の状態環境	集水区域の開発前流出係数 f	+ F	0.714
◎ 開発前 ○ 開発後	集水区域の開発後流出係数 f	: [0.758
gponを満たす調整容量算出スイッチ	直接放電域の開発輸流出係数 f0**	: [0.010
☞現況流下能力(0pc) ○開発前流量(0n)	直接放流域の流出係数 f''	: Î	0.700
野留施設の計算対象	直接放流域の係数 C*	: [162.480
(• 不曾約止1 (不曾約止2 (不曾約止3 (只曾約止			
- 直接放流域の流量計算方法 G (a+ay)・f C a・f+ay・f0''			
災害防止の水器管理形態			
○人工水路 ○野浜			

── 「施設切替」で「地点-2」に切り替えます。

スイッチ制御

排水施設名称 <B区間>

調節池、調整池の種類 <調節池>

現況流下能力の指定方法

<直接入力> <現況流下能力Qpc(m^3/s):98.730>

必要性の判定に用いるピーク流量の状態選択 <開発前>

qpcnを満たす調整容量算出 <現況流下能力(Qpc)>

貯留施設の計算対象 <水害防止1>

直接放流域の流出計算方法 <(a+ay)・f>

災害防止の水路管理形態 <人工水路>

貯留施設の許容放流量への連動 <する>

流出係数、流域面積

<調節(整)池の集水区域面積 a (ha):15.590> <直接放流域の面積 ay (ha):0.000> <集水区域の開発前流出係数 f :0.714> <集水区域の開発後流出係数 f':0.798> <直接放流域の流出係数 f'':0.700>

<直接放流域の係数 C':162.480>

13而注意指定	- E2/6/2	またいちょー	今 書			
Performance in AL		確率年		ь	n	^
最小结雨编率a年: 1 / 5	1	1	281.2000	0.5510	0.6100	-10
	2	2	811.6000	4,2450	0.7000	
降雨温度式灌积	3	3	1112.7000	6.0790	0.7200	
€ タルボット型	4	4	1332.9000	7.4120	0.7300	
C シャーマン型	5	5	1547.1000	8.8050	0.7400	
C 久野・石黒型	8	6	1651.6000	9,2510	0.7400	
@ クリーブランド型	7	7	1742.3000	9.6350	0.7400	
C 山梨県型	8	8	1944.6000	11.0060	0.7500	
式中にの単位	9	3	2023.5000	11.3980	0.7500	
6 分單位 C 時間單位	10	10	2095.0000	11.7170	0.7500	
	11	20	2973.5000	16.9450	0.7700	
「時時速度式: クリーフランド型 [クリーブランド型]	12	30	3587.2000	20.4750	0.7800	~
計算式 : r = a / (t'n + b)	14/7/3	度式パラメー	タ選択	表データコピー	1	

——降雨強度式

最小降雨確率m年

1/<5>

降雨強度式パラメータ表

	確率年	а	b	n
1	1	281.200	0.5510	0.6100
2	2	811.600	4.2450	0.7000
3	3	1112.700	6.0790	0.7200
4	4	1332.900	7.4120	0.7300
5	5	1547.100	8.8050	0.7400
6	6	1651.600	9.2510	0.7400
7	7	1742.300	9.6350	0.7400
8	8	1944.600	11.0060	0.7500
9	9	2023.500	11.3980	0.7500
10	10	2095.000	11.7170	0.7500
11	20	2973.500	16.9460	0.7700
12	30	3587.200	20.4750	0.7800
13	50	4444.300	25.1810	0.7900
14	70	4890.400	27.3220	0.7900
15	80	5425.100	30.6520	0.8000
16	100	6165.200	34.9740	0.8100
17	150	7350.900	41.4050	0.8200
18	200	8483.900	47.7340	0.8300

nat ×	
段切替: 抱丞-1 ▼	
ッチ制御 時時接渡式 計算結果 後一覧 音揚設理細 ハイドログラフ	─計算結果
現況深下能力 のc(*/c) 開発的ビーク注量 030(*/c) Opc/030 貯留設置の有無 コメント 1 11.319 13.685 0.406 心薬 地点-1	 排水施設の計算結果として「施設一覧」、「各施設詳細」 を表示します。 施設一覧では、現在入力している排水施設に貯留施設の が必要か否かを確認することができます。 「施設切替」で流域を切り替えて結果を確認してください

非水菌 設		
施設切替: 地点-1	•	
スイッチ制御 陰雨強度式 計算結果		
施設一覧 各施設詳細 ハイドログラフ		
現況流下能力·比流量 降雨強度曲線 許容放流量 現況流下能力	31/n錄兩 許容放流量 水香防止1 水香防止2 2	水害防止3 災害防止
■現況近下能力 Opc = 11,313(m ³ /s) Opc : 現況近下能力 (m ³ /s)		
■10年福岡務期に対する浅下能力 0pc < (20)(11,513 < 18,685) 0pc/030 = 0.688 030 : 30年曜平福府時の開発前のビーク浅量(m ³ /s)		
 ● 使える工を力つゆ事業が研究化(開発前) 市・15x17(38,080 - 0,784) - 380 = 50.270 (an/h) (-0,784) - 380 = 50.270 (an/h) (-0,784) - 380 = 101.212 + (38,080/10) × 2 + (0,784 + 56,078) - 0.55 = 40.557 (an/h) Th : 法大型(素素) (an/h) Th : 法大型(素素) (an/h) Th : 法支援(素素) (-0,784 + 56,078) - 0.55 = 40.557 (an/h) Th : 法支援(素素) (-0,784 + 56,078) - 0.55 = 1000 (-0,784 + 56,0		
算出したRnと到識時間Tricより、当地区の臨雨建築曲線から 現況流下統力は、3年降雨速度である。		
■比這量(h) h * 0pc/A * 11.919/39.800 * 0.1205 (m ³ /s/hm)		

1-7 貯留施設

- 「貯留施設」 ボタンをクリックし、 貯留施設に関するデータを 入力します。

排水施設の計算により、貯留施設の設置が必要とされた場合 にのみ入力することができます。 ここで、洪水吐きを計算するかを指定することができます。

済水間所方式	30.1 C 台形せき せき C 細形2段せき まき る
	20計算 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
設計増額土砂量の計算 ▽ 計算する	

-「施設配置」で入力した施設(流域)分の入力が必要です。 施設(流域)の切り替えは、「施設切替」リストボックスにて切り替えることができます。

本データでは、2つの流域を設定していますので、まず「地点 -1」のデータを設定します。

	XXLUA() 「		
在田入刀 60 (x*1/s) : 2,002 ポペ 水位3を登録40入力方法: 水位と容量を直接入力する 水位とその時の活水面積を与え容量を算定する 算定式 の 仕力の解析者 C 平均面積を有する社体	いづ秋道 - 秋道する いかはきの計算 7 計算する		
ホロを認知時のノバカルます。 木山と名誉を直接入力する 本山とその時の港水面積を与え容量を算定する 算定式 住せつ機能体 () 平均面積を有する柱体 計	いれまきの計算 7 計算する		
to the second se	算を行うケース数		
水道の小数点以下入力桁数 © 3桁 ○ 4桁(容量計算3桁) ○ 4桁 ○ 洪	「一ス数: [1 査] □ (小調節計算結果のビーク時の1分毎の出力)		
P 留地路の満出量あり ア 活へ放流する	ビーク時の1分費の出力を行う 出力する時間範囲 (分): ± 5		
洪水調節容量の計算 マ 厳密解決の計算 マ 騎便注の計算			
設計増積土砂量の計算 「F計算する			

スイッチ制御

洪水調節方式 < 白 (注) 第二十二

<自然調節方式>

①自然調節方式:人的操作の為にゲートがない、もしくはゲートを有していても洪水時にゲートを一定開度のままで人的操作をしない洪水調節方式です。貯留池の放流口が絞められている為、じょうろに水を注いだときと同じ原理で洪水のピークをカットするものです。人的操作がないので、小流域で構造の到達時間が短くダム操作の時間的余裕がない場合に有効です。
②ピークカット方式:一定の流量以上を調節して放流する方式です。この方式は下流の河道改修が修了しており、ある流量までは安全に流下できる場合に有効な方式です。中小洪水には相対的に効果は小さくなります。

許容放流量

林地開発基準時は、「排水施設」のスイッチ制御で「貯留施設 の許容放流量への連動」を「する」とした場合には、本データ を入力・修正することができません。

Manningの平均流速公式で算出する場合には、「Manningの平 均公式による流下能力」タブが表示されますので、そちらに許 容放流量を求めるためのデータを入力してください。 許容放流量を直接入力指定する場合には、このスイッチをOFF にし、「直接入力Qo」に許容放流量を入力します。

水位容量曲線の入力方法

<水位と容量を直接入力する>

算定式

水位容量曲線スイッチが「水位とその時の湛水面積を与え容量 を算定する」の場合に指定することができます。 <せつ頭錐体>

水位の小数点以下入力桁数

水位容量曲線の表入力の水深入力時の小数点以下桁数を指定 します。

<3桁>

4桁(容量計算3桁)を指定した場合には容量計算する際に水深 で入力した小数点4桁目を無視して計算を行ないます。 ここで指定した情報に従い、「調整池の調整池容量」表制御及 び容量計算が変更されます。

貯留施設の流出量あり

<下流へ放流する:チェック>

洪水調節容量の計算 <簡便法の計算:チェック>

設計堆積土砂量の計算 <計算する:チェック>

せき放流 <放流しない>

ポンプ放流 <放流する:チェックなし>

<u>洪水吐きの計算</u> <計算する:チェック>

計算を行うケース数 <ケース数:1>

洪水調節計算結果のピーク時の1分毎の出力 <ピーク時の1分毎の出力を行う:チェックなし>

		調節池容量		hard on other		
				247104-023470-05	(m) :	0.010
			★:蒙 (a)	22番 (a'3)	-	0.000
計畫水位Hu(m)	5.700	1	0,000	0.000	11	
CI	1.80	2	0,500	525,000		
62	0.60	3	1,000	783,000		
		4	2.000	2319,000		
		5	2.500	2523.000		
		8	3.500	3957.000		
		7	4.500	\$351.000	~	
		(H-A-IRItative Bas	4.107			
•		an strike as	1.94	資時間 (IA)	:[0
		Cim	21	計算ビッチ(秒) : 湛水水位(m) :		30
		@ 0.1mm	湯			0.000
		C 0.01mm	81	算最大時間(時):[120
			81	算終了条件(m [*] 3	/s):[0.10000000
			15	路徐流登 (n'3/	s) : [0.001
	c1 C2	C1 1.80 C2 0.60	C1 1.10 2 C2 0.60 3 4 5 5 5 7 2 7 第 7 2 10.01 第 7 2 10.01 第 7 2 10.01 第 7 2 10.01 第 7 10.01 10.01 第 10.01 10.01 10.01	C1 1.00 2 0.500 C2 0.60 3 1.000 4 2.000 5 2.500 5 2.500 5 2.500 7 4.500 6 3.500 7 4.500 7 4.500 3 1.000 6 1.000 6 0.100 1 1 5 0.500 7 4.500 6 0.100 1 1 6 0.100 1 1	1 0.000 0.000 C1 1.00 0.000 0.000 C2 0.00 2 0.500 555.000 3 1.000 231.000 2 0.500 552.000 4 2.000 2512.000 6 0.500 9551.000 5 2.500 2523.000 7 4.500 5351.000 7 4.500 5351.000 7 4.500 5351.000 7 6.500 357.000 7 4.500 5351.000 7 6.500 357.000 7 1.500 5351.000 7 6.500 357.000 7 1.500 5351.000 10 10 10 10 10 10 5 10 10 10 10 10 6 0.500 10 10 10 10 6 0.500 10 10 10 10 6 0.500 10 1	1 0.000 0.000 C1 1.00 0.000 0.000 C2 0.00 2 0.600 555.000 3 1.000 733.000 4 2.000 253.000 4 2.000 2533.000 5 2.500 2553.000 5 5 2.500 2553.000 7 4.500 5351.000 √ 3 片容器板 竹窗い橋 1.000 7 4.500 5351.000 √ 3 「 1.000 7 4.500 5351.000 √ √ 3 「 1.000 1.000 1.000 1.000 √ 5 2.500 1.000 1.000 1.000 √ 1.000 √ 5 1.000 1.000 1.000 1.000 1.000 1.000 √ 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000 1.0000

——入力

調節池

貯留施設の計算に必要な貯留施設の調整池に関するデータを 入力します。

オリフィス情報

<計画水位Hu(m):5.700> <C1:1.80> <C2:0.60> ここで入力した流量係数C1、C2はオリフィス入力時の初期値 として用います。

下流へ放流するケース

<放流するケース番号:1>

調節池容量

<池底の標高:0.000>

	水深(m)	容量(m^3)
1	0.000	0.000
2	0.500	525.000
3	1.000	793.000
4	2.000	2319.000
5	2.500	2523.000
6	3.500	3957.000
7	4.500	5351.000
8	5.500	6525.000
9	6.200	7084.000

洪水調節容量計算

<許容誤差:0.1mm>

許容誤差を小さく指定することにより、洪水調節計算の精度を 高くすることができます。

<計算時間(時):0>

流出量を0にするまで洪水調節計算を行う場合には計算時間 を0とします。

<計算ピッチ(秒):30>

計算ピッチが短いほど、洪水調節計算の計算精度が向上しま すが、処理時間は長くなります。

また、通常のモデルでは洪水到達時間より計算時間ピッチを短 く設定することが正しいモデル化と考えていますが、洪水到達 時間より計算時間ピッチを長く設定している場合には、洪水到 達時間(短い方)を用い計算します。

<湛水水位:0.000>

<計算最大時間(時):120>

上記の「計算時間(時)」が0の場合のみ入力可能となります。 洪水調節計算にて流出量を0にするまで計算処理を行うと処理 時間が長くなるために、この計算最大時間まで計算を行うよう にします。

<計算終了条件(m^3/s):0.1000000>

ここで指定した流出量より小さな流出量を検出した際には、洪 水調節計算を終了します。

<調節後流量(m^3/s)>は、「スイッチ制御」タブの「洪水調節方式」でピークカット方式を選択時に入力可能となり、洪水調節計算時に、入力した値以上の流量は流出しないようにします。

		0.6444.69	Tennist	Incel	C 20	6 含まない	
¥0.	オリフィス形状	日朝時日	112211	1118			
1	NORM (PHRS)	0			- ポンプ放流-		
-		U			C 30	@ 含まない	
÷				-			
-			-				
-		-		-			
,		-		-			
*		-		-			
		-		-			
10		-		-			
10							

―ケース1

「スイッチ制御」タブで計算を行うケース数に指定したケース 数分のケース番号タブが表示されます。 ケース番号タブの入力データは、各ケース異なる放流施設(オ リフィス情報および、せき放流、ポンプ放流)を入力することが できます。

ケース名称

ケース名称を入力します。(半角64文字以内)

オリフィス形状

<放流管(円形)>

自動計算

放流管(矩形)、放流管(円形)選択時のみに入力することができます。 <チェックなし>

下段計算

放流管(矩形)2段、放流管(円形)2段選択時のみに入力すること ができます。 下部排水口のみで処理する場合にチェックします。

詳細

選択したオリフィスの寸法に関するデータを入力します。 「…」ボタンをクリックすると「オリフィス詳細入力」画面が表示されます。 <断面下端高HI(m):0.000> <断面高DI(m):0.450> <流量係数C1:1.80> <流量係数C2:0.60>

<放流量の計算:矩形>

せき放流

「スイッチ制御」タブでせき放流を選択(四角せき、三角せき、 台形せき、矩形2段せき)している場合に入力することができま す。

ポンプ放流

「スイッチ制御」タブで「ポンプ放流」を「放流する(チェック)」としている場合に入力することができます。

本入力は、「スイッチ制御」タブの「設計堆積土砂量の計算」を 「計算する」とした場合にのみに表示されます。

計算方法

<堆積土砂量は毎年半減する>

土砂造成完了後

<計算する:チェック>

土地造成中

<設計堆積年数(年):3> <設計値(m^3/ha・年):150.0> <開発面積(ha):190.000>

土地造成完了後

<設計体積年数(年):3> <設計値(m^3/ha・年):150.0> <開発面積(ha):190.000>

施設切替: 地点-٠ スイッチ制御入力 |計算結果| |調統治|ケース1 |設計堪積土砂量 | 計算方法
 (※ 道積土砂型は毎年半減する) ○ 集水面積は工事面積を用いる 土地造成完了後 ▼計算する 土地造成中 土地造成完了後 設計堆積年数(年): 設計堆積年数(年): 150.0 150.0 設計値 (n'3/ha·年): 設計值 (n'3/ha·年): 開発面積 (ha): 180.000 開発面積 (ha): 180,000 ✓ 確定 X 取消 ? ヘルゴ(出)

マア部時(ハフ)(17日40年) インガード・ハンブ、(17日40年) 全部活動の方式 ・ 日本の市のデジルに建立式で言語がする 目れた力のから、(ロック・カーズ) たいのの たいので学校に建立する 国家式 ・ ビック時候後 ・ C 中均面積を有する柱体 へ自分の小数点以下入力相数 ・ 合物 ・ C 和(10日4日) ・ 名物 ・ C 和(10日4日) ・ 名物 ・ C 和(10日4日) ・ 名物 ・ C 和(10日4日) ・ C 和(1014日) ・ C 和	せき状態 ・ 飲意しない ・ 効素しない ・ 効素にき ・ 知識のない ・ の時時にき ・ 知識のない ・ の時時にき ・ 知識のない ・ 一 ・ 一 ・ 一
共和国総合委の計算 学 教授系法の計算 学 教授系の計算 動発展した計算 計算する	

―「施設切替」で「地点-2」に切り替えます。

スイッチ制御

<mark>洪水調節方式</mark> <自然調節方式>

水位容量曲線の入力方法 <水位と容量を直接入力する>

<mark>算定式</mark> <せつ頭錐体>

水位の小数点以下入力桁数 <3桁>

貯留施設の流出量あり <下流へ放流する:チェック>

洪水調節容量の計算 <簡便法の計算:チェック>

設計堆積土砂量の計算 <計算する:チェック>

せき放流 <放流しない>

<mark>ポンプ放流</mark> <放流する:チェックなし>

<mark>洪水吐きの計算</mark> <計算する:チェック>

計算を行うケース数 <ケース数:1>

洪水調節計算結果のピーク時の1分毎の出力 <ピーク時の1分毎の出力を行う:チェックなし>

き ケース1 設計増積土 リフィス情報	89量		調節治容量				
量係数 C1					池底の標高	(m):	0.000
量係数 C2	at the state of a line	0.440		水潭 (a)	容量 (m ^{*3})	^	
1	計劃的(DHu(m)	6.410	1	0.000	0.000	-	
	C1	1.80	2	0.500	525.000		
	02	0.60	3	1.000	783.000		
Hu			4	2.000	2319.000		
			5	2.500	2523.000		
			6	3.500	3957.000		
池底			7	4.500	\$351.000	~	
下遠へ放流するケース		洪水調節容量計算			_		
乱するケース番号: 1	•		許容誤差	81	資時間(時)	:	0
			C Im	81	算ビッチ(秒)	:	30
			@ 0.1mm	18	水水(匠 (m)	:	0.000
			○ 0.01mm	81	算統大時間(時	0 :	10202020
				8T	算桥了梁仲(m 3	/\$):0	. 10000000
				24	REALINE (B P)	87 × 1	01001

