# 2次元浸透流解析(VGFlow2D) Ver.3

Operation Guidance 操作ガイダンス





# 本書のご使用にあたって

本操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

# ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2016 FORUM8 Co., Ltd. All rights reserved.

目次

# 5 第1章 製品概要

- 5 1 プログラム概要
- 7 2 プログラム構成
- 8 3 フローチャート

# 9 第2章 操作ガイダンス

| 9 1 基本 第 | ≩件 |
|----------|----|
|----------|----|

- 10 1-1 モデルの作成
- 13 1-2 モデル作成-決定
- 13 1-3 メッシュ分割・ブロック化
- 15 2 要素定義
- 15 2-1 浸透要素の設定
- 17 2-2 浸透要素のプロパティ設定
- 18 2-3 不飽和浸透特性の設定
- 18 3 メッシュ分割
- 18 3-1 メッシュ分割-定義
- 20 3-2 メッシュ分割-確認
- 20 4 解析条件
- 20 4-1 解析条件-境界条件
- 20 4-2 水頭既知境界の設定
- 21 4-3 水頭既知境界条件值編集
- 22 5 解析実行
- 23 6 計算書作成
- 24 7 保存
- 25 第3章 Q&A
- 25 1 機能・概要

# 第1章 製品概要

# 1 プログラム概要

# 概要

VGFlow2Dは、当社FORUM8と群馬大学との共同開発による飽和-不飽和浸透流の有限要素法による解析プログラムです。 本製品での解析は、Richards式を支配方程式とした厳密な飽和-不飽和浸透流解析であり、支配方程式の簡略化等を行わ ず全項を考慮しているため、適用範囲の制限はなく汎用的にあらゆる目的に対してご利用頂けます。

昨今の集中豪雨に起因した被災事例を踏まえた最新の知見により、道路土工指針が改訂されました。改訂された土工指針 では性能設計の枠組みが取り入れられ、要求性能が明確化されました。これにより設計にあたって想定する作用の種類とし て「常時の作用」「地震時の作用」のみでなく「降雨の作用」が規定され、盛土の安定照査に際して浸透流の考慮が必要と なってきます。

従前は主に決壊時に人命に拘わる重要構造物や、環境保全の対象となるような開発を中心に浸透流解析が適用されて来ましたが、今後は、土構造物に対する性能規定型設計の本格的な導入により、事業規模に依らず、あらゆるケースで浸透流解 析を行う機会の増加が見込まれます。

今後の一般土工に対する浸透流解析に際して、高価な三次元解析を行うのは現実的ではなく、現象がシミュレートできる限 りで支配的となる地下水流に対して二次元現象に単純化した解析モデルを適用する機会が多くなると思います。

このような需要に対して、汎用的多目的で二次元浸透流解析を行える製品として開発しました製品が、UC-1地盤解析シリーズVGFlow2Dです。

### 機能と特長

#### ■適用範囲

現在改訂作業中の「道路土工指針」での一般土工に対する適用、更に「河川砂防技術指針基準」や「河川砂防の構造検討の 手引き」、「高規格堤防盛土設計・施工マニュアル」、「農林水産省土地改良事業設計基準」、「多目的ダムの建設」等の止水 構造物に対する設計基準に挙げられる浸透流検討が行えます。

### ■機能

定常解析、非定常解析が行え、豊富な境界条件に対応しており、あらゆる二次元浸透現象をモデル化することが可能です。

| 解析種別                              | 定常解析            |  |
|-----------------------------------|-----------------|--|
|                                   | 非定常解析           |  |
| 解析モデル                             | 鉛直二次元浸透問題       |  |
|                                   | 軸対称浸透問題         |  |
|                                   | 平面二次元浸透問題       |  |
| 境界条件                              | 水頭既知境界(:定常:非定常) |  |
| 路雨境界<br>地下水面 ▽<br>浸出面境界<br>建<br>建 | 浸出面境界(:定常:非定常)  |  |
|                                   | 降雨境界(:定常:非定常)   |  |
|                                   | 流量境界(:定常:非定常)   |  |
|                                   | 水位変動境界(:非定常)    |  |
|                                   | 浸出禁止境界(:非定常)    |  |
|                                   | 点源(:定常:非定常)     |  |
|                                   |                 |  |

■オートメッシュ機能

半自動メッシュ生成機能に加えて、オートメッシュ機能を新たに追加します。オートメッシュライブラリには他社製品でも実績のある『CM2Meshtools』(Computing Objects社)を採用しています。

これまではモデルを作成しようとした場合、ブロックを三角形もしくは四角形で定義する必要があったため、図1のように、 実際には必要のない補助線を多数設定し、モデルを作成しなければなりませんでした。

それに対して、本バージョンにて追加したオートメッシュ機能を使う場合には、最低限必要なライン(地層境界など)を定義 すればメッシュ分割が可能となりますのでモデル作成の手間を大幅に軽減することができます。(図2)



■図1 Ver.1までのモデル ■図2 オートメッシュを適用する場合のモデル

また、本機能のメッシュ形状につきましては、「四角形と三角形の混在」「四角形のみ」「三角形のみ」から任意に選択することが可能です。図2のモデルに分割数を設定し(図3)、「四角形と三角形の混在」条件でメッシュ分割を行った結果が図4、「三角形のみ」条件の結果が図5になります。



■図3 モデルの分割数 ■図5 「三角形のみ」オートメッシュ結果

オートメッシュ機能では、お考えのようなメッシュ分割ができない場合は、これまでの半自動メッシュ生成機能で対応いただ くことが可能です。

# 2 プログラム構成

本プログラムは、[プリプロセッサ(前処理)]、[プロセッサ(解析部)]、[ポストプロセッサ(後処理)]の3つの部分で構成され ています。[プリプロセッサ(前処理)]では解析条件の入力、[プロセッサ(解析部)]では飽和・不飽和浸透流解析、[ポストプ ロセッサ(後処理)]では解析結果の処理・可視化を行います。

# [プリプロセッサ(前処理)]

解析種別・解析モードの選択、解析モデル形状の入力、要素定義、メッシュ分割、解析条件の設定を行い、解析を実行します。

# ■解析種別の選択

[解析種別]コンボボックスから解析モード(鉛直問題or軸対象問題or水平問題)の選択行います。

■解析モードの選択

[解析モード]コンボボックスから解析モード(定常解析or非定常解析)の選択行います。

■解析モデル形状の入力

[プリプロセッサ(前処理)]で解析モデル形状の入力もしくはCADファイル等からインポートします。

■メッシュ分割用補助線の入力

CAD的な操作で、土質ブロックをメッシュ分割用ブロックに分割します。

■要素定義

土質ブロックに対して、水分特性曲線等の浸透特性をします。

■メッシュ分割

メッシュ分割用ブロックの分割数を設定し、メッシュ分割します。

■解析条件の設定

各境界に対して境界条件を設定します。(非定常解析の場合には、初期条件として「初期浸潤面」を設定します。)

■解析実行

解析オプションの設定を行い解析実行します。

# [プロセッサ(解析部)]

[プリプロセッサ(前処理)]で生成された入力データを受け取り、解析を行います。

# [ポストプロセッサ(後処理)]

[プロセッサ(解析部)]の出力結果を図化処理します。

- ・モデル図 (メッシュ分割図)
- ・各種コンタ図
- ・フローネット図
- ·流線図
- ・流速ベクトル図
- ・指定断面流量
- ・各種時刻歴図
- ·各種数值出力

# 3 フローチャート



# 第2章 操作ガイダンス

# 1 基本条件

使用サンプルデータ・・・SampleD1-AM.VG2 ここでは、製品添付の「SampleD1-AM.VG2」を新規に作成することを目的とし、説明を進めます。 本データは、傾斜コア型ため池堤体の定常浸透解析例であるSampleD1の解析モデルを、オートメッシュ用にオプティマイズ し、メッシュ分割を行った例です。 本サンプルデータはオートメッシュによる分割イメージをご確認いただくためのデモデータとなります。

各入力項目の詳細については製品の【ヘルプ】をご覧ください。



操作ガイダンスムービー

Youtubeへ操作手順を掲載しております。 2次元浸透流解析 (VGFlow2D) 操作ガイダンスムービー(5:03)





| A D B Jakes Ess R Z-F(22)                                                                                        | × 406 1604 | Kow 1993          | <br>ALC: NO DECIDENT | - C                      | 1 MA 0 0                              |
|------------------------------------------------------------------------------------------------------------------|------------|-------------------|----------------------|--------------------------|---------------------------------------|
| C Plan Postare 1 ha rates                                                                                        |            | (roac-oas         | <br>and the passe    |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| し作成   要素定義   メッシュ分割   解析条件   解析集                                                                                 | 87         |                   |                      |                          |                                       |
| 決定                                                                                                               |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          | ·····                                 |
| c'                                                                                                               |            |                   |                      |                          |                                       |
| • • • • • • • • • • • • • • • • • • • •                                                                          |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| 6                                                                                                                |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| A                                                                                                                |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| -                                                                                                                |            |                   |                      |                          | •                                     |
| 5-                                                                                                               |            |                   |                      |                          | ~ ~                                   |
|                                                                                                                  |            |                   |                      |                          | TT                                    |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| 2                                                                                                                |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                  |            |                   |                      |                          |                                       |
| 64                                                                                                               |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| · · · · · · · · · · · · · · · · · · ·                                                                            |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          | r -                                   |
| and the second |            | 01000010000100001 | <br>                 | 101010101010101010101010 |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
|                                                                                                                  |            |                   |                      |                          |                                       |
| 5-                                                                                                               |            |                   |                      |                          | ······ 4                              |
|                                                                                                                  |            |                   |                      |                          | ÷                                     |
|                                                                                                                  |            |                   | <br>                 |                          |                                       |