——入力-調節池

オリフィス情報

<計画水位Hu(m):6.400> <C1:1.80> <C2:0.60> ここで入力した流量係数C1、C2はオリフィス入力時の初期値 として用います。

下流へ放流するケース

<放流するケース番号:1>

調節池容量

<池底の標高:0.000>

	水深(m)	容量(m^3)
1	0.000	0.000
2	0.500	525.000
3	1.000	793.000
4	2.000	2319.000
5	2.500	2523.000
6	3.500	3957.000
7	4.500	5351.000
8	5.500	6525.000
9	6.200	7084.000

洪水調節容量計算

<許容誤差:0.1mm>

- <計算時間(時):0>
- 「戸戸町町(町)・いっ 「三方」。「二方」、つっ、
- <計算ピッチ(秒):30> <湛水水位:0.000>
- <計算最大時間(時):120>
- <計算終了条件(m^3/s):0.1000000>

施1	我切替: 地点-2					•	
5制御 ケー	入力 計算結果 ス1 設計増積土砂量	1					
名称 フィス	: []]¥88				せき放流		
No.	オリフィス形状	自動計算	下段計算	IFie	C 2U	6 含まない	
1	放流管(矩形)						
2					- ポンプ放流-		
3					C 30	「言まない	
4							
5							
8							
7							
8							
3							
10							
_			-	-			
-]
_							

-ケース1

<mark>ケース名称</mark> ケース名称を入力します。(半角64文字以内)

オリフィス形状 <放流管(矩形)>

<mark>自動計算</mark> <チェックなし>

下段計算

放流管(矩形)2段、放流管(円形)2段選択時のみに入力すること ができます。

_詳細

選択したオリフィスの寸法に関するデータを入力します。 「…」ボタンをクリックすると「オリフィス詳細入力」 画面が表示されます。

オリフィス詳細

<断面下端高HI(m):0.000> <断面高DI(m):4.500> <断面幅BI(m):5.500> <流量係数C1:1.80> <流量係数C2:0.60>

せき放流

「スイッチ制御」タブでせき放流を選択(四角せき、三角せき、 台形せき、矩形2段せき)している場合に入力することができま す。

ポンプ放流

「スイッチ制御」タブで「ポンプ放流」を「放流する(チェッ ク)」としている場合に入力することができます。

設計堆積土砂量

計算方法 <堆積土砂量は毎年半減する>

土砂造成完了後 <計算する:チェック>

土地造成中

<設計堆積年数(年):3> <設計値(m^3/ha・年):150.0> <開発面積(ha):190.000>

土地造成完了後

<設計体積年数(年):3> <設計値(m^3/ha・年):150.0> <開発面積(ha):190.000>

計算結果

ここでは計算結果を即時に確認することができます。 「施設切替」スイッチで施設を切り替えて結果を確認してくだ さい。

- ・総括表
- ·上流施設
- 水位容量曲線
- ·洪水調節計算
- ・簡便法
- ·設計堆積土砂量 ・洪水吐きおよび放流施設
- ・ハイドログラフ

1-8 洪水吐き

- 「洪水吐き」 ボタンをクリックし、洪水吐きの設計洪水流量計 算に必要なデータを入力します。

施設切替: 地点-1	-	上流聴致からの運動
力 計算結果		
計決水流量 路雨強度式 洪水吐きおよる	A非越流部天端高 洪水吐きの流量(越流量) 余裕高 演勢工	
降雨強度の計算 (*)降雨強度式から計算 (*) 直接入力 降極操度式(在編集)の遅択	法量 洪水即後時時間(分): 30 演出(兵数: 0.788 法城園橋(ha): 15.580	
 ○ 1/200年降雨強度 ◎ 1/100年降雨強度(1.2倍) 	 比流量 ○ 比流量を計算しない 流域面積 A'(km[*]2): 	20.0
降雨強度(直接入力) 降雨強度(: 10.00	 ○ 比流量を計算する セ結係数: ○ 比流量を入力する 比流量 q (s^{*3}/z/vs^{*2}): 	48
	- 高さ、水渠、幅の小数点以下桁数 ← 3桁	

林地開発基準時は、排水施設で貯留施設の設置が必要な場合、かつ貯留施設の入力時に「洪水吐きの計算」の「計算を行 -う」スイッチがチェックされている施設数分の入力が必要です。

「施設切替」スイッチで貯留施設を切り替えることができま す。

-本データでは、まず「地点-1」のデータを設定します。

「上流施設からの連動」ボタンをクリックします。 本ボタンをクリックすると関連するデータ「洪水到達時間、流 出係数、流域面積」を上流施設の入力データより取得すること ができます。但し、これらの連動データは、上流施設に複数の 流域を指定した場合には取得することができません。

また、「洪水吐きおよび非越流部天端高」、「洪水吐きの流量 (越流量)」、「余裕高」入力画面に関連する入力データも同時 に取得します。

入力

設計洪水流量

降雨強度の計算

<降雨強度式から計算>

降雨強度式(年確率)の選択 <1/100年降雨強度(1.2倍)>

降雨強度(直接入力)

「降雨強度の計算」で「降雨強度式から計算」 が選択されてい る場合は入力不可となります。

流量

<洪水到達時間(分):30> <流出係数:0.798> <流域面積(ha):15.590>

比流量

<比流量を計算する> <流量面積A' (km2) :20.0> <地域係数:48>

高さ、水深、幅の小数点以下桁数 <3桁>

] 計算結果]			
+洪水流量 降雨速度式 - 洪水吐きあ 降雨速度式数(最大5式) 1 ま 1 2 3 4 5		越走量) 余相南 滅5	9 1
福市法度式(1式) 確率年(年): 200 年端本	: 1/200年		
陆雨速度式選択	式のパラメータ		
C タルボット型	4.1	3890.0000	
C シャーマン型 C クロ・エーロ	b:	234.8000	
(クリーブランド型	n: 0.7500		
C 近畿地方整備局型	「為雨經(長時間 t (84)		
○山梨県型			
クリーブランド型	式中tの単位 (* 分単位 01	時間単位	
$r = \frac{a}{t^n + b}$	基準値から選択する		

降雨強度式

洪水吐きの設計洪水流量計算に必要な降雨強度式データを入 力します。

降雨強度式数(最大5式)

降雨強度式数をスピンボックスにて指定します。 各式の入力切替は、スピンボックス右側の1~5ボタンにて行っ てください。 <1>

複数式の算定方法

本入力は、降雨強度式数の指定が2式以上の場合に入力可能 となります。

確率年(年)

<200>

降雨強度式選択

<クリーブランド型>

式のパラメータ

降雨強度式の式のパラメータを入力します。 <a:3890.000> <b:234.8000> <n:0.7500>

式中tの単位

<分単位>

-洪水吐きおよび非越流部天端高

洪水吐きの非越流部天端高の計算に必要なデータを入力しま す。

計算スイッチ

洪水吐きおよび非越流部天端高の計算を行うか否かを指定します。 <計算する:チェック>

放流能力

放流能力の計算に必要な計算パラメータを入力します。 <流量係数C:1.800> <造成高(m):8.200> <越流高(m):5.700> <越流水深(直接入力):チェックなし> <越流幅(m):3.500> <流量からの越流巾計算:チェックなし>

越流幅·越流水深曲線

		越流幅L(m)
	1	1.000
_	2	2.500
	3	3.500
	4	4.800

「越流幅・越流水深曲線」を確認する場合は、表入力終了後 に、「曲線計算」ボタンをクリックします。 表入力を編集した場合には必ず、「曲線計算」ボタンを押して ください。

計算スイッチ マ 計算する				- Innan Lanaz	
 越流量計算タイ ○ 通常式 ○ 長方形 	()-	○ 台形 ○ 正面結流	○ 株越流(破堤)○ 株越流(越水)		
≞量係数 C	:	0.600			
F幅 B (m)	:	3.500			
上幅 Bu (m)		1.000			
图键勾配 n		1.000			
越流水深 h (m)	:	2.500			
臆流水深 h2(m)		0.000			
河床勾配 [0.000000			

-洪水吐きの流量 (越流量)

洪水吐きの流量(越流量)の計算に必要なデータを入力しま す。

計算スイッチ

洪水吐きの流量(越流量)の計算を行うか否かを指定します。 <計算する:チェック>

チェック (OFF) の場合は、以下に説明する入力データの入力 操作は不要となるために全ての入力項目が禁止状態となり、洪 水吐きの流量(越流量)の計算は実行されません。

越流量計算タイプ

<長方形>

長方形、台形選択時には以下のルールに従い算出します。 1.長方形選択時に流量係数Cを0.6以外の値を指定した場合に は、通常式で算出します。 2.台形選択時に流量係数Cを0.6以外もしくは、側壁勾配nが 0.5、1.0以外の値を指定した場合には、通常式で算出します。

横越流選択時には以下のルールに従い算出します。 1.越流水深は高い方をh1、低い方をh2として越流量を算出します。

越流計算パラメータ

洪水吐きの流量(越流量)の計算に必要な計算パラメータを入 力します。 <流量係数C:0.600> <下幅B(m):3.500> <越流水深h(m):2.500>

施設切替: 地点-1	-	上流施設からの運動
 (力) 計算結果 時計決水速量 降滞確定式 決水吐きおよび非結流膨大場高 決水吐きの流量() 計算ズイッチ 「計算で否) 「 計算で否) 「 フィルダム形式 風速(19分間干均) ×(x/s): 30 17時空話 F(s): 1000.000 水干器度 k: 0.20 地震魔法 て(3e): 1.0 (低水部水位 (s): 0.500 「 弁術販売(は).6k以上とする 	越走登) 命初帝 十成功王	
	4 MO 1 V 1	54 2 . II/III

余裕高

洪水吐きの余裕高の計算に必要なデータを指定します。

計算スイッチ

余裕高の計算を行うか否かを指定します。 <計算する:チェック>

余裕高計算パラメータ

<フィルダム形式:チェックなし> フィルダム形式か否かを指定します。 フィルダム形式の場合は、構造令に準拠し求められた余裕高 に1mを加算します。

<風速(10分間平均)v(m/s):30> <対岸距離F(m):1000.000> <水平震度k:0.20> <地震周波て(Sec):1.0> <低水部水位(m):0.500>

<余裕高さは0.6m以上とする:チェックなし>

カ 計算続集 (加済水法量) 時得発度気 済水やさきたよび明絵法部天場高 済水やさきの浅量(結洗量) 余裕高 綿内工 (計算スイッチ 「計算支) (加済の水晶 8 (m) : 0.000 小切さの水晶 8 (m) : 0.000 小切さめ場の洗達 Y1 (m/sec) : 0.000 小切さめ場の洗達 Y1 (m/sec) : 0.000 「コールド数 F1 : 0.000	施設切替: 地点-1		*	上遺施設からの運動
*#30/285 Fu (a) : 0.000 *#078 0/48 8 (a) : 0.000 「 *#078 54440/%39(近根入力)) *#078 54440/%39(近根入力)) #318と*#078との想象語を 9 (a) : 0.000 「 フールド数(低級入力)) フールド数 Fi : 0.000	カ 計算結果 計洗水流量 陰雨強度式 洗水吐きお。 計算スイッチ 計算する]	よび非植造郡天端高 洪水吐き(の流量(越流量) 余裕高 浦勢]	с+
★小印吉結編の活達(道理入力) 水印吉結編の活達(1)(m(moc): 0.000 相目と木印むとの信奉著 ¥ (m): 0.000 フールド数(度接入力) フールド数 Fi : 0.000	聞の深さ Pu (m) : [(町東の福 R (m) ・ [0.000		
「フールド駅(直接入力) フールド数 Fi < 0.000	************************************	0.000		
	「フールド数(直接入力) フールド数 Fi : 「	0.000		

—減勢工

減勢工の計算に必要なデータを入力します。

計算スイッチ

減勢工の計算を行うか否かを指定します。 <計算する:チェックなし>

チェック (OFF) の場合は、以下に説明する入力データの入力 操作は不要となるために全ての入力項目が禁止状態となり、減 勢工の計算は実行されません。

減勢工計算パラメータ

減勢工の計算に必要な計算パラメータを入力します。

計算結果

洪水吐きの計算結果を確認します。

- ·設計洪水流量
- ・洪水吐きおよび非越流部天端高
- ・洪水吐きの流量(越流量)
- ・余裕高のチェック

施設切替: 1265 ÷ 上流施設からの運動 入力 |計算結果| 設計洪水流量 | 陸南強度式 | 洪水吐きおよび非越流怒天端高 | 洪水吐きの流量(越流量) | 余裕高 | 減勢工 | 流量 洪水即速時間(分): 30 流出係数: 0.788 流域面積(ha): 15.590 は雨強度の計算

・ 除雨強度式から計算 C 直接入力 陰雨強度式(年曜率)の選択 ○ 1/200年降雨速度 ○ 1/100年降雨速度(1.2倍) 比诺曼 ○ 比流量を計算しない 流域面積 A'(km*2): 20.0 ○ 比流量を計算する
 地域係数:「
 ○ 比流量を入力する
 比流量 q (m³/a/km²2):「 48 陆雨驻度(直接入力) 1.000 10.00 **時用法度r:** 高さ、水梁、幅の小鼓点以下桁鼓
 ○ 3桁
 ○ 2桁 ✓ 確定 X 取消 ? ヘルブ(出)

「施設切替」で「地点-2」に切り替えます。

「上流施設からの連動」ボタンをクリックし、関連データを上 流施設の入力データより取得します。

入力

設計洪水流量

降雨強度の計算 <降雨強度式から計算>

降雨強度式 (年確率) の選択 <1/200年降雨強度>

流量

<洪水到達時間(分):30> <流出係数:0.798> <流域面積(ha):15.590>

比流量

<比流量を計算する> <流量面積A' (km2) :20.0> <地域係数:48>

高さ、水深、幅の小数点以下桁数 <3桁>

施股切替: 地点-2		•	上流施設からの運動
計算結果			
洪水這量 陸南建度式 洪水吐きお	よび非越流部天端高 洪水吐きの流量(<u> 地流量〉 余裕高 流明</u>	1
陰雨強度式数(最大5式)	複数式の算定方法		
1 2 3 4 5	6 合計 C 合成 C 平均		
(51) (51) (51)			
· · · · · · · · · · · · · · · · · · ·	: 1/200年		
国南建度式選択	一式のパラメーター		
C タルボット型		8483.9000	
C シャーマン型	b:	47,7340	
C 久野・石黒型	0.1	0.8300	
(* <u>クリーフランド部</u> C 活用地士教徒用用)	ESTERCEARD + (15)		
「山田市の金属型」	Network Condition ((ed.)		
- Martin Trade	式中しの単位		
クリーブランド型	○分単位 ○	時間単位	
r =		1	
t" +b	基準値から選択する		
		A 100/00	Partie and a standard

降雨強度式

降雨強度式数(最大5式) <1>

<mark>確率年 (年</mark>) <200>

<mark>降雨強度式選択</mark> <クリーブランド型>

式のパラメータ

<a:8483.900> <b:47.7340> <n:0.8300>

式中tの単位

<分単位>

-洪水吐きおよび非越流部天端高

計算スイッチ

<計算する:チェック>

放流能力

<流量係数C:1.800> <造成高(m):8.200> <越流高(m):6.400> <越流水深(直接入力):チェックなし> <越流幅(m):2.500>

越流幅・越流水深曲線

	越流幅L(m)
1	1.000
2	2.000
3	3.000

- 「越流幅・越流水深曲線」を確認する場合は、表入力終了後 に、「曲線計算」ボタンをクリックします。 表入力を編集した場合には必ず、「曲線計算」ボタンを押して ください。

計算結果	
the second s	
洪水造量 隆雨建度式 洪水吐きおよび非越流部天端高 洪水吐きの流量(胚流量) + 余裕高	洪水吐さの流重(越流重)
+第スイッチ 	
11.11.7 D	計算人イッチ
△流量計算タイプ ・通常式 ○ 台形 ○ 模裁法(破場)	<計算する:チェック>
長方形 〇 正面絶流 〇 横絶流(趙水)	
dr∰th C : 0.600	越流量計算タイプ
E B (m) : 3.000	<長方形>
E Bu (m) : 1.000	
#2382 n : 1.000	
和水藻h(m): 2.500	越流計算パラメータ
E2%# H2 (m) : 0.000	<流量係数C:0.600>
E3302 1 : 0.00000	<下幅B(m):3 000>
	~批法北次(m);2 500>
	<週/>

施設切替: 地点-2	•	上流聴設からの運動
力 [計算結果]	-	
○ 101.400円1 (設計(水)法量 [福裕建成] 洪水吐きおよび(非絵流話)天陽高 洪水吐きの流量(絵流 計算24(ッチ 戸 計算25]	皇) 余裕高 滅勢工	1
□ フィルダム形式		
風速(10分間平均) √(m/s): 30		
対學習题籍 F(m): 1000.000		
水平震度 k: 0.20		
地震回波 て(Sec): 1.0		
低水部水位 (m): 0.500		
□ 余裕而さけ30.6m以上とする		
	/ we ¥1	BEGA 2 ALL-2(H)

____余裕高

計算スイッチ <計算する:チェック>

<mark>余裕高計算パラメータ</mark> <フィルダム形式:チェックなし> <風速(10分間平均)v(m/s):30> <対岸距離F(m):1000.000> <水平震度k:0.20> <地震周波τ(Sec):1.0> <低水部水位(m):0.500> <余裕高さは0.6m以上とする:チェックなし>

洪水吐き					×
施設切替: 地点-	2		-	上流施設からの連	lah)
入力 計算結果					におかって
設計洪水流量 陸雨建度式	洪水吐きおよ	:乙期越流部天端高 洪水吐き	きの流量(越流量) 余裕高 滴	1991 	减务上
- 計算スイッチ					計質スイッチ
水路の深さ Pu (m)	: [0.000			く計質する・チェックな
水叩きの幅 B (m)	: [0.000			
▶ 水叩き始陽の流速(直接	入力)				
水叩き始端の流速 VI ()	m/sec) :	0.000			
堤頂と水叩きとの標高書	E V (m) ;	0.000			
▶ フールド数(直接入力)					
フールド数 Fi	: [0.000			
			1 102	× 取消 ? ヘルブ(H	10

施股切替: 地点-2	*	上流施設からの運動
入力 計算結果		
設計決水流量 洪水吐きおよび非越流部天臨高 洪水吐きの流量(越流量) 余	彩海のチェック	
【本市法史哲 + 5 30 (min) r * a / (t* b) 式切り(オン) a 8 843,900 n = 0.8300 b = 47,7340 r * 131.41 (ms/br)		
年起漫確率1/200流量0'は合理的により、 01' = 1/360・f・r・A = 1/360・0.788・ 131.408・ 15.590 = 4.541 (m ³ /s)		
比定量理的第二大力注出量 q = C + A ⁺ (x = 9k ⁻¹) A ⁺ = 20.000 (km ²) C = 48 = C + A ⁺ (x = 9k ⁻¹) A ⁺ = 20.000 (km ²) C = 48 = 21.42 (km ² /s) A ⁺ = 2 = 4.33 (km ² /s) = 4.333 (km ² /s) = 01 × (20 × 12 km ² /s) (x + 2 km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (x + 2 km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (km ² /s) (km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (km ² /s) (km ² /s) (km ² /s) = 2 = 01 × (20 × 12 km ² /s) (km ²		
設計汽水造動130 の1.2億とすると、 0 = 1.20' = 1.2 · 4.933 = 5.918 (m ³ /s)		
	1978 3	(取論) マヘルゴ(日)