一ツールバーより以下の設定をします。

・メッシュモード:「オート (混合)」 ・解析種別:「鉛直問題」

・解析モード:「定常」

※メッシュモード・解析種別・解析モード・・・ツールバーの 左端の2重線をドラッグすることにより任意の場所に移動す ることが可能です。その他のアイコンも同様に移動が可能で す。

# 1-1 モデルの作成

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2次元漫透流解析(VGFI | ow2D) Ver.3 - (新規)                                                                                             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|----------------------------------------------------------------------------------------------------------------|-------------|
| L(王) 編集(E) 表示(V) オブSdン(O) ソーI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L(Z) へいフ(H)<br>・   新統1 | 1911 的直然的     |                                                                                                                | • • 🗄 🗟 🔍 🔍 |
| Pri prixipri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |               |                                                                                                                |             |
| ル4683  褒素定義   メッシュ分割   解析条件   角<br>t = Liawy - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 副新興行                   |               |                                                                                                                |             |
| x   258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |               |                                                                                                                |             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | I           |
| 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | E           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                      |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                |             |
| ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | Ť           |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |               |                                                                                                                | 7           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | ,           |
| 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                      |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                |             |
| 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | 1           |
| Disels and a second sec |                        |               | and a second |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |               |                                                                                                                | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                      |               |                                                                                                                |             |

モデルを作成します。
 [作成]タブ・・・CAD的な操作により、モデルを作成します。
 「モデル作成」タブ-「作成」タブをクリックします。



サイドツールバーから「グリッドの設定

#### す。

グリッドを表示する場合に設定します。またグリッドが表示されている場合のみ、「グリッドにスナップ」チェックボックスを クリックすることで、マウスのクリックをグリッドにスナップします。

左記画面と同様に設定し、確定をクリックします。

| 🐸 📙 💷 🛛 🛩   | ノュモード (オート(昆合) | ▲ 解析種類 | 14 1台直然間 | <u> </u> | 解析モード Cont | <u> </u> | * 🖀 | Q Q             |
|-------------|----------------|--------|----------|----------|------------|----------|-----|-----------------|
|             |                |        |          |          |            |          |     |                 |
| 「ル作成 褒余定義 . | ×ッシュ分割 解析条件 解析 | 4217   |          |          |            |          |     |                 |
| 成 決定        |                |        |          |          |            |          |     |                 |
|             |                |        |          |          |            |          |     |                 |
| 45-         |                |        |          |          |            |          |     | ::::U           |
|             |                |        |          |          |            |          |     | <b>T</b>        |
| 10          |                |        |          |          |            |          |     | - B             |
| 40-         |                |        |          |          |            |          |     | - 1 <b>P</b>    |
|             |                |        |          |          |            |          |     | <b>H</b>        |
| 15          |                |        |          |          |            |          |     | - II            |
|             |                |        |          |          |            |          |     | - II            |
|             |                |        |          |          |            |          |     |                 |
| 10-         |                |        |          |          |            |          |     | 111 A 4         |
|             |                |        |          |          |            |          |     |                 |
| 16          |                |        |          |          |            |          |     | I.J.            |
| 20          |                |        |          |          |            |          |     | - II            |
|             |                |        |          |          |            |          |     | III             |
| 20-         |                |        |          |          |            |          |     | <b>∦</b>        |
|             |                |        |          |          |            |          |     | I <b>h</b>      |
|             |                |        |          |          |            |          |     | <i>1</i>        |
| 16-         |                |        |          |          |            |          |     | 100 H           |
|             |                |        |          |          |            |          |     | I <del>II</del> |
| 10          |                |        |          |          |            |          |     | - 1 P           |
| 10-         | F.             |        |          |          |            |          |     | 1111            |
|             |                |        |          |          |            |          |     | He              |
| Ş           |                |        |          |          |            |          |     | L.              |
|             |                |        |          |          |            |          |     |                 |
|             |                |        |          |          |            |          |     | 1.160           |
| P           |                |        |          |          |            |          |     |                 |
|             |                |        |          |          |            |          |     | - 1 C I 🖉       |
| -5-         |                |        |          |          |            |          |     |                 |
|             |                |        |          |          |            |          |     | 11112           |
|             |                |        |          |          |            |          |     | F               |

ーサイドツールバーの「直線の登録 🚺 」ボタンより入力を行い

ます。 「直線の登録

「直線の登録

作成するモデルによって、「直線描画モード /」、「水平線描

画モード •---・」などを使用してください。

なお、モデル作成は今回のように描画コマンドを使用して作成 できる他、CADファイルをインポートすることが可能です。 CADファイルの読み込みは以下の手順で行います。

1.[SXFデータファイルのインポート]ボタン 🖬 をクリックしま

す。 2.表示された[ファイルを開く]ダイアログより、インポートする SXFファイルを選択し、[開く]ボタンをクリックします。 3.表示される[SXFファイルインポート条件の設定]ダイアログ にて、インポートする部分図やレイヤ等の設定を行い、[確定]ボ タンをクリックします。

4. モデルがインポートされ、画面に描画されます。

|       |      |      | 直続               | <del>の登録</del>          | ×      |
|-------|------|------|------------------|-------------------------|--------|
| No. 3 | 治点座標 | 終点座標 | jātn(A)          | E                       |        |
|       |      |      | 編集(E)            |                         |        |
|       |      |      | 上へ(山)            |                         |        |
|       |      |      | 下へ(B)            | 50-                     |        |
|       |      |      | 首·塔金( <u>D</u> ) | 40-                     |        |
|       |      |      |                  |                         |        |
|       |      |      |                  | 30-                     |        |
|       |      |      |                  | 20-                     |        |
|       |      |      |                  | 10-                     |        |
|       |      |      |                  |                         |        |
|       |      |      |                  |                         |        |
|       |      |      |                  | - 10-                   |        |
|       |      |      |                  | -20-                    |        |
|       |      |      |                  |                         |        |
|       |      |      |                  | -10 0 10 20 30 40 50 60 | 70     |
|       |      |      |                  | <b>/確</b> 定 × 取消 ?      | ヘルゴ(出) |

―― 「直線の登録」画面が表示されます。 「追加」をクリックします。



左側の表に座標を入力します。最大50本の直線を複数登録することが可能です。下表の通り座標の入力が終わりましたら、確定をクリックします。

|   | X(m)   | Y(m)   |
|---|--------|--------|
| 1 | 26.000 | 10.000 |
| 2 | 42.200 | 19.000 |
| 3 | 44.400 | 19.000 |
| 4 | 30.000 | 10.000 |
| 5 | 29.000 | 7.600  |
| 6 | 27.000 | 7.600  |
| 7 | 26.000 | 10.000 |

|     |                   |                      | 直線     | 泉の登録  |       |          |      | ×         |
|-----|-------------------|----------------------|--------|-------|-------|----------|------|-----------|
| No. | 始点座標              | 終点座標                 | )追加(A) | Ð     |       |          |      |           |
|     | 1, 26,000, 10,000 | 0) ( 26,000, 10,000) | 編集(E)  |       |       |          |      |           |
|     |                   |                      | 1-1-CU | 60-   |       |          |      |           |
|     |                   |                      | 下へ(B)  | 50-   |       |          |      |           |
|     |                   |                      | 育/豚(D) | 40-   |       |          |      |           |
|     |                   |                      |        |       |       |          |      |           |
|     |                   |                      |        | 30-   |       |          |      |           |
|     |                   |                      |        | 20-   |       |          | -    |           |
|     |                   |                      |        |       |       |          |      |           |
|     |                   |                      |        | 10-   |       | <u>C</u> |      |           |
|     |                   |                      |        | 0-    |       |          |      |           |
|     |                   |                      |        | -10-  |       |          |      |           |
|     |                   |                      |        |       |       |          |      |           |
|     |                   |                      |        | -20-  |       |          |      |           |
|     |                   |                      |        | -10 0 | 10 20 | 30 40    | 50   | 60 70     |
|     |                   |                      |        |       |       | ✔ 確定     | 🗙 取消 | ? ~1/7(H) |

No.、始点座標、終点座標が表示され、「直線の登録」に登録 がなされたことが分かります。 追加で入力がある場合は「追加」をクリックし、直線を登録し ます。 今回は続けて2回入力します。







|   | V(m)   | V(m)   |
|---|--------|--------|
|   | A(III) | 1(11)  |
| 1 | 0.000  | 0.000  |
| 2 | 74.000 | 0.000  |
| 3 | 74.000 | 10.000 |
| 4 | 30.000 | 10.000 |
| 5 | 29.000 | 7.600  |
| 6 | 27.000 | 7.600  |
| 7 | 26.000 | 10.000 |
| 8 | 0.000  | 10.000 |
| 9 | 0.000  | 0.000  |

続いて下表の通り座標の入力が終わりましたら、確定をクリッ クします。

|   | X(m)   | Y(m)   |
|---|--------|--------|
| 1 | 19.500 | 10.000 |
| 2 | 30.000 | 15.000 |
| 3 | 31.500 | 15.000 |
| 4 | 42.000 | 20.000 |
| 5 | 46.000 | 20.000 |
| 6 | 54.500 | 15.000 |
| 7 | 56.000 | 15.000 |
| 8 | 64.500 | 10.000 |

全ての座標の入力を終えたら、確定をクリックします。





左記のようなモデル図が作成されます。

※任意の節点を原点とすることが可能です。 (Q1-60参照) https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm#q1-60



# 1-2 モデル作成-決定



- 「モデル作成」タブ-「決定」タブをクリックします。 [決定]タブ・・・作成したモデルのブロック化を行います。 (Q1-35参照) https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm#q1-35 (Q1-36参照)

https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm#q1-36

# 1-3 メッシュ分割・ブロック化

| ■ 1次三周時的設定(///C(/w/D))1/w-2(K5時) - □ 3                                                                                                    | 解析領域が今て赤斜線でハッチングされていたい提合 サイド                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| - 7/4(F) 単語(E) 表示(Y) オブカン(0) Y-H(Z) ヘルプ(H)<br>● 谷山 田 カケシュモード (オーケス)(A) - 新築教授 (A) (A) (A)<br>● 谷山 田 カケシュモード (オーケス)(A) - 新築教授 (A) (A) (A)  |                                                       |
| Polinearum           モデルパパズ (東京定義) シジシン分割 (解析条件)(解析条件)           中国           中国                                                          | リールバーから「ノロック指定                                        |
|                                                                                                                                           | れるマークで線分を選択します。                                       |
|                                                                                                                                           | 選択範囲によって、「選択モード」」、「矩形選択モード(BOX                        |
|                                                                                                                                           |                                                       |
|                                                                                                                                           | 掛け) 📴 」、「矩形選択モード(BOX囲み) 🏧 」を使い分                       |
|                                                                                                                                           | けます。                                                  |
|                                                                                                                                           | 今回は一括で選択ができないため、「選択モード                                |
| -32-                                                                                                                                      |                                                       |
| -16 -51 10 35 41 75 10 105 10 15 10 15 10 15 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10                                           | 選択モード(BOX掛け) 🤠 」を使用し選択します。                            |
|                                                                                                                                           |                                                       |
|                                                                                                                                           | 「自動ブロック化」が選択できる場合、「自動ブロック化」                           |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
|                                                                                                                                           | ※ただし、自動認識機能はメッシュモードが『セミオート』の場                         |
|                                                                                                                                           | 合に限られます。                                              |
|                                                                                                                                           |                                                       |
|                                                                                                                                           | オートメッシュによるメッシュ分割は、メッシュ分割により解析                         |
|                                                                                                                                           | 相反が代とく異なります。<br>(Q1-18参照)                             |
|                                                                                                                                           | https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm#q1-18 |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
| ■ 2次元谱透過解析(VGFlow2D) Ver.3 - (新規) - □                                                                                                     | 「選択モード」」または「钜形選択モード (BOX掛け 🎦 )                        |
|                                                                                                                                           |                                                       |
| モデル作成[編曲定義] メッシュ分割 編時条件 編前(第件)<br>作成: 決定                                                                                                  | で指定した範囲が赤枠で表示されます。                                    |
| 75                                                                                                                                        | その後、「決定 🚵」をクリックすると、ブロックが指定されま                         |
|                                                                                                                                           | す その他の領域に関しても同様に指定をします                                |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
|                                                                                                                                           |                                                       |
| -122<br>-18 -25 00 25 51 75 100 125 100 175 216 225 210 275 311 225 316 375 461 425 450 475 100 425 450 575 618 425 418 57 118 225 768 77 |                                                       |
| ( 26.486, 26.408 )                                                                                                                        |                                                       |







「決定 🛃」をクリックします。



最後に一番下の領域に関しても同様に指定をします。



「決定 💦」をクリックします。

※既に選択済みの線分を再度選択しますと、選択を解除する ことができます。

# 2 要素定義



-「要素定義」 タブをクリックします。 浸透特性が異なる領域毎 に、各種パラメータを入力します。

「浸透要素選択 」 」を選択し、要素の範囲指定として「選択 モード 」、「矩形選択モード(BOX 掛け) 」 、「矩形選 択モード(BOX 囲み) ご 」を使い分け、ブロック単位で要素を 選択します。

# 2-1 浸透要素の設定



-「プロパティNo.」、「名称」、「描画色」、「塗りつぶしパター ン」を設定します。

要素の範囲を選択後、「編集・決定 🎉」をクリックします。

「浸透要素の設定」 画面にて 左記の図に沿って入力し、 確定 を クリックします。



 設定した要素が指定した色で表示されます。





 同様に他の箇所も要素を選択・「編集・決定 👸」をクリック

します。

「浸透要素の設定」画面にて左記の図に沿って入力し、確定 をクリックします。

設定した要素が指定した色で表示されます。

最後に一番下の箇所も要素を選択・「編集・決定 🛐」をク リックします。

| 浸透要素の設定                |
|------------------------|
| プロパティ№. <sup>3</sup> 💌 |
| 新規に登録されるブロバティです。       |
| 名称 基礎岩盤                |
|                        |
|                        |
| 塗りつぶし<br>バターン          |
|                        |
| 🖌 確定 🛛 🗙 取消 🦿 ヘルプ(日)   |



# 2-2 浸透要素のプロパティ設定



「浸透要素の設定」 画面にて 左記の図に沿って入力し、 確定 をクリックします。

設定した要素が指定した色で表示されます。

「浸透要素のプロパティ設定 🏣」をクリックします。

クリックすることにより、入力ダイアログが表示されます。 (Q1-9参照) https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm#q1-9

| 浸透要素のプロパティ設定      |      |                  |         |                           |                                    |                           |                                    |                          |                                      |                        |                        |
|-------------------|------|------------------|---------|---------------------------|------------------------------------|---------------------------|------------------------------------|--------------------------|--------------------------------------|------------------------|------------------------|
| ブロバティNo.          | 使用状况 | 色<br>あよび<br>パターン | 材料名     | 透水係数<br>Kx(仮数)<br>(m/sec) | 透水係数<br>Kx(指数)<br>×10 <sup>x</sup> | 透水係数<br>Ky(仮数)<br>(m/sec) | 透水係数<br>Ky(指数)<br>×10 <sup>x</sup> | 比拧留係数<br>Ss(仮数)<br>(1/m) | 比I宁留係数<br>Ss(指数)<br>×10 <sup>x</sup> | 地層の<br>(解消角度<br>ゆえ(* ) | 不飽和<br>浸透特性            |
| 1                 | 使用中  |                  | 遥水性ゲーン  | 3.000                     | -7                                 | 3.000                     | -7                                 | 0.000                    | 0                                    | 0.0                    | VGモデル                  |
| 2                 | 使用中  |                  | ランダムゾーン | 1.000                     | -6                                 | 1.000                     | -6                                 | 0.000                    | 0                                    | 0.0                    | VGモデル                  |
| 3                 | 使用中  |                  | 基礎岩盤    | 4.000                     | -5                                 | 4.000                     | -5                                 | 0.000                    | 0                                    | 0.0                    | VGモデル                  |
|                   |      |                  |         |                           |                                    |                           |                                    |                          |                                      |                        |                        |
|                   |      |                  |         |                           |                                    |                           |                                    |                          |                                      |                        |                        |
| <b>第</b> 册: 0.000 | ~ 9  | .999             |         |                           |                                    |                           |                                    | [                        | ✓ 確定                                 | 🗙 取                    | 育 <mark>?</mark> ヘルプ(∐ |

浸透特性を入力します。

| プロパティ | 材料名     | 透水係数   | 透水係数   | 透水係数   |
|-------|---------|--------|--------|--------|
| No.   |         | Kx(仮数) | Kx(指数) | Ky(仮数) |
| 1     | 遮水性ゾーン  | 3.000  | -7     | 3.000  |
| 2     | ランダムゾーン | 1.000  | -6     | 1.000  |
| 3     | 基礎岩盤    | 4.000  | -5     | 4.000  |

| プロパティ | 透水係数   | 比貯留係数  | 比貯留係数  | 地層の  |  |  |
|-------|--------|--------|--------|------|--|--|
| No.   | Ky(指数) | Ss(仮数) | Ss(指数) | 傾斜角度 |  |  |
| 1     | -7     | 0.000  | 0      | 0.0  |  |  |
| 2     | -6     | 0.000  | 0      | 0.0  |  |  |
| 3     | -5     | 0.000  | 0      | 0.0  |  |  |
|       |        |        |        |      |  |  |

不飽和浸透特性は全て「VGモデル」を入力します。

各プロパティについて、飽和透水係数や比貯留係数等の透水 性を設定します。上記の図に沿ってデータを入力し、不飽和浸 透特性の設定方法を選択後、不飽和浸透特性の設定に進んで ください。