—計算結果

洪水吐きの計算結果を確認することができます。

- ·設計洪水流量
- ・洪水吐きおよび非越流部天端高
- ・洪水吐きの流量(越流量)
- ・余裕高のチェック

2 計算を確認する

- 「計算確認」 ボタンをクリックし、計算および計算結果の確認 をします。

2-1 流域

流域計算結果確認面面		- u ×
續切替: 地点-1	2	
- ク流量 間発前 開発後		
開発前Q30(m³/s)	開発徒Q30'(∎³/s)	開発による増加量030'/030(%)
19.665	22.867	116.284

流域の計算結果を表示します。 流域切替スイッチにて流域を切り替えて確認してください。

- ・ピーク流量
- ・開発前
- ・ピーク流量
- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
- ·時間降雨分布曲線
- ・開発後
- ・ピーク流量
- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
- ·時間降雨分布曲線

2-2 排水施設

3切替:	地点-1			•	
1-12	各施設詳細)ハイドロ	グラフ			
ID	現況達下能力 Opc(m ³ /s)	開発前ビーク流量 Q30(m ³ /s)	Qpc/Q30	貯留設置の有無	コメント
1	11.919	18.665	0.606	必要	A区間
2	98.730	203.584	0.471	必要	8区間

排水施設の計算結果を表示します。 施設切替スイッチにて排水施設を切り替えて確認してください。

- ・施設一覧
- ·各施設詳細
 - ・現況流下能力・比流量
 - ・降雨強度曲線
 - ·許容放流量
 - ・現況流下能力1/n降雨 許容放流量
 - ・水害防止1(qpcnを満たす調整容量)
 - ・水害防止2(qpcn'を満たす調整容量)
 - ・水害防止3(qpcmを満たす調整容量)
 - ・災害防止(調節(整)池からの許容放流量)

・ハイドログラフ

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
- ·時間降雨分布曲線

2-3 貯留施設

Lange 1 Lange 1 and 1 and 1 and 1 and 1 and 1	AND A DESCRIPTION OF A			(Instant)	
工作調整 小四母軍團錄 小小時時時1算 時	00025 anat veriet.	ON ANNALSE	ACARCALMENT / 1	160321	
調節池名称	A区間				
直接流域	地点-1				
計算対象	水吉防止1				
洪水調節方式	自然調節方式				
洪水到達時間(min)	30				
許容放流量(m3/s)	2.902				
最大放流量(m3/s)	1.310				
必要洪水調節容量(簡便法)(m3)	4157.917				
必要洪水調節容量(厳密解法)(=3)	7046.937				
放流施設 ケース名称					
放流施設 新面形状	放流管(円形)				
放達施設 オリフィス飲高 HI(m)	0.000				
放流施設 オリフィス形状 幅(m)	0.450				
放達施設 オリフィス形状 高(■)	0.450				
池底の標高(m)	0.000				
計画高水位H.W.L(m)	6.154				
非越流部標高(m)	6.200				
集水区域面積(ha)	15.590				
洪水調節容量(■3)	7046.937				
			11	R	 -

計算結果の判定結果を表示します。

貯留施設の計算結果を表示します。 施設切替スイッチにて貯留施設を切り替えて確認してください。

貯留施設計算結果の詳細(1ケース指定時)

- ・総括表
- ·上流施設
- ・水位容量曲線 ・洪水調節計算
- ・商便法
- 韵使云 • 設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

貯留施設計算結果の詳細(複数ケース指定時)

- ・全ケース
- ・結果一覧
- ·洪水調節計算
- ・洪水吐きおよび放流施設
- ・ハイドログラフ
- ·上流施設
- ・水位容量曲線
- ・簡便法
- ・設計堆積土砂量
- ・ケース1~5(入力指定したケース数分表示します)
 - ・総括表
 - ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

入力データの指定方法により表示されない項目があります。

2-4 洪水吐き

洪水吐きの計算結果を表示します。 施設切替スイッチにて洪水吐きを切り替えて確認してください。

- ·設計洪水流量
- ・洪水吐きおよび非越流天端高
- ・洪水吐きの流量(越流量)
- ・余裕高
- ・減勢工

入力データの指定方法により表示されない項目があります。

第4章 操作ガイダンス(流域貯留施設等技術指針(案))

1 モデルを作成する

「流域貯留施設等技術指針(案)」の設計例を例題として作成します。 (使用サンプルデータ:Sample流域貯留施設等技術基準(もぐり矩形).f7a) 各入力項目の詳細については、製品の【ヘルプ】をご覧ください。

1-1 新規入力

1-2 適用基準

這用基準			× 適	用基準
遣用基準	陸南建度式の名称指定) 演	用基準を選択します。
○ 防災調節治等技術基準	23萬種致定:	入力設定		
○ 林地間発基準	タルボット型 r = a / (t + b)	タルボット型		[现灯由他故守仅侧拍亚 (余) ~
④ 流域貯留施設等技術指針(案)	シャーマン型 r = a / l'n	シャーマン型		
12533413074635	久野・石黒型 r = a / (f t + b)	久野・石黒型	- 貯留	留施設の種類
C オフサイト		ジリーフラント型	海	田甘淮を「海城時の施設生は海地針(安)」に地定した県合
6 オンサイト	山梨県型 r = a · (b / t) 'n t:時間	山体内型	(四)	市奉牛で「加以別 田旭 Q 寺 X 附 相町(条)」に相圧した物ロ
	27月前通过改定	レジストリ鉄込 レジスト!	17) 17	は、「オンサイト」固定となります。
			降	雨強度式の名称指定
		✓ HERE X REW	? ヘルプ(1) 降前	雨強度式の名称を変更・修正することができます。
			こ	の入力値は入力データファイルへ保存しますが、お客様の環
			境	下 (パソコンのレジストリ) に保存する場合には、「レジスト ロカーギタンを)翌切してください。
			りに	木仔」小ダノを迭折してくたさい。 バージーン・サンディーニータセミュンスノビ目へには、切地司
			IH/	ハーション、サンノルテータを読み込んた場合には、初期設
			定(推奨)状態に戻ります。お客様の指定した降雨強度式の名称
			に	変更する際には、「レジストリ読込」 ボタンを選択してくださ
			い。	
			初	期値設定ボタン
			ま(の左側(初期設定)に表示している大制具の推将する名称に
			民	すことができます。
			レ:	ジストリ読込ボタン
			お	友様の環境下 (パソコンのレジストリ) に保友 ていろ降雨
			強度	き式の名称を取得します。
			V:	ジストリ保存ボタン
			主,	の右側に入力・修正した降雨強度式の名称をおを样の環境
				ッつばいていた」 18年しに1年16月1日反共の石竹での各体の現況 (パンコンのしごえしい) に但たしまま
			۲	(ハソコンのレシストリ) に保存します。
			*	基本データ、施設配置、流域は、第2章 操作ガイダンス (防
			SSS =	調筋油等技術其進)と同様のλ力ですので P12~21を参照
			して	
			*	「防災調節池等技術基準」および「流域貯留施設等技術指
			針(力	「案)」と「林地開発基準」の適用基準を変更しても両者の入 データについては互換性がありませんのでご注意ください。

1-3 貯留施設

▲ 調節治・調整治の計算 Ver9 - (新規)(7.8 (要點)	- n x	
77/MC 巻手400 オブジョン(0) へんプロ □ 谷日書 結 音 図 保 処理モードの進行: 入力 計算相互 計算者出力 回 要 数	약 Ng 🖂 📥	
■ 通用基本 図名字		「貯留施設」 ボタンをクリックし、 貯留施設の計算に必要な
		データを入力します。
BETTER		

施設切替: 西都行留施設	<u>.</u>
イッチ制御 入力 計算結果	
洪水園前方式 ● 自然園前方式 許容妙成量 「 Manninの平均走通公式で買出する。	せき飲造 () 放進しない () 台形せき () 四角形せき () 三角形せき () 三角形
直接入力 0o (m [*] 3/s): 10.2000	- ポンプ放流 「 放流する
小山谷重面線のハイカル2 ○ 水位と容量を直接入力する ◎ 水位とその時の湛水面積を与え容量を算定する	洪水吐きの計算 □ 計算する
算定式 (・せつ頭鏡体 〇 平均面積を有する柱体	計算を行うケース数 ケース数: 1 全
-木位の小数点以下入力和数 (〒3桁) ○4桁(容量計算3桁) ○4桁	洪水調節計算結果のピーク時の1分番の出力
貯留施設の満出量あり ▽ 下流へ放流する	1 ビーク時の1分費の出力を行う 出力する時間範囲 t(分): ± 5
洪水間時容量の計算 ▽ 糖密解注の計算 ▽ 開き解注の計算 平均衰退強度 (mu/hr): 0.0000 関連治の計算3イブ 0.45°rc C 1/2°rc	
設計堆積土砂量の計算 一 計算する	

施設切替

- 「施設配置」で入力した貯留施設分の入力が必要です。 貯留施設の切り替えは、「施設切替」リストボックスにて切り替 えることができます。

「ッチ制即 入力 計算結果	
 油水調節方式 ・ 自然調節方式 ・ ビークカット方式 許容幼児童 「 Menningの平均追逐公式で貸出する (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	せき放流 (放流しない) (台形せき (四角形せき (知形2絵せき (三角形せき
(直接人力 06 (m 8/s): 10.2000 ★(約定要曲線の入力を注	ホンフ325年 「 放流する
○ 木位と容量を直接入力する ○ 木位と容量を直接入力する ○ 木位とその時の潜水面積を与え容量を算定する	洪水吐きの計算 戸 計算する
算定式 (・せつ閉鎖体 ○ 平均面積を有する柱体	計算を行うケース数 ケース数: 1 ◆
木位の小数点以下入力桁数 ☞ 3桁 ○ 4桁(容量計算3桁) ○ 4桁	- 洪水調読計算結果のピーク時の1分番の出力
評価雑語の満出量あり ↓ 下流へ歓流する	「ビーク時の1分費の出力を行う 出力する時間範囲 ((分) : ± 5
洪水調新容量の計算 戸 新安新法の計算 戸 時使法の計算 平均決断接度 (ms/hr): 0.0010 特徴法の計算タイプ	
* 4/9 * rc C 1/2 * rc	
設計堆積土砂量の計算 「レ計算する	

スイッチ制御

<mark>洪水調節方式</mark> <自然調節方式>

許容放流量

<Manningの平均流速公式で算出する:チェックなし> <直接入力 Qo(m^3/s):10.2000>

水位容量曲線の入力方法

<水位とその時の湛水面積を与え容量を算定する> 算定式 <せつ頭錐体>

水位の小数点以下入力桁数 <3桁>

貯留施設の流出量あり<下流へ放流する:チェック>

洪水調節容量の計算

<簡便法の計算:チェック> <平均浸透強度(mm/hr):0.0000> <簡便法の計算タイプ:4/5・rc>

設計堆積土砂量の計算 <計算する:チェック>

せき放流

<放流しない>

ポンプ放流 <放流する:チェックなし>

<mark>洪水吐きの計算</mark> <計算する:チェック>

<mark>計算を行うケース数</mark> <ケース数:1>

洪水調節計算結果のピーク時の1分毎の出力 <ピーク時の1分毎の出力を行う:チェックなし>

リフィス	情報	-				流域拧留她說容	2里	池底の標高	(m): 2	4.00
建保政	C2						水澤 (a)	面積 (m'2)	容量 (m'3)	1
留面積				計画水位Hu(m)	8.000	1	0.000	79.000	0.000	
*	_	_	*	CI	1.80	2	2.000	78.000	158.000	
*	1		+	C2	1.80	3	2.010	18700.000	224.648	1
Ť			Hu	貯留水位H1	7.000	4	3.000	20920.000	19826.278	
		H1		利用面高化	6.000	5	3.010	41920.000	20134,456	
f	12			貯留面積(n'2)	40000.000	8	4.000	46565.000	63963.534	
泡	Ē		•			7	5.000	49020.000	111801.708	
這へ放流	する!	7-Z				洪水調節容量	HI			
な流するケ	-7	番号 :	: 1	\$		許容誤差	81	算時間(時)	:	0
						(* 1m	81	算ビッチ(秒)	:	60
						C 0.1m	78	(m) (m) (m)		120
						(~ 0.01mm		算紙(A-1) (1-1) (1-1) (1-1) (1-1)	/=) - 0,1000	0000
							12	1992-19-19-19-19-19-19-19-19-19-19-19-19-19-	1) ; 0	.000

一入力

流域貯留施設

オリフィス情報

<計画水位Hu(m):8.000> <C1:1.80> <C2:1.80> <貯留水位H1:7.000> <利用面高H2:6.000> <貯留面積(m^2):40000.000> ここで入力した流量係数C1、C2はオリフィス入力時の初期値 として用います。

下流へ放流するケース

<放流するケース番号:1>

流域貯留施設容量

<池底の標高(m):24.000>

	水深(m)	面積(m^2)
1	0.000	79.000
2	2.000	79.000
3	2.010	18700.000
4	3.000	20920.000
5	3.010	41920.000
6	4.000	46666.000
7	5.000	49020.000
8	6.000	51650.000
9	7.000	54640.000
10	8.000	57450.000
11	9.000	60100.000
12	10.000	63110.000

容量は自動計算しますので、入力する必要はありません。 面積の数値を入力後にEnterキーを押し、次の行にマウスまた は矢印キーで移動してください。

洪水調節容量計算

<許容誤差:1mm> 誤差を小さくすると、計算精度を高くすることができます。

<計算時間(時):0> 流出量を0にするまで計算を行う場合は計算時間を0としま す。

<計算ピッチ(秒):60> 計算ピッチが短いほど、洪水調節計算の計算精度が向上しま すが、処理時間は長くなります。

<湛水水位(m):0.000>

<計算最大時間(時):120>

<計算終了条件(m³/s):0.1000000> ここで指定した流出量より小さな流出量を検出した際には、洪 水調節計算を終了します。

<調節後流量(m^3/s)>は、「スイッチ制御」タブの「洪水調節方式」でピークカット方式選択時に入力可能となり、洪水調節計算時に、入力した値以上の流量は流出しないようにします。

施設切留:西部行協地設 • スイッチ制御入力 計算結果 | 満城野留施設 | ケース1 設計堆積土砂量 | 計算方法
 ○ 増積土砂量は器年半減する ※ 集水面積は工事面積を用いる 土地造成完了後 ▼計算する 土地造成中 土地造成完了彼 設計堆積年数(年): 設計堪積年数(年): 150.0 150.0 設計值 (m'3/hm·年): 設計值 (n'3/ha-年): 年 遺版面積 (ha) ^ 年 遠成面積 (ha) ^ 30.000 50.00 1 50.000 40.000 20.000 30.000 3 3 20,010 入力範囲: 1~100 ✓ 確定 X 取消 ? ヘルプ(出)

ケース1

ケース名称

ケース名称を入力します。(半角64文字以内)

<mark>オリフィス形状</mark> <もぐり (矩形) >

自動計算

放流管(矩形)、放流管(円形)選択時のみに入力することができます。

下段計算

放流管(矩形)2段、放流管(円形)2段選択時のみに入力すること ができます。 下部排水口のみで処理する場合にチェックします。

詳細

選択したオリフィスの寸法に関するデータを指定します。 「…」ボタンをクリックすると「オリフィス詳細入力」画面が表 示されます。 <断面下端高HI(m):0.000> <断面幅BI(m):1.000> <断面幅BI(m):1.500> <外水位Ho(m):0.500> <接近流速水頭Ha(m):0.000> <流量係数C1:0.62> <流量係数C2:0.53> <湛水時間流量係数C1:0.70>

せき放流

「スイッチ制御」タブでせき放流を選択(四角せき、三角せき、 台形せき、矩形2段せき)している場合に入力することができま す。

ポンプ放流

「スイッチ制御」タブで「ポンプ放流」を「放流する(チェック)」としている場合に入力することができます。

設計堆積土砂量

本入力は、「スイッチ制御」タブの「設計堆積土砂量の計算」を 「計算する」とした場合にのみに表示されます。

計算方法

<集水面積は工事面積を用いる>

<mark>土砂造成完了後</mark> <計算する:チェック>

土地造成中

<設計堆積年数(年):3> <設計値(m³/ha・年):150.0> 造成面積(ha) <1年:30.000> <2年:50.000> <3年:20.000>

土地造成完了後

<設計堆積年数(年):5> <設計値(m³/ha・年):150.0> 造成面積(ha) <1年:50.000> <2年:40.000> <3年:30.000> <4年:20.000> <5年:10.000>

チ制御 入力 計算結果		
[]上流施設 水位容量曲線 洪水調的計算 開	使法 物便法(貯留施設・浸)	新建設(併用型) 関便法(U型)削縄を回ける場合) 設・
最終流域貯留施設名称	西都拧留施助	
直接流域	三财地区(流城-1)	
洪水調節方式	自然調節方式	
洪水到達時間(min)	20	
許容放流量(m³/s)	10.2000	
最大放流量(m ³ /s)	10.113	
必要洪水講節容量(簡便法)(=3)	228832.661	
必要洪水講節容量(厳密解法)(=3)	190475.699	
放流施設 ケース名称		
放流施設 断面形状	もぐり(姫形)	
放流施設 オリフィス数高 HI(■)	0.000	
放流施設 オリフィス形状 幅(m)	1.500	
放流施設 オリフィス形状 高(■)	1.000	
放流施設 外水位 H3(m)	0.500	
放流蓮設 接近流速水頭 Ha(m)	0.000	
池底の標高(=)	24.000	
計画高水位H.W.L(m)	30.533	
非越流部禮高(=)	34.000	
調節泡水面積(m²)	53244.917	
上流施設総面積(ha)	247.900	
洪水調節容量(=3)	190475.699	
単位面積当り講節容量(m³/ha)	768.357	
設計堆積土砂量 造成中 3年(=3)	22125.000	

____計算結果

- ここでは計算結果を即時に確認することができます。 ・総括表
- ・上流施設
- ・水位容量曲線
- ·洪水調節計算
- ・簡便法
- •簡便法(貯留施設·浸透施設併用型)
- ・簡便法 (U型側溝を設ける場合)
- ·設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

1-4 洪水吐き

- 「洪水吐き」 ボタンをクリックし、 洪水吐きに関するデータを 入力します。

施設切替:西都拧留施設		•	上流施設からの連
カ 計算結果			
計洪水流量 路雨建度式 洪水吐きおよび	A非越流部天端高 洪水吐きの流量(越流量)	余裕高 演势工	
陰雨珪度の計算 ○ 陰雨珪度式から計算 ○ 直接入力	法量 洪水即5餘時間(分): 20 法出係数: 0.840		
陸雨速度式(年曜率)の選択	流地的核 (ha): 100.000		
○ 1/200年降雨強度	- 比流量		
(* 1/100年降雨強度(1.2倍)	○ 比流量を計算しない 流域面積 A*	(km ²): 20	.0
時雨強度(直接入力)	(* 比流量を計算する 地	塘(系数:	54
成新指法规r: 0.00	○ 比減量を入力する 比減量 q (#'3/s	/km*2): 1.00	00
	高き、水深、幅の小数点以下桁数		
	@ 34fi C 24fi		

「上流施設からの連動」ボタンをクリックします。 本ボタンをクリックすると関連するデータ「洪水到達時間、流 出係数、流域面積」を上流施設の入力データより取得すること ができます。但し、これらの連動データは、上流施設に複数の 流域を指定した場合には取得することができません。 また、「洪水吐きおよび非越流部天端高」、「洪水吐きの流量 (越流量)」、「余裕高」入力画面に関連する入力データも同時 に取得します。

設計洪水流量

降雨強度の計算 <降雨強度式から計算>

降雨強度式 (年確率) の選択

<1/100年降雨強度(1.2倍)>

降雨強度 (直接入力)

「降雨強度の計算」で「降雨強度式から計算」が選択されてい る場合は入力不可となります。 「直接入力」選択時に、設計洪水流量計算で用いる降雨強度 の値を入力してください。