入力後、「 🔜 不飽和浸透特性設定」をクリックします。

# 2-3 不飽和浸透特性の設定

| 个記和浸透特性の設定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| vanGenuchtenモデルバラメータ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |  |
| プロパティNo. 使用状況 $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} $ ガロパティNo. 使用状況 $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ | _ |  |  |  |  |
| 1 使用中 1.5000 3.0000 0.3000 0.7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |
| 2 使用中 5.0000 1.5000 0.1500 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |
| 3 使用中 5.0000 4.0000 0.4000 0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
| 同定値自動セット                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |  |
| 材料 関東ローム ▼ 試験値をセット                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |
| 範囲: 0.0000 ~ 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |

「不飽和浸透特性」を設定します。

| プロパティ | α      | n      | 残留体積           | 飽和体積           |
|-------|--------|--------|----------------|----------------|
| No.   | (1/m)  |        | 含水率 $\theta$ r | 含水率 $\theta$ s |
| 1     | 1.5000 | 3.0000 | 0.3000         | 0.7000         |
| 2     | 5.0000 | 1.5000 | 0.1500         | 0.6000         |
| 3     | 5.0000 | 4.0000 | 0.4000         | 0.8000         |

上記の図に沿って入力後、確定をクリックしてください。 浸透要素のプロパティ設定画面も、確定をクリックし閉じて下 さい。

# 3 メッシュ分割

# 3-1 メッシュ分割-定義



「メッシュ分割」 タブ-「定義」 タブをクリックします。 [定義]タブ・・・メッシュ分割数を設定します。

選択します。線分を選択すると赤い太線で選択表示され、既に 選択されている線分を選択すると選択が解除された状態にな ります。

線分によって、「選択モード 🚺 」「矩形選択モード (BOX掛

け) 📴 」や「矩形選択モード (BOX囲み) 🧮 」などを使

い分け選択します。 線分を選択し、「分割数の設定 🎦」をクリックします。











分割幅に左記の図の数値を入力し、確定をクリックします。

設定した分割幅が線分上に反映されます。 同様に他の線分も分割数や分割幅を設定します。

左記の線分については「分割数の設定」画面にて、「分割幅」 を設定します。

左記の線分については「分割数の設定」画面にて、「分割数」 を選択します。

分割数:7

上記の図は全ての線分の設定が終わった状態です。 設定した分割数や分割幅が線分上に反映されます。

# 3-2 メッシュ分割-確認

|                            |                                           | 2次元漫透流解析(V0                             | SFlow2D) Ver.3 - (新規)                                      | - P 💌                                 |
|----------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------------------------|---------------------------------------|
| 'JL(F) K≣E(E)<br>I 📸 🖬 🖬 🗍 | 表示(V) オブション(O) ソール(Z)<br>メッシュモード (オード(社会) | へいプ(H)<br>                              | ▼ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■                    | <u> </u>                              |
| Processo                   |                                           |                                         |                                                            |                                       |
| 「ル作成 薬業は                   | 義 メッシュ分割   解析条件   解析案                     | 7                                       |                                                            |                                       |
| R 4012 1                   |                                           |                                         |                                                            |                                       |
| 0                          |                                           |                                         |                                                            | 14                                    |
|                            |                                           |                                         |                                                            |                                       |
| 5                          |                                           |                                         |                                                            |                                       |
|                            |                                           |                                         |                                                            | Щ.                                    |
| Mar. 199                   |                                           |                                         | ATTO-                                                      |                                       |
|                            |                                           |                                         |                                                            |                                       |
| 1 · · · ·                  |                                           |                                         |                                                            |                                       |
|                            |                                           |                                         |                                                            |                                       |
|                            |                                           | THE | XXXXXXITTXXXXX                                             | 2                                     |
| 5                          |                                           | STATE                                   | ZETTYTTTTTT                                                | $\sim$                                |
|                            |                                           | - ATHIX                                 |                                                            | HV                                    |
|                            | 1                                         |                                         |                                                            |                                       |
| <u>.</u>                   | · [· · ] · ] · [· · [· <u></u>            |                                         |                                                            | <del>·++++}</del> /··/··              |
| *****                      | XIIIII                                    |                                         | ╶┼┦┼┼┼┼┼┼┼┼┼                                               |                                       |
| 10                         |                                           |                                         | - V - L - V - L - V - L - V - V - V - V                    |                                       |
|                            | V 1 1 1 1 1 1 1                           | +++++++++++++++++++++++++++++++++++++++ |                                                            |                                       |
| 5                          | T++++++                                   |                                         |                                                            | +++++                                 |
|                            | オール・インカ・ファイ                               |                                         | er fan de skrigter het |                                       |
| 0                          |                                           |                                         |                                                            |                                       |
|                            |                                           |                                         |                                                            |                                       |
|                            |                                           |                                         |                                                            |                                       |
| 0                          |                                           |                                         |                                                            |                                       |
|                            |                                           |                                         |                                                            |                                       |
| 0 -25 00                   | 23 53 73 108 125 160 1                    | 75 200 225 260 275 300 325 36           | 0 375 400 425 450 475 500 525 560 575                      | 68.8 62.5 68.0 67.5 70.8 72.5 78.0 77 |
|                            | - 1                                       | (fair in                                | a seal (Chilling and                                       |                                       |

# 4 解析条件

### 

# 4-2 水頭既知境界の設定



 水頭
 0.000 (m)

 水頭値
 0.000 (m)

 本面
 正力水頭縮

 水面の基準標高

 正力水頭値は座信軸を基準信高としています。

 座標軸をゼロとしてそこからの水頭値を入力して下さい。

 「全確定」
 ×取消<? ヘルブ(出)</td>

「メッシュ分割」タブ-「確認」タブをクリックします。上記のようなモデル図が表示されます。 「確認」タブ・・・メッシュ分割の結果を確認します。

プログラム内部でメッシュ分割を行い、その結果を表示しま す。



水頭既知境界を左記の通り設定し、確定をクリックします。

| <b>2</b>                                                                | 2次元漫透流解析()         | /GFlow2D) Ver.3 - (新規)         | - = ×        |
|-------------------------------------------------------------------------|--------------------|--------------------------------|--------------|
| ファイル(F) 福和(E) 表示(V) オブション(O) リール(Z) ヘルプ(F)<br>○ 谷 日 昭 メッシュモード (オート(ス合)) | 4)<br>新研研報SN 彩色加加加 | ▲ 新新モード 定常                     | • २८ 🚆 🗞 ९ ९ |
| Pre-Frommer           モデル/100 (事業定義)メウシュ分割 解析条件 (解析案件)           境界条件   |                    |                                |              |
| 境界条件记号灯-(ド)                                                             | :水類既知境界 P:浸油面境界 F: | 水位实验境界 0:浸出禁止境界 0:点算/适量境界 R:14 | 系统界          |
|                                                                         |                    |                                |              |



設定が終わると、境界条件を設定した節点がNで表示されます。

「矩形選択モード 📺」や「選択モード 🛄 」 にて選択、「水

頭既知境界 📶 」をクリックし、水頭既知境界を

設定します。水頭値は左図を参考に、頂点より左側の水頭値に は「17.000」、右側の水頭値には「10.000」と入力します。

# 4-3 水頭既知境界条件值編集



 2
 大規規公
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×</th

「水頭既知境界編集」をクリックします。

既に登録済みの水頭既知境界値が一覧表に表示されます。 必要に応じて水頭既知境界値を編集してください。 なお、現在編集の水頭既知境界の節点位置は右モデル図中に オレンジ色で表示されます。

※左記図のように補助機能として登録済みの水頭既知境界は 一括編集が行えます。

# 5 解析実行

| 2次元规范流标垢(VCFlow2D) Ven3 (新規) - □ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ―――「解析実行」タブをクリックします。                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 774647 1 編成日、2522/2722/20) クーム(2) A/A/74/<br>【 合 目 日 (2) タンタムモードドーズ(2) A/A/74/<br>1 タンタムモードドーズ(2) 1 (新会会) 1 (新会会) (50 (50 (50 (50 (50 (50 (50 (50 (50 (50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 収束計算設定、ソルバーを下記に沿って指定します。                                                |
| (特殊計畫設定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 収束計算設定                                                                  |
| 最大級使L回版 100 € -2<br>単現中に度構築 1000 € -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 最大經近上回数:50                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 版大線送で口数:00<br>収古判定調差:1000 E 2                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 収未刊定研左・1.000 E-2                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ソルバー:スカイライン法(直接法)                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | フォルダ・出力先に以下を指定します                                                       |
| WVHHA/JPED/JPEN/DPEN/<br>フォルダ OVProgram Files (x80/#FORUM 89/VOFlow2034DataWSan <u>多強。</u><br>マカルダ OVProgram Files (x80/#FORUM 89/VOFlow2034DataWSan <u>多強。</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | クオルク・山力しに広下を引定します。<br>C\Program Files\FOPLIM 8\\/GElow2D2\Data\SampleD1 |
| ファイル名  尾洲解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
| データ連携ファイルベ水位線・薬术テンシャル403出力フォルダの指定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AWN                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ノアイル石・ラ凹は「正吊胜桁」としています。                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 入力後、「 📓 解析実行 」をクリックします。                                                 |
| 確認                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 確認画面が表示されます。                                                            |
| ライレクトリ(C:¥Program Files (x86)¥FORUM 8¥VGFlow2D2¥Data¥SampleD1-AM¥)に(定常解析)の名称でファイルを作成して解析剤を実行します。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 「OK」を選択し、解析を行います。                                                       |
| <b>U</b> \$3(1)(\$7)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |
| OK キャンセル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 初托が正常にウフォスト ナミ両面がまニキャホナ                                                 |
| 20.7.1.002.00 (Film: 5-0.290(W) AUJ(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| 1991年 1997年日の「マーナUI+U」<br>19月1日 - 1997年 - 1977年 | 「ノートの展開」をクリックしより。                                                       |
| and and and a second se  |                                                                         |