流量

<洪水到達時間(分):20> <流出係数:0.840> <流域面積(ha):100.000>

比流量

<比流量を計算する> <流量面積A' (km2) :20.0> <地域係数:54>

高さ、水深、幅の小数点以下桁数 <3桁>

		_	
) 計算結果			
計洪水遺量 陸南建度式 洪水吐きお	よび非越遠部天端高 洪水吐きの流量(<u> 他走量) 余裕高 波見</u>	I
降雨速度式数(最大5式)	補数式の算定方法		
1 2 3 4 5	6 合計 C 合成 C 平均		
(元) 注意 紙雨袋			
· · · · · · · · · · · · · · · · · · ·	: 1/100年		
科雨味度式選択	式のパラメータ		
○ タルボット型	a:	3452.0000	
C シャーマン型	b:	20,9800	
○ 久野・石黒型	0.1	0.0452	
 ・ クリーフランド室 ○ 活動後古動体影響 	ESTERICERSER + (FA)		
C山間根型	Vertice contraint ((vert)		
	式中しの単位		
クリーブランド型	● 分単位 ●	特關単位	
r =		1	
$t^n + b$	基準値から選択する		

_降雨強度式

洪水吐きの設計洪水流量計算に必要な降雨強度式データを入 力します。

降雨強度式数 (最大5式) <1>

複数式の算定方法

本入力は、降雨強度式数の指定が2式以上の場合に入力可能 となります。

<mark>確率年 (年</mark>) <100>

降雨強度式選択

<クリーブランド型>

式のパラメータ

降雨強度式の式のパラメータを入力します。 <a:3452.000> <b:20.9800> <n:0.0452>

<mark>式中tの単位</mark> <分単位>

施設切替	- B # 19 MI		•	上流施設からの運動
力】計算結果】				
計洪水流量 降雨	建度式 洪水风	意部天端高 - 洪水吐きの流量(越流量) 余裕		
計算スイッチー				
₩ 計算する				
放流能力				
流量係数 C:	1.800			
遺成高 (n):	36.000			
越流高 (n):	32.000			
▶ 超流水深(直接	最入力)			
越流水深(n):[3.258			
超這幅 (s): [0.001			
▶ 流量から越流	中計算			
		▲ 確定	X RE	▲ ? ヘルブ(H)

-洪水吐きおよび非越流部天端高

洪水吐きの非越流部天端高の計算に必要なデータを入力しま す。

計算スイッチ

洪水吐きおよび非越流部天端高の計算を行うか否かを指定します。 <計算する:チェック>

放流能力

放流能力の計算に必要な計算パラメータを入力します。 <流量係数C:1.800> <造成高(m):36.000> <越流高(m):32.000> <越流水深(直接入力):チェック> <越流水深(m):3.256> <流量からの越流巾計算:チェック>

越流水深を内部計算する場合(越流水深(直接入力)スイッチ がチェック(OFF)の場合)は、「越流幅・越流水深曲線」の入力 項目が表示されますので、そちらに越流幅L(m)を入力してくだ さい。

「越流幅・越流水深曲線」を確認する場合は、表入力終了後 に、「曲線計算」ボタンをクリックしてください。表入力を編集 した場合には必ず、「曲線計算」ボタンを押してください。

- Generi andar 一 一 二 二 二 二 二 二 二 二 二 二	
(プ C 台形 C 特応気(破壊) C 正面結点 C 特応気(結水)	
: 0.000	
: 0.000 : 0.000	
: 0.000 : 0.000	
: 0.00000	

_洪水吐きの流量 (越流量)

洪水吐きの流量(越流量)の計算に必要なデータを入力しま す。

計算スイッチ

洪水吐きの流量(越流量)の計算を行うか否かを指定します。 <計算する:チェックなし>

チェック (OFF) の場合は、以下に説明する入力データの入力 操作は不要となるために全ての入力項目が禁止状態となり、洪 水吐きの流量(越流量)の計算は実行されません。

越流量計算タイプ

通常式、長方形、台形、正面越流、横越流(破堤)、横越流(越 水)より選択します。

長方形、台形選択時には以下のルールに従い算出します。 1.長方形選択時に流量係数Cを0.6以外の値を指定した場合に は、通常式で算出します。 2.台形選択時に流量係数Cを0.6以外もしくは、側壁勾配nが

2. 言が選択時に流量係数しを0.6以外もしくは、側壁勾配のが 0.5、1.0以外の値を指定した場合には、通常式で算出します。

横越流選択時には以下のルールに従い算出します。 1.越流水深は高い方をh1、低い方をh2として越流量を算出します。

越流計算パラメータ

洪水吐きの流量(越流量)の計算に必要な計算パラメータを入 力します。

亦吐さ		×	
施設切替:西都行留施設	•	上流施設からの運動	
(カ) 計算結果			
段計洪水遺量 陽雨建度式 洪水吐きおよび非越遠部天端高 洪水の	土きの流量(越流量) 余裕高 / 流勢	I	赤
計算スイッチ ↓ 計算する			洪
□ フィルダム形式			
風速(10分間平均) ∨(a/s): 30			計
対理20月 F(m): 600.000			(全)
水平義度 k: 0.20			~=
地震風波 て (Sec): 1.0			< <u>-</u>
HARMAGIAN CONVERSE 3.2			余
			<7
			7
			_
			に
	√ ₩2	(取論) ? ヘルブ(出)	<尾
			-v- -

谷高

吐きの余裕高の計算に必要なデータを入力します。

スイッチ

高の計算を行うか否かを指定します。 算する:チェック>

高計算パラメータ

′ルダム形式:チェックなし> ルダム形式か否かを指定します。 ルダム形式の場合は、構造令に準拠し求められた余裕高 nを加算します。

速(10分間平均)v(m/s):30> 対岸距離F(m):600.000≻ <水平震度k:0.20> <地震周波τ(Sec):1.0> <低水部水位(m):26.000> <余裕高さは0.6m以上とする:チェックなし>

施設切替:西部宁省	11.0		•	上遠施設からの運動
入力 計算結果				
設計洗水流量 稿用強度式 決 計算スイッチ ☞ 計算する	水吐きお	よび非極遠部天端衛 洪水吐き	の流量(絶流量) 余裕高 源势工	
水路の深き Pu (m)	: [1.000		
水印きの補 B (m)	: [12.000		
□ 水叩き始陽の流達(直接入力))			
水叩き姑端の流速 Vi (m/se	c) : [0.000		
堤頂と木印きとの標高差 ¥	(m): [1.245		
□ フールド数(直接入力)				
フールド数 Fi	+	0.000		
			▲ HUE X	肥満 ? ヘルブ(出)

——減勢工

減勢工の計算に必要なデータを入力します。

計算スイッチ

減勢工の計算を行うか否かを指定します。 <計算する:チェック>

減勢工計算パラメータ

減勢工の計算に必要な計算パラメータを入力します。 <水路の深さPu(m):1.000> <水路の幅B:12.000> <水叩き始端の流速(直接入力):チェックなし> <堤頂と水叩きとの標高差W(m):1.245> <フールド数(直接入力):チェックなし>

計算結果

洪水吐きの計算結果を確認することができます。 ·設計洪水流量

- ・洪水吐きおよび非越流部天端高
- ・余裕高のチェック
- ・減勢工

2 計算を確認する

_「計算確認」ボタンをクリックし、計算および計算結果の確認 をします。

2-1 流域

流域の計算結果は、流域入力データ(ハイドログラフの計算タ イプ)によって表示が異なります。

①合理式

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
- ·時間降雨分布曲線
- ②修正RRL法
- ・降雨強度~継続時間曲線
- ·有効降雨曲線
- ・流入ハイドログラフ
- ・流出ハイドログラフ
- ·時間降雨分布曲線
- ③合成合理式
- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ·単位時間経過流量表
- ・流出ハイドログラフ
- ·時間降雨分布曲線

2-2 貯留施設

AELRONG: BEAR STREAM			•			
* 上流施設 水位容量曲線 洪水調時計算 校	便去 特使法(拧留施設·浸适	施設併用型)	關係法(U型	(削壊を取りする)	拾)	原計
最終流域貯留施設名称	西都行留施設					
直接流域	三財地区(流城-1)					
洪水調節方式	自然調節方式					
洪水到達時間(min)	20					
許容放流量(m3/s)	10.2000					
最大放流量(∎ ³ /s)	10.113					
必要洪水調節容量(簡便法)(■3)	228932.661					
必要洪水調節容量(厳密解法)(■3)	190475.699					
放流施設 ケース名称						
放流施設 新面形状	もぐり(矩形)					
放流施設 オリフィス数高 HI(■)	0.000					
放流施設 オリフィス形状 幅(■)	1.500					
放流施設 オリフィス形状 高(m)	1.000					
放流施設 外水位 H3(■)	0.500					
放流施設 接近流速水頭 Ha(m)	0.000					
池底の標高(m)	24.000					
計画高水位H.W.L(m)	30.583					
非越流部禮高(m)	34.000					
調節泡水面積(∎²)	58244.917					
		1	. 11	(

計算結果の判定結果を表示します。

貯留施設の計算結果を表示します。 施設切替スイッチにて貯留施設を切り替えて確認してください。

貯留施設計算結果の詳細(1ケース指定時)

- ・総括表
- ·上流施設
- ·水位容量曲線
- ·洪水調節計算
- ・簡便法
- ・簡便法(貯留施設・浸透施設併用型)
- ・簡便法(U型側溝を設ける場合)
- ・設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

貯留施設計算結果の詳細(複数ケース指定時)

- ・全ケース
- ・結果一覧
- ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・簡易法による湛水時間
- ・ハイドログラフ
- ·上流施設
- ·水位容量曲線
- ・ 簡便法
- ・簡便法(貯留施設・浸透施設併用型)
- ・簡便法(U型側溝を設ける場合)
- ·設計堆積土砂量
- ・ケース1~5(入力指定したケース数分表示します)
 - ・総括表
- ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・簡易法による湛水時間
- ・ハイドログラフ

入力データの指定方法により表示されない項目があります。

2-3 洪水吐き

洪水吐き計算結果を表示します。

施設切替スイッチにて洪水吐きを切り替えて確認してください。

- ·設計洪水流量
- ・洪水吐きおよび非越流天端高
- ・洪水吐きの流量(越流量)
- ・余裕高
- ・減勢工

入力データの指定方法により表示されない項目があります。

第5章 操作ガイダンス(簡便法のみの計算を行う入力)

1 モデルを作成する

「貯留施設」では、簡便法の計算により洪水調節容量を算出することができます。 ここでは、貯留施設にて、簡便法のみを計算する場合の入力を説明します。 (使用サンプルデータ: Sample防災調節池等技術基準(案)(貯留・浸透併用計算例).f7a) その他の入力については、第2~4章を参照してください。

なお、防災調節池等技術基準時、および流域貯留施設等技術指針(案)では、下記のモデルの場合に、貯留施設計算時に簡 便法の計算を行うことができます。

・防災調節池等技術基準時は、施設配置にて1流域と最終貯留施設を設置したモデルの場合に計算可能です。流域貯留施設等技術指針(案)は、前述のモデルに加え、浸透施設を設置可能です。

・降雨強度式は1式のみとなります。また、近畿地方整備局型の降雨強度式が選択されている場合は計算できません。

1-1 貯留施設

- 「貯留施設」 ボタンをクリックし、 貯留施設の計算に必要な データを入力します。

ッチ制御 入力 計算結果	
(ハン) () () () (() () () () () () () () () () () () () ()	
小位とその時の混水面積を与え容量を算定する 検索式	
⑥ 仕つ開経体 ● 甲均面積を有する柱体 枚加の小気は以下入力和例 ● (何) ⑥ 3倍 ● (何) ⑦ (市((常量計算3倍)) ● 4倍 ?を認知の満出量あり ▼ 下語へ続点する	計量差行うケー2歳 ★ ケース数: ★ 一満水環防計量結果のビーク時の)分毎の出力 ビーつ時の)分毎の出力を行う 出力する時間時間目 (分): :
t×期許容量の計算 ● 概要株式の計算 計留性差の計算 計留性差の代質の能容量の総称(n°3): 18380.000 浸活強度(nn/hr) : 11.2300 浸透強度(sn/hr) : 28.300	
結+堆積土砂量の計算 マ 計算する]

• ● 封法した 合形せき 毎形2段せき **ポンプ放流** 「 放流する 洪水吐きの計算 || 計算する 計算を行うケース数-ケース数 : 1 ▲

その時の湛水面積を与え容量を算定する 算定式 C 平均面積を有する柱体 水位の小数点以下入力桁数 ○ 3桁 C 4桁(容量計算3桁) C 4桁 洪水調節計算結果のビーク時の1分毎の出力 貯留施設の流出量あり一 出力する時間範囲 t(分): ± 10 ▶ 下流へ放流: 洗水調節容量の計算 「 厳密能法の計算 「 簡優法の計算 「智識語の評留可能容量の総和 (a^3): | 18380.000 : 11.2900 浸透強度(nn/hr) 浸透処理区域の集水面積(ha) 設計堆積土砂量の計算 ▽ 計算する

施設切替: 防災調節池

- 許容放流量 「 Hanningの平均流速公式で算出する 直接入力 Qo (m^{*}3/s) : [

- 洪水調節方式 C 白然調節方式
C ピークカット方式

6.0000

スイッチ制御|入力 |計算結果|

水位容量曲線の入力方法・

✓確定 ★ 取消 ? ヘルブ(H)

一施設切替

施設配置で入力指定した貯留施設分の入力が必要です。 貯留施設の切り替えは、施設切替リストボックスにて切り替え ることができます。

スイッチ制御

洪水調節方式

洪水調節方式について自然調節方式かピークカット方式の何 れかを選択します。

許容放流量

<Manningの平均流速公式で算出する:チェックなし> 直接入力Qo(m^3/s):6.0000

水位容量曲線の入力方法

水位容量曲線を調整池で入力する場合の指定方法「水位と容 量を直接入力する」か、「水位とその時の湛水面積を与え容量 を算定する」の何れかを選択します。

水位の小数点以下入力桁数

水位容量曲線の表入力の水深入力時の小数点以下桁数を指定 します。

貯留施設の流出量あり

下流に設置している貯留施設に流出量ある場合には、チェック します。厳密解法の計算を行わない場合は、指定不可能です。

洪水調節容量の計算

<厳密解法の計算:チェックなし> <簡便法の計算:チェック> <貯留施設の貯留可能容量の総和(m^3):16380.000> <浸透強度(mm/hr):11.2900> <浸透処理区域の集積面積(ha):28.900>

設計堆積土砂量の計算

<計算する:チェック>

せき放流

せきの放流を行う場合には、せきの形状(四角形せき、三角形 せき、台形せき、矩形2段せき)を選択します。

ポンプ放流 ポンプ放流を行う場合、チェックします。 洪水吐きの計算

<計算する:チェックなし>

計算を行うケース数 <ケース数:1>

洪水調節計算結果のピーク時の1分毎の出力

洪水調節計算結果のピーク時の1分毎の出力を結果確認画 面、出力にて表示・出力する場合に、チェックします。
施設切替: 防災調節池	· ·
ッチ制御 入力計算結果	
部門 ケース1 Manningの平均公式による流下能力 読録 オリフィス情報	堆積土砂量 「 調節池容量
売量係数 C1 奇景係数 C2	池底の標高(n): 0.000 水深(n) 容量(n°3) へ
→ 計画水位Hu(n) 4.000	
	2
C2 0.60	3
	4
	6
池底	7
	14.00000-0100
FairへMail 9 0 9 = ス 放流するケース番号 : 1 🛓	
	c 1mm 計算ビッチ(秒) : 30 滞放水位 (n) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	C 0.01mm 計算最大時間(時): 120
	計算終了条件(n'3/s): 0.1000000
	詞節後流量(m^3/s): 0.001

—入力

調節池

オリフィス情報

ここで入力した流量係数C1、C2はオリフィス入力時の初期値 として用います。

下流へ放流するケース

下流へ放流するケース番号を指定します。

調節池容量

厳密解法の計算を行わない場合は、指定不可能です。

洪水調節容量計算 厳密解法の計算を行わない場合は、指定不可能です。

計算時間(時)は、流出量を0にするまで計算を行う場合は計算時間を0とします。

計算ピッチが短いほど、洪水調節計算の計算精度が向上しま すが、処理時間は長くなります。

計算最大時間(時)は、「計算時間(時)」を0と指定した場合のみ 入力可能です。

計算終了条件(m^3/s)で指定した流出量より小さな流出量を検出した際には、洪水調節計算を終了します。

調節後流量(m^3/s)は、「スイッチ制御」タブの「洪水調節方 式」で「ピークカット方式」選択時に入力可能となり、洪水調 節計算時に、入力した値以上の流量は流出しないようにしま す。

	Manning()+x)/2	パテリーよう流し	ne∕j axaT	地位土砂重	1		
ス名称	:				11.00.00.00		
No.	オリフィス形状	自動計算	下段計算	IIXAR	C 含む	☞ 含まない	
1							
2					┌ ポンプ放流―		
3					C 含む	€ 含まない	
4							
5							
6							
7							
8							
9							
10							
_		1					

ーケース1

「スイッチ制御」タブで計算を行うケース数に指定したケース 数分のケース番号タブが表示されます。 ケース番号タブの入力データは、各ケース異なる放流施設(オ リフィス情報および、せき放流、ポンプ放流)を入力することが できます。

ケース名称

ケース名称を入力します。(半角64文字以内)

オリフィス詳細

オリフィス形状を最大10個まで設置することができます。 本データでは入力は不要です。

せき放流

ポンプ放流

「スイッチ制御」タブで「ポンプ放流」を「放流する(チェック)」としている場合に入力することができます。

F留施設 ×	
她設切響: 防炎須賀節池	
スイッチ制御入力 計算結果 調約池 ケース1 [設計堆版主役量]	
 計算方法 ご 堆積土珍量は海年半波する C 集水面積は工事面積を用いる 	ケース名称
- 土地造成完7後 □ 計画する	<集水面積は工事面積を用いる:チェック>
土地造成中 設計堆積年数(年): 150.0 日本 日本	<mark>土地造成完了後</mark> <計算する:チェックなし>
1 30,000 2 50,000 3 20,000 4 V	土地造成中 <設計堆積年数(年):3> <設計値(m^3/ha・年):150.0>
	年 造成面積(ha)
	1 30.000
	2 50.000
_ ✓ 確定 _ ★ 取消 ? ヘルブ(1)	3 20.000

2 計算を確認する

「計算確認」 ボタンをクリックし計算および計算結果の確認を します。

2-1 流域

流域の計算結果を表示します。 流域切替スイッチにて流域を切り替えて確認してください。 流域の計算結果は、流域入力データ(ハイドログラフの計算タ イプ)によって表示が異なります。

①合理式

- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・流出ハイドログラフ
 ・時間降雨分布曲線
- ②修正RRL法
- ・降雨強度~継続時間曲線
- ・有効降雨曲線
- ・流入ハイドログラフ
- ・流出ハイドログラフ
- •時間降雨分布曲線
- ③合成合理式
- ・降雨強度~継続時間曲線
- ・計画降雨波形および流量計算表
- ・単位時間経過流量表
- ・流出ハイドログラフ
- ・時間降雨分布曲線

2-2 貯留施設

▶ 貯留施設計算結果画面					-		×
施設切替: 防災調節池			¥				
総括表 上流施設 簡便法 設計堆積土砂量							
最終調節池名称	防災調節池						
直接流域	流域						
洪水到達時間(∎in)	60						
許容放流量(∎³/s)	6.0000						
必要洪水調節容量(簡便法)(∎³)	75780.900						
上流施設総面積(ha)	100.000						
設計堆積土砂量 造成中 3年(∎ ³)	22125.000						
		表示設定	印刷	-	[開じる(Q)]	? ^	₩7*(<u>F</u>

貯留施設の計算結果を表示します。 施設切替スイッチにて貯留施設を切り替えて確認してください。

計算結果の判定結果を表示します。

貯留施設計算結果の詳細(1ケース指定時)

- ・総括表
- ·上流施設
- ・水位容量曲線
- ·洪水調節計算
- ・簡便法
- ·設計堆積土砂量
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

貯留施設計算結果の詳細(複数ケース指定時)

- ・全ケース
- ・結果一覧
 - ・洪水調節計算
 - ・洪水吐きおよび放流施設
 ・ハイドログラフ
- ・上流施設
- ・水位容量曲線
- ・簡便法
- ·設計堆積土砂量
- ・ケース1~5(入力指定したケース数分表示します)
- ・総括表
- ・洪水調節計算
- ・洪水吐きおよび放流施設
- ・ハイドログラフ

入力データの指定方法により表示されない項目があります。

第6章 操作ガイダンス(浸透施設に関する入力)

1 モデルを作成する

「防災調節池等技術基準」、「流域貯留施設等技術指針(案)」指定時には、「浸透施設」を設置することができます。 ここでは、浸透施設を設ける場合に入力が必要となる項目「施設配置」と「浸透施設」の入力について説明します。 その他の入力については、第2章、または第4章を参照してください。

(使用サンプル: Sample各種浸透施設.f7a、Sample雨水浸透施設の整備促進に関する手引き例.f7a) 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 施設配置

名称

各施設の名称を入力します。(半角64文字以内)

形式

浸透施設、貯留施設をリストボックス形式で選択します。

下流施設番号

下流施設の番号(施設配置表入力の右側の番号)を入力しま す。 最終貯留施設の下流施設番号は「0固定」としており、必ず最

No.1 <名称:耳川流域> <形式:流域> <下流施設番号:2>

終貯留施設は設置されます。

No.2 <名称:耳川浸透施設> <形式:浸透施設> <下流施設番号:0>

_施設配置データを入力後、「描画」 ボタンを押してください。 画面下側に施設配置図が描画されます。

【施設配置のルール】

1.最終貯留施設の設置は不要です(必ず最後に設置されます)。

2.流域は、流域を上流、下流施設へ設置(流域⇔流域)すること はできません。

3.浸透施設の上流に設置できる流域数は1つだけです。

4.浸透施設は、浸透施設を上流、下流施設へ設置(浸透⇔浸透) することはできません。

5.貯留施設の下流施設には、浸透施設を設置(貯留→浸透)することはできません。

1-2 浸透施設

to the second se	
イッチ制御 浸活量入力 設計浸活量 有効雨量とハイドログラ:	7
雨水浸透施設扶冻指針(案)調査・計画編 浸透 の H18年増補改なT版発行 C H24年増補改なT版増制 の 有対	豊賀出方法 ☆ ○ 一定量差し引きモデル ○ 貯留浸透モデル
設計浸透量の編集	
各浸透施設の入力指定 ▽ 浸透トレンチ □ 浸透ます □ 透水性離院 □ 浸透肥満	
雨水漫通施設の整備促進に関する手引き(案) 雨水漫通効果の概 ○ 物便当による流出抑制効果の計算をする	(第方法の計算 (予 物便測による流出抑制効果の計算をしない)
雨水浸透効果の概算方法の計算 - 遠緒レベルの選択 で 河川走地レベル	C 小排水区や開発域レベル(10mk以下)
- 開発前(対策前)の放遠径度の指定方法 で 遠出量を指定 の 遠出活動を指定	開発後(対策後)の放流強度の指定方法 で 流出量を指定 の 流出価格数を指定
- 浅量の程定方法 の 内部計算 の 直接入力	平均浸透強度の参考値直接入力
同同遺類レベル	小排水区や間発想レベル(10hal;(下)
- 貯留浸透併用の場合における対策規模の機算 - のする - のしない -	平均基本時間の短縮効果の慣算 でする でしない

浸透施設の計算に必要なデータを入力します。 この画面では「スイッチ制御」、「浸透量入力」、「簡便法」タ ブでデータを入力し、「設計浸透量」、「簡便法による流出抑 制効果」、「有効雨量とハイドログラフ」タブで計算結果を確 認することができます。

スイッチ制御

雨水浸透施設技術指針[案]調査·計画編

準拠する雨水浸透施設技術指針[案]調査・計画編を指定します。

<H18年増補改訂版発行>

H18年では、浸透ますの設計水頭の計算範囲は1.5m以内と規 定されていましたが、H24年においては設計水頭が1.5mより 高い場合は、設計水頭1.0mと設計水頭1.5mの静水圧指標を 用い線形補間により当該設計水頭を求め補正係数を算出して 1.5mの比浸透量に乗じた値で計算します。 従いまして、H18年では設計水頭の入力範囲(上限値)を1.5mと

化しなして、F16年では設計不與の入力範囲(工限値)を1.5m2 していますが、H24年では5.0mを上限値としています。

H18年では、大型貯留槽の設計水頭の入力範囲(下限値)を 1.0mとしていますが、H24年では0.5mを下限値としています。

浸透量算出方法

<有効降雨モデル>

設計浸透量の編集

<設計浸透量の修正:チェックなし>

「設計浸透量の編集」をチェック(ON)の状態にすると「各浸 透施設毎の設計浸透量の入力方法」、「各浸透施設の入力指 定」が指定不可となります。

各浸透施設毎の設計浸透量の入力方法 <詳細入力>

各浸透施設の入力指定

各浸透施設毎に設計浸透量を直接入力、詳細入力する場合に 設置している浸透施設の種類をここで指定します。 <浸透トレンチ:チェック> <浸透ます:チェック> <透水性舗装:チェック> <浸透側溝:チェック> <大型貯留槽:チェック>

各浸透施設の詳細入力(初期値) <各種影響係数c:0.81>

雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効果の概算方法の計算

< 簡便法による流出抑制効果の計算をしない>

雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効果 の概算方法の計算は、浸透施設の設計浸透強度及び流量計算 に影響するものではありません。

雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効果の概算方法の計算を行う場合には、「簡便法による流出抑制 効果の計算をする」に指定してください。

以降の入力は、本スイッチがチェック(ON)の状態時のみに設定 可能な状態となり、「簡便法入力」タブを表示します。

浸透量入力

「スイッチ制御」タブの「各浸透施設毎の設計浸透量の入力方法」が「詳細入力」を指定している場合のみ入力することができます。

「スイッチ制御」タブの「浸透量算出方法」に従い、左から順 番に以下について入力してください。

・有効降雨モデル
 「施設名称」、「影響係数」、「詳細入力」、「施設規模」

・一定量差し引きモデル

「施設名称」、「影響係数」、「詳細入力」、「施設規模」

・貯留浸透モデル

「施設名称」、「影響係数」、「詳細入力」、「施設規模」、「単位施設の空隙貯留量」、「設計水頭」

表内の「詳細入力」ボタンをマウスにて選択(確定ボタンでも OK)すると各浸透施設の種類毎に以下の詳細入力画面を表示 します。

各浸透施設の詳細入力画面で「確定」ボタンを選択すると表 内の「単位浸透量」、「浸透量」が自動算出され表内に表示さ れます。

浸透トレンチ

<施設名称:トレンチ> <影響係数:0.810> <詳細入力:「…」ボタンをクリックします。入力は下記を参照し てください。> <施設規模:100>

詳細入力

「浸透面タイプ」、「入力」を入力し、「単位基準浸透量」で計 算結果を確認します。

浸透面タイプ

<浸透面タイプの選択:底面浸透のみ>

入力

<mark>土壌の飽和浸透係数</mark> <直接入力:チェックなし>

設置施設

<直接入力:チェックなし>

試験施設

<後期浸透量 Qt(m³/hr):0.235> <直接入力:チェックなし> 直接入力の場合は、「試験施設の比浸透量」の表入力は不要 なために入力不可状態とします。

比浸透量

ガイド図に従い、表入力を行ってください。 設置施設 <設計水頭h(m):1.000> <施設幅W(m):1.200> <係数 a:3.093>

試験施設

<設計水頭h(m):1.000> <施設幅W(m):1.000> <係数 a:3.093>

単位基準浸透量

浸透ます

<施設名称:円筒ます> <影響係数:0.810> <詳細入力:「…」ボタンをクリックします。入力は下記を参照し てください。> <施設規模:10>

詳細入力

「形状および浸透面タイプ」、「入力」を入力し、「単位基準浸 透量」で計算結果を確認します。

形状および浸透面タイプ

<形状の選択:円筒ます> <浸透面タイプの選択:底面>

入力

土壌の飽和浸透係数 <直接入力:チェックなし>

設置施設

<直接入力:チェックなし>

試験施設

<後期浸透量 Qt(m^3/hr):0.235> <直接入力:チェックなし> 直接入力の場合は、「試験施設の比浸透量」の表入力は不要 なために入力不可状態とします。

比浸透量

ガイド図に従い、表入力を行ってください。 設置施設 <設計水頭h(m):1.200> <施設幅D(m):4.000>

試験施設

<設計水頭h(m):1.500> <施設幅D(m):5.000>

単位基準浸透量

								-
施設名称	影響係数	詳細入ナ	1 色致规模(n*2	单位浸透量(a'3/hr/a'2))浸透量(a'3/hr)	単位施設の空隙貯留量(n*3)	設計水類(n)	^
凝結	0.810		500	0.0035	4.7803	0.000	0.000	
				0.0000	0.0000	0.000	0.000	
	建设名称 基英	MERCON MEXA MEXA 0.010	MARK-SAF 単成で4月 2000人 AMAZA 0.810 *** ***	M2Rを合作 R-W(FSH) [240入方(240所規()(*) AG2 0.010 *** 550 *** 550	MARACAFY 影響(FAR) [248人力]を起発機度(**2, M42(2)())()()()()()()()()()()()()()()()()	MERで合作 EU留(FER)[FER(-Y-ME2)(現代(小子)(加)(大学生)(小子子)(現法量(小子)/~) AEZ 0.010 550 0.0005 4.7263 0.0000 0.0000	MERE名作 新128(45) [214(入7)(42)(大規模(+2)(2)(2)(大量(+3)/h/h ⁻²)(2)(大量(+3)/h)) 単位(MER)(2)(29)(12)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	細胞を合作 影響(144) 加速入力(細胞機構(***) 加速大量(***)/小小(**)) 決速大量(***) (加速大力型) 決速 (***) (

透水性舗装

<施設名称:舗装> <影響係数:0.810> <詳細入力:「…」ボタンをクリックします。入力は下記を参照し てください。> <施設規模:500>

▲ 7 透水性舗装		×
入 力 単位設計浸透量		
─ 土壌の飽和浸透係数──		
□ 直接入力 土壌の飽和浸透係数 ko (m/hr	·): 0.00000	
- 設置施設		
□ 直接入力 比浸透量 Kf (m ²): 0	.0000	
武験施設		
後期浸透量 Qt (m^3/hr) : 0	.0118	
□ 直接入力 比浸透量 Kt (m ²): 0	.0000	
┌ 比浸透量		
	设置施設 試験施設	0.250
+ + + + + + +	係数 a	0.014
н[係数 b	1.287
係數 a = 0.014 b = 1.287		
【【】確定】	🗙 取消	? ヘルブ(<u>H</u>)

詳細入力

「入力」を入力し、「単位基準浸透量」で計算結果を確認しま す。

入力

土壌の飽和浸透係数 <直接入力:チェックなし>

設置施設

<直接入力:チェックなし>

試験施設

<後期浸透量 Qt(m[^]3/hr):0.0118> <直接入力:チェックなし> 直接入力の場合は、「試験施設の比浸透量」の表入力は不要 なために入力不可状態とします。

比浸透量

ガイド図に従い、表入力を行ってください。 設置施設 <設計水頭H(m):0.250> <係数 a:0.014> <係数 b:1.287>

試験施設

<設計水頭H(m):0.600> <係数 a:0.014> <係数 b:1.287>

単位基準浸透量

		8.3. th 1844	Contraction of	-	(in the s				_
1 9	レンチ 浸透	ます 透水1	1 SOBAL	現該部書 大	1976日 (1995)				
No	施設名称	影響係数	詳細入力	抽股規模(n)	単位浸透量(n ^{*3/hr/n)}	浸透量(n'3/hr)	単位施設の空隙拧留量(n*3)	設計水類(n)	^
1	195.0	0.810		200	0.155	30.966	0.000	0.000	
2					0.000	0.000	0.000	0.000	
3									
4									
5									
8									
7									
8									
2									
10									
11									
12									
13									
14		-							¥

浸透側溝

<施設名称:側溝> <影響係数:0.810> <詳細入力:「…」ボタンをクリックします。入力は下記を参照し てください。> <施設規模:200>

刀 単位設計浸透量		
土壌の飽和浸透係数		
□ 直接入力 土壌の飽和浸透係数 ko(m/hr): 0.00000	
設置施設		
□ 直接入力 比浸透量 Kf (m [*] 2):	0.000	
試験施設		
後期浸透量 Qt (m^3/hr) :	0.235	
□ 直接入力 比浸透量 Kt (m ²): □	0.000	
	 設置施設 試験施設 設計水預料(m) 施設幅 Ψ(m) 係数 α 	0.800 0.750 3.093
H a = 3.093		

詳細入力

「入力」を入力し、「単位基準浸透量」で計算結果を確認しま す。

入力 土壌の飽和浸透係数 <直接入力:チェックなし>

<mark>設置施設</mark> <直接入力:チェックなし>

試験施設

<後期浸透量 Qt(m³/hr):0.235> <直接入力:チェックなし> 直接入力の場合は、「試験施設の比浸透量」の表入力は不要 なために入力不可状態とします。

比浸透量

ガイド図に従い、表入力を行ってください。 設置施設 <設計水頭H(m):0.800> <施設幅W(m):0.750> <係数 a:3.093>

試験施設

<設計水頭H(m):1.000> <施設幅W(m):1.000> <係数 a:3.093>

単位基準浸透量

大型貯留槽

<施設名称:貯留槽> <影響係数:0.810> <詳細入力:「…」ボタンをクリックします。入力は下記を参照し てください。> <施設規模:10>

詳細入力

「浸透面タイプ」、「入力」を入力し、「単位基準浸透量」で計 算結果を確認します。

浸透面タイプ

<浸透面タイプの選択:側面および底面>

入力

土壌の飽和浸透係数 <直接入力:チェックなし>

設置施設

<直接入力:チェックなし>

試験施設

<後期浸透量 Qt(m^3/hr):0.235> <直接入力:チェックなし> 比浸透量 ガイド図に従い、表入力を行ってください。 設置施設 <設計水頭h(m):3.000> <施設幅W(m):30.000> <施設延長L(m):30.000>

試験施設

<設計水頭h(m):3.500> <施設幅W(m):30.000> <施設延長L(m):30.000>

単位基準浸透量

·法量算出方法:有効降的 施設種類	新モデル(音楽語) 施設規模	单位	(力) 単位設計浸透 量	単位	設計浸透量 (# ³ /hr)	
夏速トレンチートレ	100		0.219	a ³ /hr/a	21.855	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10	19	0,123	n ² /hr/fill	1,230	-
迹水性論装-論装	500	m ²	0.0095	a ³ /hr/a ²	4,7609	-
浸渍倒清-倒清	200		0.155	a3/hr/a	30.966	1
大型貯留槽-貯留槽	10	18	0.181	n ³ /hr/fill	1,805	1
合計					60.6162	1
憲次面積 A(ha) 浸透速度 Fc = 60.6182, 3.8388(m = 0.5051(m	2.000/10 m/hr) m/10min)					

——設計浸透量

本タブでは計算結果を即時に確認することができます。

- 各タブをクリックして、結果を確認してください。
- ・設計浸透量 (全体) ・浸透トレンチ
- ・浸透ます
- ·透水性舗装
- ・浸透側溝
- ・大型貯留槽

-有効雨量とハイドログラフ

スイッチ制御 陸使法入力 設計浸透量 陸使却による流出抑制効	果 有効限量とハイドログラフ
「耐水浸透施設技術指針(家)調査・計画編	量算出方法
タール58 地球型が17年至5 C いみをは地をな1757年間	かが不正す。
(* no++###5201050517 (* n24+###5201050###) (* 4 設計浸透量の編集 ▽ 設計浸透量の修正 設計浸透量 (m*3/hr): 100.0000	
各浸透細胞の入力指定 戸 決造トレンチ 戸 決活ます 戸 活水性加速 戸 浸透明	 ・ ・ ・
雨水漫道施設の整備促進に関する手引き(案)雨水漫通効果の#	電気法の計算
(* 物便街による流出抑制効果の計算をする	○ 物便測による流出抑制効果の計算をしない
雨水浸活効果の概算方法の計算 – 流域しべルの選択 ④ 河川流域しベル	○ 小排水区や開発域レベル(10hs以下)
開発前(対策前)の放流強度の指定方法	開発後(対接後)の放流強度の指定方法
○ 流出量を指定	○ 流出量を指定
○ 流出係数を指定	○ 流出係数を指定
法量の指定方法	平均滑活強度の参考値直接入力
(F 内部計算 C 直接入力	○する ○しない
□ 河川流域レベル - 野留漫透供用の場合における対策規模の機算 - ○ する	小請木区や開発刺しべル(10ha以下)

本プログラムでは、「雨水浸透施設の設備促進に関する手引き(案)」平成22年4月に記載している「雨水浸透効果の概算方法(簡便法)流出抑制効果」についても照査することができます。

スイッチ制御

雨水浸透施設技術指針[案]調查·計画編

準拠する雨水浸透施設技術指針[案]調査・計画編を指定します。

<H18年増補改訂版発行>

浸透量算出方法

<有効降雨モデル>

設計浸透量の編集

<設計浸透量の修正:チェック><設計浸透量の修正 設計浸透量(m^3/hr):100.0000>

設計浸透量の編集をチェック(ON)の状態に指定すると「各浸 透施設毎の設計浸透量の入力方法」、「各浸透施設の入力指 定」が指定不可な状態となります。

雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効果の概算方法の計算

<簡便法による流出抑制効果の計算をする>

雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効果 の概算方法の計算は、浸透施設の設計浸透強度及び流量計算 に影響するものではありません。

流域レベルの選択

雨水浸透効果の概算方法を算出する際の流域レベルについて 指定します。 <河川流域レベル>

開発前(対策前)の放流強度の指定方法 <流出係数を指定>

開発後(対策後)の放流強度の計算方法 <流出係数を指定>

流量の指定方法

雨水浸透効果の概算方法計算時に用いる流量の指定方法を指 定します。 <内部計算>

平均浸透強度の参考値直接入力

<しない>

平均浸透強度の参考値について任意の値を指定する場合には 「する」、内部で決定した値を用いる場合には「しない」を選 択してください。

内部で決定した値とは、平均浸透強度の入力値に小数点が含まれている場合はこれを含み整数型に変換後にマイナス-4までの値とします。

例えば、平均浸透強度が6.1000と指定した場合には、3.0, 4.0, 5.0, 6.0, 7.0の値を参考値として用います。

河川レベル

貯留浸透併用の場合における対策効果の概算 <しない>

本入力は、「流域レベルの選択」が「河川流域レベル」時に指定可能な状態となります。

小排水区や開発域レベル(10ha以下) 平均湛水時間の短縮効果の概算

本入力は、「流域レベルの選択」が「小排水区や開発域レベル (10ha以下)」時に指定可能な状態となります。

(→ 5年前前 物価差式力) [設計発送量] 物通知による流出部的効果 物効用量とハイドログラフ 耐死却による流出期時効果 設計光量量 (*3/a) : 100.000 流出所数 : 0.100 流量量加分型に対応数 : 0.500 流量量加分型に対応数 : 0.500 流量量加分型に対応数 : 0.500
18世紀とよる法出版時的県 18世紀年齢年(**2/4): 160.0000 法出任務: : 6.100 法重量加めの通知任務: 5.100 法重量加めの通知任務: 5.100 現現約法出任務: 2.100 開現約法出任務: : 6.200
B社F後後後(**/s): 1100_0000 満出所数 : 0.300 満地所数 : 2.4000 進度望知少(************************************
流出(F48) : 0.300 流域開始(小a) : 2.600 流量(注意(A),2)5(43)/4) : 2.600 高泉(注意(A),2)5(43)/4) : 2110.500 開発(約流出(F48) : 0.200
進減価額(ha): 2,000 満量登出の成出所称: 0,300 活量(直接入力))(a)(a)(a): 2(10,000 関発輸流出所称: 0,200
法量量出少以进址环航 : 0.100 注量(波明入77) (x°2/s) : 2110.000 開発航流出环航 : 0.200
法量(法指入力)(x(3)(x)): 2116-000 開発輸出出係数 : 0.200
間完約流出/乐教 : 0.200
開発結進出量 (s'3/s) : 10.000
間取(法法出量 (a'3/s) : 40.000
間理論成出量 (a^1)(z) : 14,000 開発信息量 (a^1)(z) : 48,000

簡便法入力

「雨水浸透施設の整備促進に関する手引き(案)」雨水浸透 効果の概算を計算時に必要な簡便法による流出抑制効果の計 算に関するデータを入力します。

「スイッチ制御」の「雨水浸透施設の整備促進に関する手引き (案) 雨水浸透効果の概算方法の計算」が「簡便法による流出 抑制効果の計算をする」を指定している場合のみ入力すること ができます。

「上流施設からの連動」ボタンをクリックし、関連データ「設計浸透量、流域係数、流域面積、流量算出の流出係数」を上流施設(流域)の入力データより取得します。

簡便法による流出抑制効果

<設計浸透量(m^3/s):100.0000> <流出係数:0.900> <流域面積(ha):2.000> <流量算出の流出係数:0.900> <開発前流出係数:0.200>

本タブでは計算結果を即時に確認することができます。

.