モデル図、コンタ図等を表示、確認をすることが可能です。

# 6 計算書作成

# プリプロセッサ





# ポストプロセッサ





[ファイル]メニュー-[印刷プレビュー]-[設計データ]より「Pre部 印刷項目設定」 画面を開きます。

[Pre部印刷項目設定]画面にて出力する項目を設定し、『プレビュー』ボタンをクリックします。

Post部適用:本画面で設定した出力項目を「ポストプロセッ サ」の解析条件の出力においても同様の項目を出力したい場 合はチェックしてください。ただし、ポストプロセッサからの解 析条件出力は前述の制限がありますのでご注意ください。

印刷プレビュー: [ファイル]メニュー-[印刷プレビュー]は操作 ステップが「解析条件」に達したときに有効となります。

画面右端のツリービュー下端の計算書作成の[全印刷]項目をダ ブルクリックし、「Post部印刷項目設定」 画面を開きます。

[Post部印刷項目設定]画面にて出力する項目を設定し、『プレビュー』ボタンをクリックします。

# 7 保存

| ented 3 deviaus               |         |           | and the second | 01-te-0005 |                                                | I mar a      | atta (gg) |                  |
|-------------------------------|---------|-----------|----------------|------------|------------------------------------------------|--------------|-----------|------------------|
| 8176L/JJ(IV)                  |         |           | BERTER         | TOURINAM   | -                                              | WW-t-r       | jaz-m     |                  |
| MARCO I                       |         |           |                |            |                                                |              |           |                  |
| ゆき出 9(こ)<br>サンプルデータフォルダを聞く(E) | ,       | AR4534311 |                |            |                                                |              |           |                  |
| 上書き保存(S)                      | Ctrl+S  |           |                |            |                                                |              |           |                  |
| 名前を付けて保存(A)                   | 1       |           |                |            |                                                |              |           |                  |
| ¥09(D)                        |         |           |                |            |                                                |              |           |                  |
| company in the                |         |           |                |            | ALL DE L                                       |              |           |                  |
| EN#]///C1-(V)                 | ,       |           |                |            | 20004                                          |              |           |                  |
| 終了(X)                         |         |           | 11111          | in Color   | $\mathcal{V}\mathcal{O}\mathcal{V}\mathcal{H}$ | 3 A          |           |                  |
|                               |         |           | 100            |            | CV-11                                          | IYAT         |           |                  |
|                               |         |           | 20             | TOX+       | ******                                         | ****         | Ato       |                  |
|                               | •       | 1 1 1 1   | A.C.Y.         |            | a a a a a a a                                  |              | 111111    | <del>, , ,</del> |
| 7.5                           | • • •   | -111      | D-1            | 27770      |                                                | ΠH           | ┇┇┱┱┱┾┿┝  | ⊷ ⊡              |
| 5.0                           | <b></b> | 4.000     | 7444           | ZTIV.      | VTVI                                           | $\nabla \Pi$ | VIDH      |                  |
|                               | 11      | ITT       |                |            |                                                | 7-1-1        |           |                  |
|                               |         | ****      | -              | • • • •    |                                                | +++          | +++       | T L LCCI         |
|                               |         | * * * *   |                | * * * * *  |                                                |              | * * * * * | * * *            |
| 2.5                           |         |           |                |            |                                                |              |           |                  |
|                               |         |           |                |            |                                                |              |           |                  |
|                               |         |           |                |            |                                                |              |           |                  |

―― ファイルの保存について説明します。

メニューバーよりファイルー名前を付けて保存またはツール バーより 🕞 をクリックします。

| <b>**</b>       |                  | 名前を付けて保存              |                 |             | ×    |
|-----------------|------------------|-----------------------|-----------------|-------------|------|
| (呆存する場所(D:      | 🔒 Data           | •                     | + 🗈 💣 🗉         |             |      |
| œ.              | 名前               | *                     | 更新日時            | 種類          | ^    |
| 最近表示した場所        | 🍌 SampleD1       |                       | 2016/03/09 16   | :42 ファイル フォ | e)L  |
| BOLLEO TO CHENT | 📗 SampleD1-AM    |                       | 2016/03/09 16   | :42 ファイル フォ | ÐL   |
|                 | 🍌 SampleD3       |                       | 2016/03/09 16   | :42 ファイル フォ | t) l |
| デスクトップ          | SampleD4         |                       | 2016/03/09 16   | :42 ファイル フォ | t) l |
| <u></u>         | SampleI1         |                       | 2016/03/09 16   | :42 ファイル フォ | Ы    |
| - (-Y=1)        | SampleI2         |                       | 2016/03/09 16   | :42 ファイル フォ | n    |
| 71 /71          | SampleI3         |                       | 2016/03/09 16   | :42 ファイル フォ | ы    |
|                 | SampleP1         |                       | 2016/03/09 16   | :42 ファイルフォ  | ы    |
| PC              | SampleP2         |                       | 2016/03/09 16   | :42 ファイルフォ  | Ы    |
|                 | SampleW1         |                       | 2016/03/09 16   | :42 ファイルフォ  | DL . |
|                 | .VG2             |                       | 2016/03/10 1/   | 2/ VG2 J71  | 1.   |
| ネットワーク          | <                |                       | 2011/2011/21 21 | S7 0127 194 | >    |
|                 | ファイル名(N):        | VG2                   | •               | (保存(S)      |      |
|                 | ファイルの種類(T): 📃    | 二次元浸透流解析(VGFlow2D)データ | 77√ll/(*.VG2) 💌 | キャンセル       |      |
| _ファイル情報──       |                  |                       |                 |             |      |
| 製品名:2%          | c元浸透流解析(VGFlow2D | ) Ver.2               |                 |             | -    |
| 製品バージョン: 2.     | 1.2.0            |                       |                 |             | -    |
| ファイルバージョン: 2.1  | 0.0.0            |                       |                 |             | -    |
| 作成日:20          | 16/03/16         |                       |                 |             | -    |
| 会社名:            |                  |                       |                 |             | _    |
| 部署名:            |                  |                       |                 |             | _    |
| 作成者名:           |                  |                       |                 |             | _    |
| コメント:           |                  |                       |                 |             | _    |
|                 |                  |                       |                 |             | - 7  |

保存方法を選択します。 ファイル名に名前を保存し、保存をクリックします。

保存・・・編集中のデータに新しい名前を付けて保存します。

# 第3章 Q&A

# 1 機能・概要

- Q1-1 入力値の出力は出来ないのでしょうか?
- A1-1 誠に申し訳ございませんが、本プログラムをはじめ、弊社のFEM解析による地盤解析シリーズでは計算書等の出力をサポートしておりません。
- Q1-2 サンプルデータで、ポスト表示の流線のアニメーションや時刻歴図を確認するには非定常解析のデータを選べばよいです か?
- A1-2 非定常解析のデータを選択してください。

### Q1-3 VGFLOW2Dの結果を踏まえて、斜面で時刻歴解析を行いたい

- A1-3 非定常解析であれば時刻歴毎に、斜面の安定計算用の水位線、等ポテンシャル線連携ファイルを出力いたします。 斜面の安定計算では、専用のインポート画面にて該当する時刻での結果を選択いただく事になります。
- Q1-4 水位変動境界は、境界面上の節点に設定するとなっていますが、境界面以外の要素節点に設定した場合、どのような扱い になっているのでしょうか
- A1-4 数値解析上は境界面上、境界面以外という区別なく解析いたします。 ただし、モデリングの是非につきましては判断いたしかねますので、お客様にてご判断いただきますようお願い申し上げま す。
- Q1-5 境界面以外では無視されるのであれば、モデル内部のある節点での水位を一定とした解析を行いたい場合は、どのように すればよいのでしょうか
- A1-5 境界面以外でも水位変動境界は無視されませんので、お考えのモデルで解析いただけます。 ただし、線的に水位変動境界を与えた場合、意図した地下水面が得られるとは限りませんのでご注意いただきますようお 願い申し上げます。
- Q1-6 すでにあるモデルを修正して解析したい場合、どのようにすればよいのでしょうか
- A1-6 誠に申し訳ございませんが、以下の手順の様にモデル作成から作業(修正)いただく必要がございます。
  1.[モデル作成]-[作成]タブにて該当する箇所を修正します。
  2.[モデル作成]-[決定]タブにて修正箇所の既存ブロックを解除し、ブロック化し直します。
  3.[要素定義]タブにて修正箇所のブロックに対し要素定義し直します。
  4.メッシュ分割を行いますと解析条件が解除されますので、再度、解析条件を設定します。
- Q1-7 VG-Flowを使って共同溝や他の構造物を含めた解析はできますか
- A1-7 可能でございます。 モデル化する際、該当する地中構造物の要素を未設定とし、解析の対象から除外する事でシミュレートいただけます。 ただし、ボイリング照査が直接できるという意味ではなく、ボイリング照査に必要な過剰間隙水圧を得られるということ をご理解下さい。
- Q1-8 Cadファイルからインポートをする場合、単位はメートルになるのでしょうか、ミリメートルになるのでしょうか?
- A1-8 本プログラムの解析モデルの入力単位は「メートル」です。
   CADファイルをインポトートする場合に、スケールを有しているCAD形式でありましたら、インポートしたデータはメート ル単位になりますが、ファイル種別がDXFファイルでは1.0が1.0mmで管理されているため、CADソフトにてスケールを千 倍してメートル単位にしてからインポートしてご使用下さい。