施設切替: 大泡川浸透施設

-簡便法による流出抑制効果

本タブでは計算結果を即時に確認することができます。

- ·流出抑制効果
- ・降雨ハイエトグラフ
- ·必要貯留高一浸透強度曲線

有効雨量とハイドログラフ

2 計算を確認する

2-1 浸透施設

🙀 浸透施設計算結果面面			×
施跟切替: 大定川浸运施18	•		
設計浸透量 時便治による流出抑制効果 有効雨量とハイドログラフ			
済活量算正方法: 執坊経術モデル(設計浸活量直接入力) 浸活理度で、P(A/10) 設計浸透量(exishn) 進活活理下で: 100,000/2,000/10 ま,0000(mA/bbin) で 5,0000(mA/bbin)			

浸透施設の計算結果を表示します。

施設切替施設スイッチで浸透施設を切り替えて確認してください。

·設計浸透量

・有効雨量とハイドログラフ

・簡便法による流出効果抑制効果

「雨水浸透施設の整備促進に関する手引き(案) 雨水浸透効 果の概算方法の計算」を「簡便法による流域抑制効果の計算 をする」に指定した場合には、簡便法による流出抑制効果の計 算結果を確認することができます。

「浸透施設」の「スイッチ制御」タブで「雨水浸透効果の概算 方法の計算」-「流域レベルの選択」を「河川レベル」を選択 し、かつ「河川流域レベル」-「貯留浸透併用の場合における 対策規模の概算」を「する」に指定した場合

- ·流出抑制効果
- ・降雨ハイエトグラフ
- ・必要貯留高-浸透強度曲線

・貯留浸透併用の場合の対策規模の概算

「浸透施設」の「スイッチ制御」タブで「雨水浸透効果の概算 方法の計算」-「流域レベルの選択」を「小排水区や開発域レ ベル(10ha以下)」を選択し、かつ「小排水区や開発域レベル (10ha以下)」-「平均湛水時間の短縮効果の概算」を「する」 に指定した場合

- ·流出抑制効果
- ・降雨ハイエトグラフ
- ・必要貯留高-浸透強度曲線
- ・平均湛水時間の短縮効果の概算
- ・数値確認
- ·必要貯留高-浸透強度曲線

第7章 Q&A

1 システム編

- Q1-1 「システムリソースが不足しているため、このまま継続すると動作が不安定になる可能性があります。」と表示された際の 使用可能リソースの拡張方法は?
- A1-1 本メッセージは、現在ご使用の環境において、製品を実行するために必要なシステムリソースが不足している場合に表示 されます。

製品が正常に動作するためにはある程度のシステムリソースが必要ですが、そのシステムリソースが不足した場合、

「Win32エラー」が発生する
 「モジュールエラー」が発生する
 ・ダイアログが開けない
 ・計算実行できない
 ・印刷実行できない
 ・フリーズする

など、製品の使用に支障をきたす現象が発生する可能性が非常に高くなります。

システムリソースは、本製品だけでなく常駐プログラムや他のアプリケーションなど動作している全てのプログラムで使用 されるため、その数が多くなれば消費される量も多くなります。 そのため、十分なシステムリソースが確保された状態で製品をご使用いただくことが一番の回避策となります。

なお、『Windows7/8/10』では、リソース管理が向上しており、実装メモリによりシステムリソース等が拡張されますので、 システムリソース不足が発生することはほとんどありません。

使用可能なシステムリソースの拡張は、以下の方法にて行ってください。

- ・他のアプリケーションを終了する
- ・常駐プログラムを終了する。(可能であれば、以後、使用しない)
- ・壁紙を使用しない。
- ・デスクトップ上のアイコンの数を減らす
- ・システム起動時に自動起動されるメニューを停止する

また、常駐プログラムや他のアプリケーションが終了しても使用されていたシステムリソースが全て解放されるわけではご ざいませんので、その場合はマシンを再起動させたうえで、他のプログラムを起動せずに、製品のみを実行してください。 なお、OS付属のリソースメータで使用可能なリソース容量が確認できますので、表示されたメッセージ中の容量[**%]を 目安に使用可能リソース容量を確保してください。

Q1-2 「Internet利用による問い合わせ」を選択すると「問い合わせ支援ツールがインストールされていません。」とメッセージ が表示されるが、回避方法は?

A1-2 本メッセージは、現在ご使用の環境において、弊社提供「問い合わせ支援ツール」がインストールされていない場合に表示されます。

この「問い合わせ支援ツール」は、弊社FORUM8の製品開発部署宛てに直接お問い合わせのメールを送信します。

製品をインストールする際に「問い合わせ支援ツール」をインストールすることが可能です。 製品をインストール時に「問い合わせ支援ツール」をインストールしていない場合には、別途、製品CD-ROMから製品の インストールと同様に「問い合わせ支援ツール」をインストールする必要があります。 また、インターネットから簡単にダウンロードも行えます。

2 流域データ(降雨強度式)編

Q2-1 降雨強度式を2式併用した降雨強度曲線にて計算結果を確認したい

A2-1 流域-降雨強度式タブ内の降雨強度式数を2(式)に指定し、右側の「複数式の算定方法」スイッチが選択可能な状態となりますので「合計」を選択した後に、それぞれの降雨強度式の入力を行って下さい。

2式併用とは、異なる降雨強度式を1つの降雨強度曲線として取り扱うことを意味しており、以下のような考えで降強度曲線を構成します。

入力した1式の降雨継続時間をT1,2式をT2とすると、降雨強度式の使い分けは、

・0~T1:1式 ・T1~T1+T2:2式

Q2-2 降雨強度を直接入力する方法は?

以下に手順を記述いたします。

A2-2

1.「基本条件」タブの「降雨強度の計算」を「降雨強度直接入力」に指定する。

2. 「降雨強度直接入力」 タブを開く

3.入力項目の選択(降雨強度/降雨量/流量)を指定する。

※「流量」が選択できるのは、「ハイドログラフタブ」で「合理式」を選択している場合のみです。「修正RRL法」選択時には、流量の直接入力は行えないためお気を付けください。

4. 「計算時間単位Δt」、「降雨継続時間t」の入力を行う。

- ※お考えの値を適宜入力してください。
- 5.降雨強度直接入力表にて、流量を入力する。
- 6.同画面内の計算ボタンを押下する。

※メッセージが表示されるので、「はい」を選択していただくと「降雨強度」、「降雨量」を自動計算し、表にセットします。

「降雨強度」、「降雨量」、「流量」のうち、「降雨強度」の入力は必ず必要となります。 しかし、上記6.でもご説明しましたが、「計算」ボタンを押下していただくことで、入力項目から非入力項目への自動計算 を行いますので、実際に入力していただく項目は「降雨強度」、「降雨量」、「流量」のうち1つで結構です。 ※入力後、計算ボタンを必ず押下してください。

入力完了後、同画面内の「ファイルへ書き込み」 ボタンより、現在入力している降雨強度直接入力データを (*.rdi) 形式で 保存することが可能です。 また、降雨強度直接入力データ (*.rdi) は「ファイルから読み込み」 ボタンより読み込むことが可能です。

新規入力を行う場合や、データの大幅な修正を行う場合などは、流域画面から入力された方が効率的です。

Q2-3 「土地改良事業設計指針「ため池整備」平成18年2月」のP-136に記載している内容「ため池への流入量は、各時間の流量を20%割増した値とする」についてモデル化することができますか?

A2-3 可能です。 本製品の基本データ及び流域入力画面のハイドログラフタブ内の「各時間の流量割増値(%)」にて指定して下さい。

Q2-4 長時間降雨強度式について対応しているのでしょうか?

- A2-4 本製品の降雨強度式は、短時間降雨強度式(分単位)または、長時間降雨強度式(時間単位)を選択することができます。 ただし、以下の降雨強度式につきまして、取り扱いを固定としており、選択することができません。
 - ・近畿地方整備局型…短時間降雨強度式として取り扱います。
 - ・山梨県型…長時間降雨強度式として取り扱います。

本製品で選択可能な降雨強度式以外の長期降雨強度式を用いる場合には、入力データ-流域-降雨強度式タブ内の降雨 強度式の表入力内の降雨継続時間t(時)にて直接入力して頂きたいと存じます。

また、降雨強度式の名称は、適用基準入力画面の降雨強度式の名称指定で任意の名称を指定することができます。

- Q2-5 土地利用状況定数Cは計算にどのように影響するのか?
- A2-5 土地利用状況定数CはKinematic Wave理論にて洪水到達時間を計算する場合に用いられます。
- Q2-6 洪水到達時間の指定方法について?
- A2-6 本製品の洪水到達時間の入力は、流域-降雨波形タブ内の計算時間単位 Δtにて(分)単位で指定して下さい。 入力する値は同画面の洪水到達時間(参照値)を参考にして頂き適値を指定して下さい。通常のモデルでは5分、10分、15 分、20分ときりのよい値を指定することをお勧め致します。 また、現在では各都道府県にて定められた洪水到達時間がございますのでこちらに付きましてもご確認頂きたいと存じま す。
- Q2-7 計算書の結果を打ち出すと開発前、開発後の流出係数が同じ値となっています。 開発後の流出係数を変更したいのですが、どこか入力する箇所があるのでしょうか?
- A2-7 本製品の流出係数の入力は土地利用状況により、開発前、開発後共通としております。 林地開発基準では、開発前と開発後別々に流域面積を指定することで開発前、開発後の流出係数を内部で計算していま す。

従いまして、開発後の流出係数を変更してモデル化する場合には、開発前と開発後別々に流出係数、流域面積を指定する ことでご希望のモデルを入力することができます。

- Q2-8 基本データ入力画面と流域入力画面で2回流域データの入力がありますが、どのような違いがあるのでしょうか?
- A2-8 基本データは、流域の初期値データとして用いられます。 流域データを作成後に基本データを修正しても流域データには影響はありません。 基本データを修正後に新たに流域データを追加で作成すると基本データが設定されます。
- Q2-9 滋賀県の降雨強度式は対応可能でしょうか?
- A2-9 滋賀県の降雨強度式は本製品にてモデル化することができます。 モデル化の際には基本データ入力画面、流域入力画面-降雨強度式タブ内の降雨強度式選択にてクリーブランド型を指定 していただきたいと存じます。
- Q2-10 流出係数は、開発前、開発後の何れかの値を入力するのか?
- A2-10 本製品は、開発前か開発後の何れかを計算する仕様となっており、開発前、開発後両方のモデルを計算する場合には、2 つのモデル(ファイル)を作成して頂きたいと存じます。
- Q2-11 降雨強度の計算において直接入力とした場合、直接入力のタブが表示されますが、消防庁から公開されている実際の降雨量の数値を基に計算が出来ると考えて宜しいでしょうか?
- A2-11 実降雨量を使用する場合には、各都道府県より示されている降雨量を採用した方がよいと判断しています。

消防庁から公開されている降雨量は、1時間毎の情報がほとんどであり、リアルタイム観測の雨量であると考えており、こ こから得られる降雨量は恐らく0.0の場合がある為に、本製品の降雨直接入力データとしては、適していないと判断してい ます。

Q2-12 自治体で定められている降雨強度式を利用することができるようですが、どのような手順で利用するのでしょうか?

A2-12 本製品の都道府県ごとの降雨強度式データファイルにつきましては、本製品インストール時に同時にインストールしており、本製品をインストールしたフォルダにある「Sample」フォルダ内の都道府県名称のフォルダに保存されております。

本製品のメインメニュー | 基準値 | 降雨強度式の登録から開く基準値(降雨強度式)入力画面の「読込」ボタンで上記フォ ルダに保存されている降雨強度式ファイル(拡張子.rit)を読み込むことにより降雨強度式を登録することができます。 登録された降雨強度式は、基本データ入力画面、および流域入力画面 | 降雨強度式タブの「基準値から選択する」 ボタン で選択可能になります。

なお、都道府県ごとの降雨強度式データファイルは製品バージョンアップ時に順次追加を行っております。

Q2-13 広島県の降雨強度式で計算を行うことができますか?

A2-13 本製品は広島県の降雨強度式で計算を行うことができます。

入力データ | 基本データ、または流域入力画面の降雨強度式タブにて降雨強度式を2式、複数式の算定方法を合計と指定 します。

1式目にt=10min~180minの式を入力し、2式目にt=3hr~24hrの式を入力します。

広島県の降雨強度式につきましては、地域ごとの基準値データファイル(*.rit)をご用意しています。 基準値データファイルは、メインメニュー|基準値|降雨強度式の登録より開く基準値入力画面より登録することができます。 広島県の基準値データファイルは、本製品をインストールしたフォルダ|Sampleフォルダ|hiroshimaフォルダに保存していますので、こちらをご利用いただきたいと存じます。

Q2-14 降雨強度式の入力にて、前のバージョンで選択できていた山梨県2型が選択できなくなっています。選択する方法を教えて下さい。

A2-14 本製品のVer.8.0.0より、タルボット型、シャーマン型、久野・石黒型、クリーブランド型の降雨強度式について、長時間降 雨強度式(時間単位)に対応いたしました。 これにより、山梨県2型の降雨強度式はクリーブランド型の長時間降雨強度式(時間単位)と同一の式のため、クリーブラン ド型に統合しております。 山梨県2型の降雨強度式を入力する場合につきましては、降雨強度式をクリーブランド型、式中tの単位を時間単位と選択 していただきますようお願いいたします。

なお、Ver.8.0.0以降では、旧バージョンにて山梨県2型が選択されていたデータを読み込んだ場合、定数b、nの値により 以下のように降雨強度式を再設定します。

- ・b=0.0000 … シャーマン型の時間単位
- ・b≠0.0000、かつ n=1.0000 … タルボット型の時間単位
- ・b≠0.0000、かつ n=0.5000 … 久野・石黒型の時間単位
- ・上記以外 … クリーブランド型の時間単位

Q2-15 流域計算結果の計画降雨波形及び流量計算表に表示・出力されている「回数n」と「n・r」の意味を教えてください

- A2-15 「回数n」、「n・r」列は、「In(mm/hr)」列の算出で使用するパラメータとして表示しています。
 回数nにおける降雨強度Inは、下式で計算しています。
 In=n・r_(n)-(n-1)・r_(n-1)
 ※「_(*)」は、下付きの添え字「*」を意味しています。
 「防災調節池等技術基準(案)」の計算例-4の表16 (P144) が、ご参考になるかと存じます。
- Q2-16 流域入力時に降雨強度を直接入力する場合、入力する降雨強度は、降雨強度式から算出されるrと単位時間の降雨に対す る降雨強度Iのどちらでしょうか
- A2-16 本製品の降雨強度直接入力につきましては、入力された各時間の降雨強度を直接用いて計算を行います。 従いまして、単位時間の降雨に対する降雨強度I(mm/hr)を入力していただきますようお願いいたします。 降雨強度Iにつきましては、「防災調節池等技術基準(案)」の計算例-4の表16(P144)が、ご参考になるかと存じます。
- Q2-17 「流域」入力画面の「流出係数、面積」タブにて、1つの流域に複数の地形の流出係数と面積を入力しています。 この時、流域計算時の流出係数には計算値を用いているようですが、この値の算出根拠をお教えください。
- A2-17 本製品の流域の計算に用いる流出係数につきましては、流域の各地形の流出係数と面積より、加重平均にて計算しております。 流域計算時の流出係数と面積につきましては、本製品ヘルプの、「計算理論及び照査方法 | 流域 | 流出係数、面積の計算」をご参照ください。

Q2-18 「流域」入力画面の「流出係数、面積」タブにて、複数の地形の流出係数と面積を入力しています。 この時、直接最終貯留施設へ放流する地形と、最終貯留施設の上流にある調節池に放流する地形を区別することはできますか。

A2-18 お客様のお考えのモデルを作成される場合、入力画面「施設配置」にて、流域を2つ設けていただきますようお願いいた します。 この時、一方は下流施設番号は0(最終貯留施設)とし、もう一方については最終貯留施設の上流に設けた調節池の番号に 設定します。 その後、「流域」入力画面にて、流域ごとに、「流出係数、面積」タブにて流出係数と面積を指定します。 この時、入力する流域の切り替えは、画面上部の「流域切替」にて変更することができます。

なお、複数の流域を設けるモデルにつきましては、本製品のサンプルデータ「sample合理式.f7a」が参考になるかと存じます。

Q2-19 計算書の流域のハイドログラフの項目に、時間降雨分布曲線図が出力されていますが、この図に出力されている雨量の算 出根拠を教えて下さい。

A2-19 「時間降雨分布曲線図」に出力している雨量は、「計画降雨波形及び流量計算表」に出力しております、回数n=1時の降 雨強度より、以下の式にて算出しております。 雨量 = 降雨強度In × 計算時間単位Δt / 60

なお、「時間降雨分布曲線図」につきましては、本製品が参考としております「防災調節池等技術基準(案)」のP.12の図 2.3、およびP.68の図2.1の方法にてグラフを作成しております。

- Q2-20 入力したい降雨強度式が君島式(クリーブランド型)で、パラメータのbが0.0です。この式を入力することはできますか。
- A2-20 本製品のクリーブランド型の降雨強度式(r = a/(tⁿ+b))は、b=0.0を指定可能です。 もしくは、シャーマン型の降雨強度式(r = a/tⁿ)を選択することでも対応可能です。
- Q2-21 入力画面「流域」のタブ「流出係数、面積」の土地利用状況定数Cには、どのような値を入力すればよいのでしょうか。
- A2-21 本土地利用状況定数Cは、「防災調節池等技術基準(案)」P.9~10のKinematic Wave理論による洪水到達時間の計算式 (2.4)の「C:流域の土地利用状態等で決まる定数」として使用します。 「防災調節池等技術基準(案)」P10では、開発前はC=180、開発後はC=60とすることが記載されています。
- Q2-22 流域を複数設置する場合に、入力画面「流域」のタブ「降雨強度直接入力」のデータを他の流域にも反映させる方法はありますか。
- A2-22 初期入力の場合は、入力画面「基本データ」の入力は、入力画面「施設配置」で設置した各流域の初期値となります。 このため、入力画面「基本データ」のタブ「降雨強度直接入力」の入力データは、各流域の初期値として設定されます。

既に入力が完了しているデータの場合は、タブ「降雨強度直接入力」の入力を「降雨強度直接入力データ(*.rdi)」に保存 後、流域切替にて反映させたい流域に入力を切り替えていただき、保存した「降雨強度直接入力データ(*.rdi)」を読み込 むことでデータを反映させることができます。 降雨強度直接入力データの保存、読み込みにつきましては、A2-2.をご参照下さい。

3 浸透施設編

- Q3-1 「雨水浸透施設の設備促進に関する手引き(案) 平成22年4月」についてモデルを検討したいが何か参考になるデータ等 を準備しているのか?
- A3-1 本製品に付随しているサンプルデータ「Sample雨水浸透施設の整備促進に関する手引き例.f7a」をご確認頂きたいと存じます。
- Q3-2 浸透施設の入力で大型浸透槽の場合、L/Wが1~5の範囲でも「範囲外」の表示がでて、変更か参考値の取り扱うか聞いて くるのはなぜか?
- A3-2 本製品の大型貯留槽における単位設計浸透量の計算は、W=5,10,20,30,40,50の計算式を用い、入力値Wについて比例 配分する際に小数点を含めた数値を用いております。 従いまして、入力値によってはL/Wが1~5(m)の範囲外となり、変更か参考値の取り扱うかのメッセージが表示される場合 がございます。
- Q3-3 貯留施設を設けない計算は可能か(もしくは設置してもその機能を無視出来るか)?
- A3-3 本製品は、調節池・調整池の容量計算を行なっている為に、貯留施設を設けない計算には対応しておりません。また、その機能を無視(貯留施設の計算を無視)することもできません。

Q3-4 貯留浸透モデルの浸透施設を設置した場合に貯留施設の計算でエラーが発生する理由は?