### Q1-9 要素の透水係数はどこで入力するのか

A1-9 [要素定義]タブの右側に表示されるスピードボタンの下から2つ目にあります「浸透要素のプロパティ設定」ボタンをク リックすることにより、入力ダイアログが表示されます。 ここでは、透水係数はX方向とy方向の透水係数を指数形式(仮数と指数)で入力します。(等方性の場合は同値を入力) 不飽和浸透特性は、「不飽和浸透特性」を「VGモデル (van Genuchtenモデル)」と「表より入力」のいずれかを選択し、 同ダイアログの下にある「不飽和浸透特性設定」ボタンをクリックして下さい。

### Q1-10 外水位の設定はどうするのか

- A1-10 [解析条件] タブで境界条件として設定します。 固定水頭の場合には「水頭既知境界」を経時変化する場合には「水位変動境界」で設定して下さい。
- Q1-11 メッシュ分割は、自動分割が可能か
- A1-11 メッシュモードをオートとする事で可能でございます。

### Q1-12 CADのデータを入力可能か

A1-12 はい、可能です。DXF、DXF、SXF (SFC・P21)のCADファイルに対応しております。

### Q1-13 アウトプットはどのようなものができるか

A1-13 ポスト出力機能としては下記に対応しております。 (A)コンター図 • 等ポテンシャル ・等間隙水圧 水平方向動水勾配 ・鉛直方向動水勾配 ・飽和度 ·体積含水率 (B)フローネット ・フローネット ・流線 (C)指定断面浸透流量 (D)ベクトル図 (E)数值出力 ・節点 ・要素

| Q1-14 | 講習会で下記のいろいろデータを取り入れたが、それらのデータは特殊なソフトかエクセルのどちらかで入力しますか。<br>「試験湛水貯水位.fcd」<br>「集水量.qcd」など<br>ハイエトグラフデータとハイドログラフデータは普通のエクセルデータでよいですか。                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1-14 | インポートしたデータ類は、本製品VGFIwo2Dからエクスポートできます。<br>境界条件設定ダイアログの下にあります下記のボタンで、保存、読み込みを行います。<br>[曲線データの保存] → 入力済みのデータを別ファイル形式で保存<br>[曲線データの読み込み] → 別ファイル形式で保存されたデータの読み込み |
|       | ファイル形式はアスキー形式ですので、通常のエディタで開いてデータフォーマットを確認することもできます。                                                                                                          |
| Q1-15 | VGFLOWの解析結果を斜面の安定計算に取り込みたい。<br>斜面の安定計算のバージョンはいくつから対応していますか。                                                                                                  |
|       |                                                                                                                                                              |

A1-15 浸透流FEM解析につきましては、Ver.6.02.00から対応しております。

#### Q1-16 斜面の安定計算の浸透流FEM解析と、VGFLOW2Dの解析の違いは何ですか

- A1-16 浸透流FEM解析につきましては、その用途として斜面の安定計算を目的とした機能に制限した廉価版という位置づけになり、浸透流解析自体を目的とした用途に対してはご利用頂けない機能制限を図っております。
   計算機能については、鉛直二次元問題のみとして、結果のポスト出力につきましても等ポテンシャルコンター及び等水圧コンター、局所動水勾配コンター、飽和度コンターに限定し、斜面安定とデータ連携する以外の結果については、解析結果の保存ができない構造にしてあります。
   扱える数値データとしては浸透破壊に対する照査に際してのFEM解析より得られる浸潤線或いは等ポテンシャル線のライン情報、及びパイピング照査に際しての水平方向動水勾配、垂直方向動水勾配の局所動水勾配の数値のみに限定しております。
   浸透流FEM解析の詳細な検討をご要望の場合には、「二次元浸透流解析(VGFlow2D)」の導入をお勧めします。
- Q1-17 プログラム内蔵試験値の根拠について
- A1-17 プログラムに内蔵しております試験値やパラメータ同定値につきましては、複数の大学・機関において公表されている試験値を採用しております。 これらのプログラム内蔵試験値やパラメータ同定値は、一般値というより、日本各地点における"ある試験値"であり、必ずしも"一般値"というわけではないという認識でご使用下さい。
- Q1-18 二次元浸透流解析におにおいて、「河川堤防の構造検討の手引き」P66のようなメッシュの切り方は出来ないのでしょう か?また、メッシュモードを [オート混合] などにして、河川堤防の浸透流解析を行っても良いのでしょうか?
- A1-18 メッシュモードを『セミオート』として指定いただく事で可能です。 詳しくは、製品ヘルプの[操作方法]-[標準的な処理の流れ]-[メッシュ分割]および[操作方法]-[プレ部]-[モデルの作成から 解析実行までの操作]をご覧ください。 また、オートメッシュによるメッシュ分割ですが、メッシュ分割により解析精度が大きく異なりますため、一概に是か非か を申し上げることはできません。 一般に「河川堤防の構造検討の手引き」P66の様な構造メッシュを用いられる様ですが、最終的なご判断はお客様ご自身 にてお願いいたします。
- Q1-19 水平問題での地層の深さ方向はどの様に扱えば良いか?
- A1-19 透水層にいくつかの透水係数が異なる地層が存在する場合には、平均的な水平方向の透水係数を設定すればよいものと 考えます。
- Q1-20 メッシュ分割において、リストのインデックスが範囲を超えていますと表示されます。対応方法について教えてください。
- A1-20 恐らくメッシュ分割の前段で必要な操作ステップが実施されていないことに依るものと考えられます。 セミオートでメッシュを分割する場合、モデル作成の段階でメッシュ分用に解析モデルを四角形もしくは三角形で構成され るブロックに分割する必要があります。 この要領でモデルを作成いただいた後に、ブロック化→要素定義→メッシュ分割といった操作ステップとなります。
- Q1-21 メッシュ分割での定義で分割したときに確認画面に行かないのは分割方法がいけないのでしょうか
- A1-21 原因としましては以下の点が考えられます。
   (1)モデル作成段階で解析モデルが全て三角形または四角形から構成されていない。
   (2)モデル作成-決定タブにてブロック化が正常に行われていない。
- Q1-22 液状化時の過剰間隙水圧等をモデル化することは可能なのでしょうか?
- A1-22 本ソフトでは水の動きに関します諸条件を境界条件として与えますため、ご希望の条件を設定することはできません。

### Q1-23 パイピングに対するG/Wの検討について対応していないとありますが、計算値の出力で出てくる圧力水頭は、G/Wの計算 で使用する圧力水頭と考えてよろしいのでしょうか

A1-23 誠に申し訳ございませんが、本プログラムをはじめ、弊社のFEM解析による地盤解析シリーズでは計算書等の出力をサポートしておりません。

#### Q1-24 スカイライン法とBiCGSTAB法とは?

A1-24 [スカイライン法(直接法)]

スカイライン行列を係数として連立方程式を解法します。 [BiCGSTAB法 (反復法)] 双共役勾配安定化法ともいい、非対称疎行列を係数として連立方程式を解法します。積型反復解法の1つであり、節点数 が多い場合やステップ数が多い解析の場合に選択することを推奨します。

なお、直接法は、大規模な逆行列を解法から計算量が大きくなる傾向があるため、計算量を小さくするために、様々な前 処理のアルゴリズムがあり、行列に非ゼロ成分の記憶の仕方からスカイライン法が分類されます。一方、BiCGSTAB法 (安定化共役勾配法)は、krylov空間法に分類される非定常型反復法であり、反復法は繰返計算時での残差の扱いから 収束性を良く安定化させるアルゴリズムになります。

#### Q1-25 VG2のデータを斜面安定解析に取り込む方法はどのようにすればよいのでしょうか?

A1-25 ■VG2のデータが『解析モデル』を指している場合 下記に挙げます3通りの手段があります。 ただし、(1)、(2)の場合は、前段としまして二次元浸透流解析にて、地盤解析用地形データファイル「\*.GF1」で保存いただ く必要があります。

> (1)斜面の安定計算より「\*.GF1」を直接読込む 詳しくは、製品ヘルプの「概要-プログラム機能概要-地盤解析用地形データファイル(拡張子GF1)」をご覧ください。 ※地盤解析用地形データファイルは節点および線分のみ取込み可能となりますため、各種属性は別途設定いただく必要 があります。

> (2)斜面の安定計算付属の「モデル作成補助ツール」より「\*.GF1」を読込む 詳しくは、製品ヘルプの「概要-プログラム機能概要-地盤解析用地形データファイル(拡張子GF1)モデル作成補助ツー ル」をご覧ください。 ※地盤解析用地形データファイルは節点および線分のみ取込み可能となりますため、各種属性は別途設定いただく必要 があります。

> (3)浸透流解析に用いたCADデータを読込む 詳しくは、「斜面の安定計算」の製品ヘルプ「概要-プログラム機能概要-モデル作成補助ツールとSXF読込み及び浸透流 解析結果の読込み」をご覧 ください。

以上のとおり3つの手段をご案内いたしましたが、(3)による操作の方が作業量を軽減できるものと考えます。

■VG2のデータが『解析結果』を指している場合 形状属性画面の「水位線(旧水位線)・等ポテンシャル」よりインポートします。 詳しくは、製品ヘルプの「概要-操作方法-各種画面の設定-形状・属性ウィンドウ」トピックの[水位(旧水位)線・等ポテン シャル線]をご覧ください。

### Q1-26 時刻歴図や数値出力で表示される圧力水頭に単位の表記がないですが単位は何ですか

A1-26 圧力水頭の単位は「m」となります。

### Q1-27 止水矢板の設定する場合、その方法を教えてください

A1-27 矢板の形状はメッシュの形状として入れることにより不透水面となります。 また、矢板からの漏水を考慮する場合には透水係数の微小な要素として設定することにより、難透水面となります。 もしくはカットオフ遮水壁としてモデリングいただくことになります。

### Q1-28 解析結果の「流量」や「流速」などの単位が知りたい

A1-28 流量はm3/s、流速はm/sとなります。

#### Q1-29 空洞自体はどういった要素として定義するのでしょうか?

- A1-29 空洞部から水が流出するのであれば、モデリングの際に当該個所をブロック化せず空洞周辺の節点に「浸出面境界」を設定することでシミュレーションが可能です。
- Q1-30 設定した空洞への流入後は、どういい処理になるのでしょうか? (奥行き方向に流れていく、一定量を超えると周辺へあふれだす、など)
- A1-30 空洞部の周辺に浸出面境界を設定した場合ですと単に空洞部から水が抜け出す解析となります。従いまして、一定量を超 えると周辺へ溢れ出すといった解析とはなりません。また、恐らく鉛直問題による解析になろうかと思いますが、この場合 は奥行き方向に対する流れという概念はありません。
- Q1-31 解析データ等をすべて入力し解析を実行したが「浸透流解析データファイルの保存に失敗しました。」というエラーメッ セージが現れ解析が実行されない
- A1-31 ー概には言えませんが、以下の点をご確認ください。
   (1)出力先に指定したフォルダに対して書込み権限があるか否か
   (2)出力先に指定したフォルダがネットワーク上のフォルダとなっている
   ※ネットワーク上のフォルダへの出力には対応しておりません。
- Q1-32 透水係数はm/secとなっていますが間違いないのでしょうか?cm/secに慣れていますので念のため御確認させてください
- A1-32 本プログラムでは「m/sec」となります。
- Q1-33 コンクリートの不飽和特性は、どのように設定するのがよろしいのでしょうか
- A1-33 コンクリートの不飽和透水係数の測定結果は持ち合わせていません。 コンクリートを除いて解析するのは一般的ではないかと思います。
- Q1-34 手入力による節点座標の修正方法を教えてください。
- A1-34 選択モードにて当該節点をクリックし、ポップアップメニューの座標値修正項目より行ってください。
- Q1-35 要素定義タブにて各ブロックの要素が設定できない
- A1-35 モデル作成タブの決定タブにてブロックが実行されていない可能がありますので、決定タブをご確認ください。
- Q1-36 浸透流解析のメッシュ分割決定ができません。解決方法を教えてください。
- A1-36 恐らくモデル作成の決定タブにてブロック化が行われていないものと考えられます。
- Q1-37 作成済みモデルに対し、さらに線分を追加したい場合、もとの線分の任意の位置に節点を設けて直線描画モードで線分を追加することはできますか?(座標入力でないと、もとの線分上には節点は設けられないのでしょうか?)※CADのインポート作成は行っていません。
- A1-37 可能です。要領としましては以下の2通りの方法があります。
  手法1:
  当該の線分を選択した状態で右クリックしますと、ポップアップメニューが表示されます。
  このメニューより中間点追加項目を選択いただき直接的に座標を設定します。
  手法2:
  当該線分と交わる線分(例えば鉛直線など)を追加(描画)し、右端ツールバーより交点生成ボタンをクリックします。
  線分の追加に伴う不要な線分を削除します。

- Q1-38 浸出面を設定する際に水頭を聞いてきますが、浸出面とは圧力水頭が0になる (水位はそれ以上上昇しない) ということで よろしいですか?その場合、一般に地表面の高さを入力すればよろしいのですか?
- A1-38 お考えのとおりで問題ありません。 なお、浸出面境界を定義する際に設定する水頭値は地下水を排水する高さとお考えください。
- Q1-39 水位変動境界につきまして。洪水時に河川水位は高水敷まで上がり、堤防法面の途中まで上昇します。この場合、水位変 動境界は堤外側の水没する個所までの節点に設定すれば良いですか?
- A1-39 お考えの設定で問題ありませんが、一般に当該のり面全体に設定するようです。
- Q1-40 解析条件の出力と解析結果の出力はできますか?
- A1-40
   可能です。

   Ver3.0.0から、新機能として対応しました。
- Q1-41 計算書出力際に、出力内容を自由にカスタマイズすることができますか?
- A1-41 可能です。 専用の印刷項目設定画面にて細分化された項目をON/OFFすることで出力内容を自由にカスタマイズすることが可能と なっています。

#### Q1-42 「Post部印刷項目設定」画面の「Pre部出力する」がチェックできません

A1-42 2とおりの原因が考えられます。
 1.「Pre部印刷項目設定」画面にて「Post部適用」がチェックされていない。
 2.ポストプロセッサ側開いたデータ名がプリプロセッサ側で解析実行されたデータ名と異なる。

#### Q1-43 節点数を減らすことは可能ですか?

- A1-43 線分に対する操作が主となりますので、節点そのものを削除することはできませんが、下記の操作より節点を統合することで実質的な削除は可能です。

  <
- Q1-44 (メッシュモードがセミオートの場合) モデルはすべて閉口しているのですが、決定サブタブでみるとハッチングされてい ません。何が原因でしょうか?
- A1-44 検討モデル外形に内包されているブロックは4点もしくは3点からなるブロックになっていない可能性があります。 当該ブロックの各節点を部分拡大し、微小に離れている節点が含まれていなかいか等を確認してください。
- Q1-45 [解析終了時刻]が境界条件の最終時刻より大きくなっていますとのエラーメッセージが表示されます
- A1-45 解析実行のヘルプに記載がありますとおり、複数種境界条件で最終時刻が異なる場合には、それらのうち最小の時刻が [解析終了時刻]の上限値となります。
- Q1-46 パイピングの検証であるG/W値を求めたいのですが、具体的に解析結果のどの数値を用いればよいのですか?
- A1-46  $G/W=(\rho t \cdot H)/(\rho w \cdot P)$ ですので、HとPを解析結果より下記の要領にて求めてください。 H:2点間のY座標差より求めます。 P:2点間の圧力水頭差より求めます。 なお、 $\rho$ tおよび $\rho$ wにつきましては製品での扱いはありません。 別途ご用意ください。

- Q1-47 「河川堤防の構造検討の手引き」検討時の不飽和浸透特性の与え方がわかりません。
- A1-47 下記の手順で設定してください。
  1.浸透要素のプロパティ設定画面より、表右端にある不飽和浸透特性を「表より入力」とします。
  2.不飽和浸透特性設定ボタンをクリックします。
  3.[表入力]タブ中の表より、表右端にある[・・・]ボタンをクリックします。
  4.曲線データ画面の[試験値自動セット]より「○河川堤防~」規定値を選択します。
  5.右のリストより該当する試験値を選択します。
  6.確定ボタンで画面を閉じます。
- Q1-48 表面からの浸水は無いように設定したいのですがどの様に設定したら良いですか。
- A1-48 当該の境界に境界条件を設定しないことで不透水境界になり水の収支が発生しません。
- Q1-49 浸透流量をテキストデータとして節点もしくは要素の出力値(流量、流速等)で取り出し、エクセルで処理することは可能 ですか?
- A1-49 可能です。 下記の手順にてお試しください。
   <手順>
   1.数値確認の結果をメモ帳等へ必要数をコピー&ペーストします。
   2.テキスト形式で保存します。
   3.エクセルにて読込際にスペース区切りで読込みます。