A3-4 上記の現象が発生する原因として、入力した浸透施設の浸透量が非常に大きいことが考えられます。 現在指定している浸透施設の入力が全て正しいとお考えの場合には、「貯留浸透モデル」では正しく計算できないモデル となります。 この場合、浸透量算定方法の計算スイッチを「有効雨量モデル」or「一定量差し引きモデル」に変更することをご検討いた だきたいと存じます。

Q3-5 空隙貯留浸透施設の計算を行うことができるか?

A3-5 「増補改訂 雨水浸透施設技術指針[案]調査・計画編」P-66に記載の貯留浸透モデルであれば本製品で計算することができます。

貯留浸透モデルにてモデル化する場合には、浸透施設入力画面-スイッチ制御タブー浸透量算出方法にて貯留浸透モデルを選択していただき、浸透量入力タブより、設置する各浸透施設について単位施設の空隙貯留量の値を入力していただきたいと存じます。

- Q3-6 計算書の浸透施設の有効雨量とハイドログラフの表出力に、流入量と浸透量の値が出力されていないようです。この理由 を教えて下さい。
- A3-6 浸透施設の浸透量算出方法を「有効降雨モデル」に指定しているためと考えられます。

浸透量算出方法を「一定量差し引きモデル」または「貯留浸透モデル」で計算を行う場合は、流入量と浸透量を計算に使用しますので、計算書に出力します。

一方、「有効降雨モデル」では計算に浸透施設への流入ハイドログラフと各時刻の浸透量を使用していないため、出力は 行いません。

「有効降雨モデル」、「一定量差し引きモデル」、「貯留浸透モデル」につきましては、「増補改訂 浸透施設技術指針[案] 調査・計画編」p.65~66、およびp.91~92をご参照下さい。

- Q3-7 浸透施設計算書で出力される降雨強度Iと、流域計算書で出力される降雨強度rの違いを教えて下さい。
- A3-7 流域計算書のハイドログラフに出力する降雨強度rは、降雨強度式から算出した降雨強度になります。 一方、浸透施設の浸透施設計算書の有効雨量とハイドログラフに出力する降雨強度Iは、流域の計算書で出力している単 位時間の降雨強度Inとなります。 降雨強度Inの算出方法につきましては、Q2-15.をご参照ください。
- Q3-8 浸透施設にて「貯留浸透モデル」を計算していますが、浸透量が0.0(m3/s)となってしまいます。 原因を教えていただけないでしょうか。
- A3-8 浸透施設の「設計水頭」が0.0(m)、または「空隙貯留量」が0.0(m3)のため、ご質問の結果となっていると考えられます。

タブ「スイッチ制御」の「設計浸透量の編集|設計浸透量の修正」にチェックを入れている場合、「浸透施設」入力画面| 「浸透量入力」タブより、各浸透施設の「単位施設の空隙貯留量」と「設計水頭」の入力をご確認下さい。

タブ「スイッチ制御」の「設計浸透量の編集 | 設計浸透量の修正」にチェックを入れていない場合、「浸透施設」入力画面 |「スイッチ制御」タブの「貯留浸透モデル」の「平均設計水頭」と「空隙貯留施設」の入力をご確認下さい。

4 貯留施設編

- Q4-1
 「防災調節池等技術基準(案)解説と設計実例P-156、図33水位容量曲線図」に示しているH-F(水位-面積)図に対応しているか?
- A4-1 「貯留施設」入力画面-「入力」-「調節池」にて、調節池容量の水深と面積を直接入力いただけます。
- Q4-2 ポンプ方式による計算が可能か?
- A4-2 ポンプ方式は、排水量固定として計算することが可能です。
- Q4-3 貯留施設→入力の画面で、オリフィス詳細表入力の「下段計算」のON/OFFによる相違点は?
- A4-3 「下段計算」は、オリフィスが上下2段のモデル時に、下部オリフィスのみを用い排水することを意味しております(上部オリフィスは排水されません)。

- Q4-4 オリフィスの位置が池の底より低いケース(例:防災調整池等技術基準P44の図参照)の入力方法は?
- A4-4 本製品では、オリフィス寸法HIは池底からの入力になっており、寸法HIは最小値を0.0としているため、オリフィス寸法入力 表で池底の下側にオリフィス寸法HI入力することはできません。 但し、防災調整池等技術基準P44の図でいいますと、池底を放流施設の底面として考え、「調節池容量」の表に、放流施 設底面から池底(計画堆砂面)までを考慮する入力を行うことで、池底より下側のオリフィスの入力に対応することができ ると考えております。
- Q4-5 放流施設が複数あるモデル化は可能か?
- A4-5 本製品の放流施設は以下のようになっていますのでご確認頂きたいと存じます。

 (1) オリフィス
 放流管(矩形)と放流管(円形)は、それぞれ上下に2段まで設置可能です。
 また、オリフィス形状は最大10個配置することができ、最大20個のオリフィスをモデル化することができます。
 (2) ポンプ放流
 ポンプの設置段数は、無制限に設置可能です。
 (3) せきによる放流
 四角せき、三角せき、台形せき、矩形2段せきを1種類のみ配置可能です。

■最後に

オリフィス、ポンプ放流、せきによる放流の併用は可能です。

- Q4-6 上流側に設置した貯留施設からの放流量がモデルに反映していない理由は?
- A4-6 上流側に設置している貯留施設のスイッチ制御タブ内の「貯留施設の流出量あり」-「下流に放流する」計算スイッチが チェック(ON)されているかを確認して下さい。 この計算スイッチをチェック(ON)した場合には下流側に設定した貯留施設に放流することができます。
- 04-7 最終貯留施設の洪水到達時間が指定した値と異なる理由は?
- A4-7 本製品の貯留施設の流入ハイドログラフは、上流施設(流域、浸透施設、貯留施設)で入力指定及び計算された洪水到 達時間(計算時間Δt)が個別に指定できますので、ここではそれらの計算時間Δtの最大公約数を求め、流入ハイドログラ フを計算します。

上記については、本製品オンラインヘルプ「計算理論及び照査方法→貯留施設→ハイドログラフ」に図解入りで説明して いますのでこちらもご確認頂きたいと存じます。

例えば、最終貯留施設の流域の洪水到達時間(計算時間Δt)を18分と上流側の貯留施設の洪水到達時間(計算時間Δt)を 11分と指定していますので最終貯留施設での洪水到達時間はその最大公約数1分として計算しています。 洪水到達時間をお考えの時間に変更する際には、上記にご説明しました各流域の洪水到達時間(計算時間Δt)の入力を再 度ご検討頂きたいと存じます。

- Q4-8 製品添付のサンプルデータ「Sample林地開発基準」で洪水調節容量は、厳密解法<簡便法となるのが一般的だと考えて いたが、異なる理由は?
- A4-8 簡便法と厳密解法の計算結果が異なる簡便法<厳密解法と算出される理由は、両者の計算方法が異なっていることが考えられます。

簡便法の計算は、流域面積、流出係数、許容放流量、降雨強度式を用い計算を行っていますが、厳密解法の計算は、降雨 強度式から算出した流量、池の容量寸法(H-V, H-A-V)、オリフィス等放流施設の寸法により流入量と流出量の差が調節 池に水平に貯留されるものとして計算していますので、両者の計算結果についての大小関係は必ずしも簡便法>厳密解法 とならないと考えています。

また、ご指摘されたSample林地開発基準.f7aが簡便法<厳密解法と算出される理由は、林地開発基準では、排水施設入 力画面のスイッチ制御タブ内の流出係数、流域面積「調節(調整)池の集水区域面積a、集水区域の開発後流出係数f'」を 簡便法の計算に用いており、また、上記にご説明した両者の計算方法の違いよることであり、両計算(簡便法、厳密解法) 結果は正しく算出されていることをどうぞご理解頂きたいと存じます。

Q4-9 下水道雨水調整池技術指針(案) 解説と計算例 昭和59年 社団法人 日本下水道協会を適用基準で作成することが できないでしょうか?

A4-9 お客様のご質問は恐らく、本製品入力データに「下水道雨水調整池技術基準(案)解説と計算例」の切り替えスイッチがないとご指摘されていると考えておりますが、本製品は、「防災調節池等技術基準(案) 解説と設計実例 社団法人 日本河川協会」を主たる適用基準としており、「防災調節池等技術基準(案)」 (調節池)と「大規模宅地開発に伴う調整池技術基準(案)」(調整池)についての「貯留施設、浸透施設」における、単独、複合設計および総合評価をおこなうことができます。

お客様がご希望されている「下水道雨水調整池技術基準(案)解説と計算例」についても当然ながら本製品開発時に参考にしておりますが、基本的に「防災調節池等技術基準(案)」と計算手法が同様な為に計算スイッチ等は設けておりません。

また、「下水道雨水調整池技術基準(案)解説と計算例」に記述している以下の計算には現在対応しておりません。どうぞ、 ご了承ください。

第1章 確率雨量と降雨強度曲線
1-1 確率雨量の計算
第3章 容量の算定
3-3 調節容量の計算(横越流方式)
第4章 ダム式調整池の放流施設及び余水吐き
4-2 放流管
第5章 ダムの安定
第6章 掘込み式調整池の計画

- Q4-10 調節池が地山の斜面等がそのまま残っておりいびつな形状になる場合でも対応しておりますでしょうか。自分で面積の計 算をすることが必要でしょうか。
- A4-10 面積は入力値となっています。 本製品の池の容量入力は、「水位と容量を直接入力する」か「水位とその時の湛水面積を与え容量を算出する」の何れか の方法にて指定して頂きたいと存じます。 また、「水位とその時の湛水面積を与え容量を算出する」を指定時には、算定式「せつ頭錐体、平均面積を有する柱体」の 何れかを選択することができます。
- Q4-11 降雨終了後の水位低下の算出は可能か?
- A4-11 本製品は「防災調節池等技術基準(案)解説と設計実例 社団法人 日本河川協会」を主な基準書としており、同基準書の P-155 図32 防災調節池の洪水調節計算フローチャートに従って、池の容量計算を行っており、その際にお客様のご質問 内容「降雨終了後の水位低下」も含み計算しています。

本製品に付随している「Sample防災調節池等技術基準(案).F7A」が、「防災調節池等技術基準(案)解説と設計実例 社団 法人 日本河川協会」の[計算例-6]P-153~P-159をモデル化したものでございますのでこちらについても是非、ご確認頂 きたいと存じます。

- Q4-12 親子調整池(調整池を二つ設定し、親からの流入を考慮)のモデル化は可能か?
- A4-12 複数(2以上)の調整池を設置してモデル化することは可能です。 上流側に親の貯留施設(調整池)、下流側に子の貯留施設(調整池)を設置するモデルとして作成して頂きたいと存じます。

但し、親→子、子→親の両方向に流入、流出する関係である場合には本製品でモデル化することができません。

- Q4-13 調節池の入力箇所のC1、C2の違いは何ですか?
- A4-13 C1は、オリフィス(水位高がオリフィス以内)、せきの流量係数の初期値を指定します。 また、C2はオリフィス(水位高がオリフィスより高い)の流量係数の初期値を指定します。
- Q4-14 本製品はオンサイト方式に対応していますか?
- A4-14 はい、対応しております。

適用基準入力画面の貯留施設の種類スイッチ「オフサイト、オンサイト」にて指定してください。

適用基準を林地開発基準に指定した場合にはオフサイト固定であり、流域貯留施設等技術指針(案)を指定した場合には オンサイト固定と設定します。

貯留施設の種類をオフサイトに指定した場合には、調節池、調整池の種類を指定することができますが、オンサイトを指定した場合には調節池、調整池の種類の指定を不可として調節池、調整池の呼び名を「流域貯留施設」と固定します。 ※このスイッチは、計算には影響しません。

Q4-15 下流へ放流するケースの番号を指定できない理由はなんですか?

- A4-15 ご質問の「下流へ放流するケース」は複数ケースを指定したモデル時のみに有効となります。従いまして計算を行うケース 数が1ケースの場合、ケース番号を修正・変更することができません。
- Q4-16 上流側に複数の施設を設置した貯留施設の場合に、この貯留施設への流入量が正しく計算されていないのはなぜ?
- A4-16 本製品の施設配置の入力は上流側から下流側へ施設の種別毎に入力致しますが、このルールと異なっている場合には正しく計算することができません。 従いまして、施設配置の入力を見直していただきたいと存じます。
- Q4-17 林地開発基準にて貯留施設が設置されない理由は?
- A4-17 林地開発基準については、排水施設において調節池設置の必要性の判定(現況流下能力Qpcとピーク流量Q30の比較)を 行っており、調節池の設置が不要(Qpc>Q30 (Qpc/Q30>1.0)の場合)には貯留施設(調節池)の計算は行いません。
- Q4-18 ポンプのみで排水するモデル化の作成方法は?
- A4-18 以下の入力手順でモデルを作成することができます。

1.貯留施設入力画面のスイッチ制御タブ内の「ポンプ放流」を「放流する」にチェックして下さい。
2.同入力画面の入力タブー調節(整)池タブ内のオリフィス情報、調節(整)池容量を入力します。
3.同入力画面の入力タブーケース1タブ内の「ポンプ放流」スイッチを「含む」に設定して下さい。
4.同入力画面の入力タブーポンプ放流タブ内の表入力(駆動位置、停止位置、排水量)を入力して下さい。

注記)

ポンプによる排水は一定量である為に、大きな排水量を指定すると正しく計算しない場合がございます。

- Q4-19 洪水調節計算結果の容量Vの算出方法を教えて下さい。
- A4-19 本製品の必要調節容量計算は、「防災調節池等技術基準(案)解説と設計実例」計算例-6(P-155)図32 防災調節池の洪水 調節計算フローチャートに準拠して計算しており、容量についてはP-154の以下をご確認頂きたいと存じます。
- Q4-20 流出量が0.000の場合など計算上の桁数はどのようになっているのでしょうか (小数点以下の4桁目は計算しているので しょうか)?
- A4-20 本製品のプログラム内部の計算は実数(倍精度→範囲:50×10^-324~1.7×10^308)で行っており、数値を出力・表示する 際は、表示する小数点桁数の次の数字を四捨五入した値を表示・出力しております。 しかし、電算上、明らかに計算上0割が発生する箇所及び、収束計算上収束できないような微小数値の防止等の除き、これ らの実数値に制限は設けておりません(流入量、流出量の計算においては制限は設けておりません)。

なお、洪水調節計算における計算終了条件については、貯留施設入力画面-調節池or調整池タブ内の「計算終了条件 (m³/s)」に0.1~0.00000001を指定することが可能としています また、本製品における計算誤差を詳細に説明すると、防災調節池等技術基準(案)P-155 図32 防災調節池の洪水調節 池の洪水調節池フローチャート内の許容誤差εの値を貯留施設入力画面-調節池or調整池タブ内の「許容誤差(1mm, 0.1mm, 0.01m)」において指定することができます。

- Q4-21 洪水調整計算における簡便法の計算を実施するには?
- A4-21 貯留施設入力画面-スイッチ制御タブー洪水調節容量の計算にて指定していただきたいと存じます。 ただし、防災調節池等技術基準および林地開発基準に準拠時には、この簡便法が計算できるモデルは、上流施設に流域 データが1つだけ設置されており、かつ、その流域に一つだけ、降雨強度式を入力している場合のみに有効となります。
- Q4-22 計算結果についてピークのときの数値を知りたいのですが、1分でのピーク値を表示する方法はありますでしょうか?
- A4-22 貯留施設入力画面-スイッチ制御タブー洪水調節計算結果のピーク時の1分毎の出力の「ピーク時の1分毎の出力を行う」 スイッチをチェックしていただき、「出力する時間範囲t(分)」にてピーク時の1分毎の出力する時間範囲を指定していただく ことで、ピーク時間-t(分)からピーク時間+t(分)の範囲について、1分毎の結果を表示・出力します。
- Q4-23 オリフィス形状の放流管(矩形)と小型矩形の使い分けは何でしょうか?
- A4-23 両者の違いは、放流量の計算が異なります。 計算式の詳細は製品のオンラインヘルプ「計算理論及び照査方法 | 貯留施設 | 洪水調節計算(厳密解法)」の■オリフィス からの放流 1)放流管(矩形、円形→放流量の計算が矩形の場合)①オリフィスが1段の場合及び、3)小型(矩形)をご確認頂 きたいと存じます。

Q4-24 湛水(水位)を考慮した貯留計算には対応しているか?

A4-24 対応しています。 貯留施設入力画面の入力タブ-調節池or調整池タブ内の洪水調節容量計算 湛水水位にて入力してください。

- Q4-25 洪水調節方式をピークカット方式にして計算すると放流量が非常に小さな値となりました。オリフィスを設けているのにな ぜでしょうか?
- A4-25 ご指摘の現象が発生する理由は、ピークカット方式の場合は貯留施設-入力タブ-調節池タブの洪水調節容量計算内の「調 節後流量(m^3/s)」で指定した流量より大きな流量は放流しないからであり、この値に適値(通常は許容放流量を超えない 値)を指定して頂きたいと存じます。
- Q4-26 許容放流量の指定方法をManningの平均流速公式で算出するに指定した場合はどの値が設定されるのか?
- A4-26 貯留施設入力画面-入力タブ-Manningの平均流速公式による流下能力で入力指定した値を用い、内部計算して一番小さ な流量を許容放流量として採用しています。

Q4-27 池底の入力する際に、堆積土砂を考慮して入力する必要があるのか?

- A4-27 堆積土砂量を池の容量(水位容量曲線)に含めモデル化する場合には、池底は堆積土砂量を含め指定して頂きたいと存じ ます。 堆積土砂量を池の容量(水位容量曲線)に含めずにモデル化する場合には、堆積土砂量の上側を池底の標高として堆積土 砂量は無視して入力して頂きたいと存じます。 防災調節池等技術基準(案) 解説と設計実例P-156 図33 水位容量曲線では、堆積土砂量を池の容量(水位容量曲線)に含 めたモデル化を行っています。
- Q4-28 水位容量曲線の入力を「水位とその時の湛水面積を与え容量を算出する」を指定していますが、洪水調節計算計算結果の 水位が算定式から手計算した水位と若干の差異が生じています。 なぜこのような結果となるのでしょうか?
- A4-28 本製品の「水位とその時の湛水面積を与え容量を算出する」指定時の水位容量曲線につきましては、貯留施設入力画面-入力タブー調節(整)池タブー調節(整)池容量にて入力された水深と面積を元にその水深での容量を計算しており、中間の 容量につきましては線形補間にて計算しております。 上記の理由としましては、「防災調節池等技術基準(案)解説と設計実例」P-158~P-159の表19 洪水調節計算結果数値表 においてグラフより読み取り(線形補間)の値を算出しているためです。
- Q4-29 オリフィス計算について、貯留施設入力画面で入力する計画水位と計算書 総括表の計画水位(HWL)で明示される計画水 位の違いはどこにありますか?
- A4-29 貯留施設入力画面-入力タブー調節(整)池タブの計画水位Huにつきましては、池底から洪水吐き敷高までの高さ(入力)で あり、洪水調節計算に用いています。 一方、計算書の総括表に出力しております計画高水位HWLは、洪水調節計算より求めた最終的な計画水位(計算結果)と なります。

計画水位Hu、計画水位HWL、および洪水調節計算につきましては、本製品の主たる準拠基準である「防災調節池等技術 基準(案)解説と設計実例」のP.154~P.157の[計算例-7]の内容に準拠しておりますので、こちらもご確認いただきたいと 存じます。

なお、本製品に付属のサンプルデータ「Sample防災調節池等技術基準(案).f7a」は「防災調節池等技術基準(案)解説と 設計実例」P.153~159、P.182~186までの検証用データとしていますので、同時にこちらもご確認いただきたいと存じま す。

Q4-30 ポンプのみの放流を計画していますが、オリフィスのないモデルを作成することはできますでしょうか?

- A4-30 可能です。 オリフィスが入力されている場合、貯留施設入力画面の入力タブ-各ケースタブのオリフィス詳細表入力画面にて、削除し たいオリフィスの自動計算をマウスで選択され、Deleteキーを選択することで削除します。
- Q4-31 貯留施設の許容放流量にはどのような値を入力すればよいか?
- A4-31 「防災調節池等技術基準(案)」P-150には、「一般に調節池下流河川の流下能力によって決定される。」と記載がございます。 許容放流量は、Manningの平均流速公式で求められますが、河川毎に許容放流量を定められている自治体等があると考えており、この許容放流量については、設計する市の河川担当者にご確認いただくことをお勧め致します。

Q4-32 ポンプで放流するモデルを作成しましたが、ポンプにて排水されないようです。原因を教えて下さい。

A4-32 本製品のポンプの駆動位置と停止位置は、池底からの高さの入力となります。 駆動位置と停止位置が正しく指定されているかをご確認いただきたいと存じます。

- Q4-33 貯留施設の結果確認画面の最大放流量や流入量、放流量が3桁で表示されていますが、この桁数を変更することはでき ますか?
- A4-33 貯留施設結果確認画面、および計算書出力時の最大放流量、流入量、放流量の計算結果の表示・出力時の桁数につきましては、オプションメニューの表示項目の設定画面-表示・描画・出力タブ-結果画面用タブの流量表示・計算書出力小数点桁数にて2桁から7桁までを指定することができます。 こちらをご希望の桁数に指定していただきたいと存じます。
- Q4-34 貯留施設のハイドログラフが水位がある状態から開始していますが何が原因でしょうか
- A4-34 貯留施設入力画面-入力タブー調節池(調整池)タブー洪水調節容量計算の湛水水位が入力されている場合、入力された 水位より洪水調節計算を開始します。
- Q4-35 2種類のモデルを作成しましたが、貯留施設の計算結果でハイドログラフを確認すると計算時間が異なっています。 1つ目のモデルは降雨継続時間を超えて計算を行っていますが、2つ目のモデルでは降雨継続時間前に計算が終了していま す。これはどのような理由からでしょうか?
- A4-35 本製品の貯留施設の洪水調節計算は、貯留施設入力画面 | 入力タブ | 調節池(調整池)タブ | 洪水調節容量計算の計算時間、または計算最大時間にて指定された時間まで洪水調節計算を行います。

ただし、上記の計算時間前に流出量が0となった場合にはその時点で計算を終了します。

ご質問のモデルの場合、1番目のモデルは指定された時間までの計算時間、または計算最大時間まで計算を行っており、2 番目のモデルでは流出量が0となったため降雨継続時間に達する前に計算が終了していると考えられます。

- Q4-36 貯留施設の結果確認画面のハイドログラフにて表示されている黒、青、赤の線は何を表しているのでしょうか
- A4-36 初期設定では、黒が貯留施設への流入量、青が貯留施設からの放流量、赤が許容放流量となります。 線色につきましては、メインメニュー |オプション|表示項目の設定または結果確認画面内の表示設定ボタンから開きま す表示項目の設定画面の表示・描画・出力タブ|結果画面用タブ|曲線図にて変更することができます。 貯留施設結果のハイドログラフの場合、第1曲線は流入量、第2曲線は放流量、第3曲線は許容放流量の線色となりま す。
- Q4-37 「防災調節池等技術基準」で計算を行う場合、「貯留施設」入力画面の簡便法の設定時に「貯留施設の貯留可能容量の 総和」を指定できますが、これは計算にどのように影響するのでしょうか
- A4-37 「貯留施設の貯留可能容量の総和」は、簡便法計算時の貯留施設併用による容量低減量となります。 簡便法の計算結果の洪水調節容量から、入力された「貯留施設の貯留可能容量の総和」を減算することで、貯留施設を 併用する場合の洪水調節容量を算出します。 貯留施設による容量低減につきましては、「防災調節池等技術基準(案)」P.119および、P.173をご参照ください。
- Q4-38 貯留施設入力画面にて結果確認を表示しようとすると、「調節池容量にデータが入力されていません」のエラーが表示されるのはなぜでしょうか
- A4-38 ご質問のエラーは、貯留施設入力画面の調節池(調整池)容量表に、データが2行以上入力されていない場合に表示します。 す。 本製品の貯留施設入力画面の調節池(調整池)容量表は、洪水調節計算時に水位容量曲線として用います。 従いまして、データが1行以下の場合は水位容量曲線を作成することができないため、エラーを表示しております。
- Q4-39 調節池に複数のオリフィスを設置していますが、オリフィス毎の流量を確認する方法はありますか?
- A4-39 複数の放流施設(オリフィス、せき、ポンプ)を設置した場合、本製品の貯留施設計算結果確認画面の「洪水調節計算」タブ より、右上の表ボタンで開く「洪水調節計算結果データ一覧」画面にて、設置されている放流施設毎の放流量を表示しま す。 また、計算書の「貯留施設 | 洪水調節計算結果」の項目に、放流施設毎の流量の表を出力しますので、こちらでご確認い ただくことができます。
- Q4-40 概算として簡便法での洪水調節容量の結果を確認後、厳密解法による計算を行いたいのですが、簡便法だけの計算を行う事はできますか
- A4-40 簡便法のみの計算を行うことができます。 「貯留施設」入力画面 | 「スイッチ制御」 タブ内の 「洪水調節容量の計算」より、 「厳密解法の計算」 スイッチのチェックを 外すことで、 簡便法での洪水調節容量計算のみを行うことができます。
 - なお、「厳密解法の計算」スイッチのチェックを外した場合、厳密解法の計算に必要な入力は不要となります。

- Q4-41 貯留施設の水位容量曲線にて、同じ水深で水面積が異なるモデルを入力したいのですが、可能でしょうか。
- A4-41 以下の手順で入力することができます。
 1.「貯留施設」入力画面の「スイッチ制御」タブの「水位容量曲線の入力方法」に「水位とその時の湛水面積を与え容量を算定する」を選択します。
 2.「入力」タブ内の「調節池」(または「調整池」、「流域貯留施設」)タブ内の「調節池容量」(または「調整池容量」、「流域貯留施設容量」)にて、水深と面積を入力します。
 なお、水深の入力は、下の行の水深 ≧ 上の行の水深となるように制限していますので、同水深を指定する場合は、この条件を満たす必要があります。
 また、最終行の水深は同水深にならないように入力する必要があります。
- Q4-42 「貯留施設」入力画面でせき放流を設けるように設定しましたが、「入力 | せき放流」タブで入力する「せきの底面までの 高さD」の寸法はどのように計算に影響するのでしょうか。
- A4-42 ご質問の寸法Dは、貯留施設の洪水調節計算に使用します。

本製品の洪水調節計算は、「防災調節池等技術基準(案)」P155のフローチャートを参考に逐次計算を行います。

この計算時に、貯留施設の水位がDを超えた場合は、この水位とDの差をHとして、せきの放流量を計算します。 貯留施設の水位がDを超えない場合は、堰から放流がないものとして計算を行います。

- Q4-43 「貯留施設」の結果画面や計算書の「水位~容量曲線図」に表示・出力される「池底の標高」が、「貯留施設」の入力画面 で入力した値と一致しません。この理由を教えて下さい。
- A4-43 「水位~容量曲線図」で表示・出力する「池底の標高」は、「貯留施設」入力画面の「池底の標高」の入力値に、同画面の 「調節池(調整池)容量」の表入力の1行目の水深を加算した値を出力しています。

上記の水深に0.0(m)以外の値が入力されていないかをご確認ください。

- Q4-44 林地開発基準の計算時に、入力画面「排水施設」の直接放流域の流域面積と流出係数を入力しましたが、これは貯留施 設への流入量に影響するのでしょうか。
- A4-44 ご質問の入力画面「排水施設」の「直接放流域の面積 ay (ha)」、「直接放流域の流出係数 f"」、「直接放流域の開発前流 出係数 f0"」は排水施設の計算において、許容放流量の計算に使用する入力項目となります。 このため、貯留施設計算時の流入量に影響はありません。
- Q4-45 2段調整池の場合、下流の貯留施設の流入ハイドログラフはどのように計算されるのでしょうか。
- A4-45 本製品の2段調整池は、上流に配置した貯留施設の下流に調整池を配置してモデル化します。 このため、下流の貯留施設の流入ハイドログラフは、上流に配置した貯留施設の流出ハイドログラフになります。

また、下流の貯留施設に流域が接続している場合は、上流貯留施設の流出ハイドログラフ+流域の流出ハイドログラフ を、流入ハイドログラとして計算に使用します。

- Q4-46 貯留施設のオリフィス寸法を自動計算する際に入力する「オリフィス敷高を基準とする設計水頭Ho」ですが、オリフィス敷高(池底の標高+断面下端高HI)+HoがH.W.Lになると思います。しかし、この値と結果確認画面の「計画高水位H.W.L」が 一致しません。この理由を教えて下さい。
- A4-46 本製品の計算結果における「計画高水位H.W.L」は、洪水調節計算結果の最高水位としています。 これは、本製品の洪水調節計算は「防災調節池等技術基準(案)」P.154から157の[計算例-7]を参考としており、この計算 例では、P.157の図34 洪水調節計算結果より、画高水位H.W.Lを洪水調節計算結果のH=31.94(m)としているためです。

ー方、本製品の「オリフィス敷高を基準とする設計水頭Ho」は、オリフィス寸法の自動計算における入力値となります。このHoには、想定したH.W.Lからオリフィス敷高を差し引いた値を入力することになります。 これは、「防災調節池等技術基準(案)」の[計算例-7]のP.156を参考としているためです。 この計算例では、第1次近似計算における設計水頭Hoは、想定したH.W.L(32.0m)ーオリフィス敷高(24.0m)として計算を 行っています。

- Q4-47 貯留施設の計算において設計堆積土砂量を計算する場合、算出した設計堆積土砂量は洪水調節計算に影響するのでしょうか。
- A4-47 設計堆積土砂量は洪水調節計算には影響しません。 「防災調節池等技術基準(案)」P.157では、洪水調節容量計算結果の必要調節容量+設計堆積土砂量を調節池総容量と しているためです。

Q4-48 貯留施設の計算結果や、計算書の総括表で出力される洪水到達時間が、等流流速法、土研式、Kinematic Wave理論の計 算結果の何れの値とも一致しません。この理由を教えてください。

A4-48 A流域の洪水到達時間の計算結果は、貯留施設の計算では使用しないためです。

本製品では、入力画面「流域」のタブ「降雨波形」に計算時間単位Δtを設けており、同画面の洪水到達時間参照値(各計 算手法の洪水到達時間の計算結果)を参考に、「計算時間単位Δt」を設定します。 貯留施設の計算では、この「計算時間単位Δt」を洪水到達時間として使用します。

洪水到達時間(計算時間単位Δt)につきましては、「Q2-6. 洪水到達時間の指定方法について?」をご参照ください。

5 洪水吐き編

- Q5-1 計算書の総括表の「非越流部標高」はどのように算出しているか?
- A5-1 ご質問の非越流部標高の値は、入力している池底の標高に池の水深(最深)を加算した値を算出しています。 例えばサンプルデータ「Sample合理式(ポンプ).f7a」の場合、以下のように算出しています。 池底の標高 = 24.000(m) 池の水深 =10.000(m) 非越流部標高 = 池底の標高+池の水深 =24.000+10.000 = 34.000(m)

Q5-2 洪水吐きの計算で用いる洪水到達時間の根拠は?

A5-2 本製品が準拠している「防災調節池等技術基準(案)解説と設計実例」のP-182においては、貯留施設計算時に用いた洪 水到達時間を用いるように記述されております。 そのため本製品においては、洪水吐きの入力画面の「上流施設からの連動」ボタンを選択することで実際に計算で用いた 洪水到達時間を設定しております。

> 但し、洪水到達時間の計算にはKinematic Wave理論のように降雨強度式(100年確率)を用い算出するものがあり、ここで 用いる洪水到達時間が異なる場合も考え、現行製品のように洪水到達時間を直接入力指定できるようにしております。

- Q5-3 横越流の公式はどの公式に対応しているか?
- A5-3 本製品で対応する正面越流、横越流の公式は本間の公式を用いており、水理公式集に記載している以下の公式には対応 しておりません。どうぞ、ご了承頂きたいと存じます。

a)De Marehi(デマルキ)の式 b)中川の式 c)Forehheimer(フォルヒハイマー)の式

Q5-4 洪水吐きの比流量は計算する必要があるのか?

- A5-4 比流量を計算するか否かは設計者ご自身でご判断下さい。 なお、本製品の洪水吐の計算は青本(防災調節池等技術基準(案))P-182~186に準拠していますのこちらをご確認してくだ さい。
- Q5-5 洪水吐にて1/200年確率で設計流量を1.2倍している理由は? また、「1/200年降雨強度」を選択した場合は流量を1.2倍することはないのではないか?
- A5-5 「防災調節池等技術基準(案)」P.182の[計算例-14]に、得られた年超過確率1/200流量を恒久施設基準第23条(P.39の規定)により1.2倍として設計洪水流量としている記述があるためです。

また、「「1/200年降雨強度」を選択した場合は1.2倍することはない」につきましては、降雨強度についてであり、このことにつきましても上記の[計算例-14]をご確認いただきたいと存じます。

- Q5-6 洪水吐の流量(越流量)計算に通常式があるがどのような形状をしているのか?
- A5-6 台形でございます。
 - 本製品で採用している越流量の通常式は、広島県等に準拠した計算式であり、「開発事業に関する技術的指導基準平成 21年4月 (2009.4) 広島県」に記載されています。

Q5-7 「洪水吐きおよび非越流部天端高」の「造成高」にはどのような値を入力すればよいか?

- A5-7 「防災調節池等技術基準(案)」に従い、池底の標高+池の水深+2.0mを推奨しております。 「池底の標高+池の水深+2.0m」の2.0(m)は、「防災調節池等技術基準(案)」に規定されている数値でなく、P-183 図 -55の洪水吐き越流幅L・越流水深H曲線に記載されている造成高TP.36.0mと、P-156 水位・面積・容量一覧表の水位高 T.P34.0mを減算して値を2.0mとして用います。 なお、「上流施設からの連動」ボタンにて上流施設から連動を行った場合、上記にて算出した造成高を取得しておりま す。
- Q5-8 洪水吐きー入力ー降雨強度式の入力画面で確率年を「100」としていますが、計算書ー洪水吐きの年超過確率では「200」 と出力される理由を教えて下さい。
- A5-8 計算書-洪水吐きの年超過確率の出力は、洪水吐き入力画面-入力タブ-設計洪水流量タブの降雨強度式(年確率)の選 択スイッチに従い出力しており、こちらのスイッチに「1/200年降雨強度」を指定しているために1/200年を出力しておりま す。 従いまして、1/100年の出力をご希望の場合、上記のスイッチに「1/100年(1.2倍)」を指定していただくことで出力すること ができます。
- Q5-9 洪水吐きの上流施設からの連動を行う場合、余裕高の低水部水位に値がセットされるがこの値はどこの値をセットしてい るのでしょうか?
- A5-9 上流施設からの連動時に余裕高の低水部水位にセットされる値は、貯留施設入力画面-入力タブー調節(整)池タブー調節(整)池容量の表入力から、容量が0以外で一番小さな水深に池底の標高を加算した値となります。
- Q5-10 「洪水吐きおよび非越流部天端高」の「越流高」にはどのような値を入力すればよいか?
- A5-10 「防災調節池等技術基準(案)」に従い、洪水吐きの敷高を推奨しております。 なお、「上流施設からの連動」ボタンにて上流施設から連動を行った場合、計画洪水水位HWL(計画水位Hu + 池底の標 高)を取得します。
- Q5-11 洪水吐きの入力にて、降雨強度を直接入力することができますが、直接入力する場合、どの時間の降雨強度を入力すれば よいのでしょうか
- A5-11 本製品の洪水吐きの設計洪水流量の計算につきましては、「防災調節池等技術基準(案)」に準拠した計算を行います。 前述の基準書のP.182の[計算例-14]では、P.141~143の流域の計算例[計算例-3]により決定した洪水到達時間より降雨 強度を算出しています。 従いまして、一般的には、流域の洪水到達時間より算出した降雨強度を直接入力すると考えられます。

6 出力編

Q6-1 カラープリンタへの出力は?

A6-1 本製品はカラープリンタへの出力は対応しております。 メインメニューーオプションー表示項目の設定画面の出力タブ内に「カラー出力」スイッチがございますのでこちらを チェック(ON)して下さい。

Q&Aはホームページ (https://www.forum8.co.jp/faq/win/tyousei.htm) にも記載しております。

調節池・調整池の計算 Ver.9 操作ガイダンス

2022年 6月 第2版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へ お問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

調節池・調整池の設計 Ver.9 操作ガイダンス