#### Q1-50 解析実行に時間を要しているため、解析時間を短縮する方法を教えてください。

- A1-50 メッシュ濃度を密から粗にすることで解析時間を短縮することが可能です。 また、解析ステップのオーダを調整することでも対応可能です。
- Q1-51 水平問題検討時の透水係数の扱いについて教えてほしい。
- A1-51 深さ方向の透水係数は均一です。 いくつかの透水係数が異なる地層が存在する場合には、平均的な透水係数を設定してください。
- Q1-52 盛土斜面内の雨を降らせた(時間変化)場合の間隙水圧の分布状態を解析できますか?
- A1-52 可能です。非定常解析の場合は時間変化に応じたコンタ図を確認することができます。 (アニメーションによる確認も可能です)
- Q1-53 解析実行タブのファイル指定にて出力先を指定したがフォルダー内に入出力ファイル、水位線データが表示されない。
- A1-53 この出力先に「2次元浸透流解析(VGFLOW2D)」のインストールフォルダ内にあるものであれば、ユーザ権限の関係から、別のフォルダ(たとえばドキュメントフォルダなど)を指定して解析を実行し、データ連携ファイルが作成されるかご確認ください。

#### Q1-54 解析結果図の浸潤線の高さはどのようにすれば正確に把握できますか?

- A1-54 可能です。
   解析実行の際に、データ連携を「する」として実施ください。
   そうしますと、指定の出力先に「\*.PRS」ファイルが出力されます。
   この「\*.PRS」ファイルはテキストファイルですのでエクセル等で開くことが可能です。
- Q1-55 特に設定しない場合は「不透水境界」となるという理解でよいですか?
- A1-55 お考えのとおりです。 節点または線分に対して何も境界を設けない場合は不透水境界となります。

### Q1-56 [断面指定]で算出される浸透流量の算出手法を教えてください。

- A1-56 下記の要領にて算出しています。 ・断面の流量は、画面上の線分長に流速をかけた値を表示します。 ・鉛直および平面問題では、指定断面を通る奥行1m当たりの流量となります。
- Q1-57 接点流量の計算値に正負が発生しますが、正負の意味をお教えください。
- A1-57 (+)を流入、(-)を流出とお考えください。
- Q1-58 浸透流量の断面指定にて得られる浸透量の算出方法を教えてください。
- A1-58 断面の流量は、画面上の線分長に流速をかけた値を表示します。 なお、鉛直および平面問題では指定断面を通る奥行1m当たりの流量となります。
- Q1-59 境界条件設定にある「水頭既知境界」は何を指定するものなのでしょうか。 操作ガイダンスP22には、「頂点部分を除いた箇所を選択します」とありますが、頂点を含めた場合どういった影響がある のでしょうか。
- A1-59 水頭既知境界は文字通り既知の水頭高さ(厳密には異なりますが地下水位とお考えください)を表します。
   操作マニュアルの例では左側が川表、右側を川裏と仮定し諸条件を設定しています。
   ランダムゾーンの天端はこの境にあたりますため、本ケースでは境界条件を設けていません。
   なお、本ケースの場合ですと設定値にも因りますが、当該箇所に水頭既知境界を設けましても解析結果が大きく相違することはないと思われます。
- Q1-60 任意の節点を原点とすることは可能でしょうか。

A1-60 可能です。 モデル作成の作成タブにて、選択モードボタンをクリックし、任意の節点を選択 (クリック) してください。 当該節点が赤色になりましたら、右クリックすると表示されるポップアップメニューより、「選択された節点を原点とする」 項目をクリックしてください。

- Q1-61 ー重仮締切で囲まれた中でプレボーリング工法で杭穴をあけた状態をモデル化しています。この場合の穴周辺の水位設定 のやり方がわかりません。
- A1-61 鋼矢板で締め切った内側は、排水して低くなった水位を水頭既知境界として地表面に設定します。 外側は池の水面あるいは外の地下水位のレベルを水頭既知境界として地表面に設定します。 内側も外側も水位が変動しないのであれば、定常解析でも問題ありません。 その場合は初期浸潤面の設定は不要となります。 杭の孔壁および先端部の底面に沿って排水して低くなった水位を水頭既知境界とします。
- Q1-62 メッシュの細かさで局所動水勾配が大きく異なるのでしょうか。
- A1-62 浸透流が激しく変動する部分、たとえば法尻のように法面に平行な流れや上昇する流れが錯綜するような部分では、メッシュを細かく切ればその変化を見ることができます。
   一方、周辺のあまり水位変動のないところ、水の動きが少なく、変化がない領域ではメッシュを粗くしても、局所動水勾配はあまり変わりません。
- Q1-63 川裏法尻部に不透水層を設けることにより圧力が上昇する結果となると予想していたが、鉛直方向局所動水勾配は下がる 結果となっている。原因は何か。
- A1-63 動水勾配は、水頭差(全水頭の差)÷流路の長さになります。 途中に不透水ブロックがあると、水の流れはそれを廻りこんで回り道を辿って低い所へ流れます。 そのため、不透水ブロックがあるほうが局所動水勾配の値が小さくなります。

### Q1-64 計算結果で局所動水勾配の数値がとても大きい値になっているが、このようなことはあるのか。

A1-64 水位変動境界のある法尻では、水位急低下時に大きな上昇圧力がかかることがあります。 その場合は、圧力水頭が上下で大きな差が発生するので、鉛直方向の局所動水勾配が大きくなることがあり ます。

#### Q1-65 2次元浸透流解析(VGFlow2D)の主な特長(製品概要)を教えてほしい

- A1-65 定常解析、非定常解析が行え、豊富な境界条件に対応しており、あらゆる2次元浸透現象をモデル化することが可能となっています。
   本製品は「プリプロセッサ(検討モデル作成部)」と「ポストプロセッサ(解析結果確認部)」により構成されており、それぞれの特長を以下に示します。
   なお、最終的な成果物としまして、解析条件や図を多用した解析結果を計算書形式で作成することが可能となっています。
   ■プリプロセッサ
   『CADファイル』や『ラスタイメージ』を用いたモデル作成が可能となっており、またオートメッシュにも対応していることからモデル作成に掛かる作業量の軽減が見込めます。
  - ■ポストプロセッサ

等ポテンシャルコンタ図等の豊富なポスト出力機能に加え、アニメーションにより結果をビジュアルに把握することが 可能となっています。

#### Q1-66 解析結果の『動水勾配』と『局所動水勾配』の違いは何か。

A1-66 動水勾配の定義は、

#### Q1-67 不飽和浸透特性の含水率パラメータは何を設定すれば良いのか。

- A1-67 要素ごとの含水率 $\theta$ rおよび $\theta$ sは「表より入力」とした際に設定する $\theta$ - $\psi$ 曲線の $\theta$ 値より、 $\theta$ rには1行目の値を $\theta$ sには末 尾の値を目安に設定してください。
- Q1-68 平面解析で点源を設けウェルポイントの検証行っているが(鉛直下向きの深さ方向)透水係数等の設定項目が見当たらない。
- A1-68 平面解析の場合、透水係数等は一通りとなり、点源による揚水あるいは排水量と水頭値から平面的な地下水位の上がり 下がりを計算します。 ※平面表示したモデルは単一の地層かつ境界条件で地下水位の計算を行います。

#### Q1-69 解析が正常に実行されない場合があるが、原因は何が考えらえるか。

- A1-69 メッシュサイズが細かすぎるとクーラン数が大きくなり、水の流れを表現できないことに起因していると考えます。 流速を v、時間間隔を  $\Delta t$ 、要素幅を  $\Delta l$ とすると、クーラン数 C は以下の式によって求められます。 C=v $\Delta t / \Delta l$ 現象を精度よく予測するためには C  $\leq$  1 を満たす時間間隔を指定することが理想的です。
- Q1-70 解析結果の「ベクトル図」は何を指しているのか。
- A1-70 流速をサイズに応じてベクトルで表しています。

### Q1-71 時間雨量の設定にて、例えば17-18時を1mmとする場合、17時と18時どちらに入力すべきでしょうか?

A1-71 下記の要領で設定してください。

| hr     | 降雨量  |  |  |  |
|--------|------|--|--|--|
| 0.000  | 0.00 |  |  |  |
| 17.000 | 0.00 |  |  |  |
| 17.000 | 1.00 |  |  |  |
| 18.000 | 1.00 |  |  |  |

- Q1-72 メッシュモードを「セミオート」としたとき、[モデル作成]タブ→[決定]タブへの移行の際に自動ブロック化されない部分が 出てくるのだが、モデル作成時に注意すべき点はあるか。
- A1-72 セミオートの場合は各ブロックを「三角形」または「四角形」にする必要があります。 自動ブロック化後にハッチングされないブロックは、この条件から外れているということになります。 部分拡大等で当該ブロックを確認し、[作成]タブにて修正してください。

Q1-73 ポストプロセッサのツリービューに表示されるフローネットは何でしょうか。

A1-73 フローネット (流線網)は、エネルギーの等しい点を結んだ流線と水頭が等しい点を結んだ等ポテンシャル線で作られる 網目図です。

※Q&Aはホームページ(2次元浸透流解析(VGFlow2D) https://www.forum8.co.jp/faq/win/vgflow2Dqa.htm) にも掲載しております。

# 2次元浸透流解析(VGFlow2D) Ver.3 操作ガイダンス

2023年 1月 第4版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

# お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へ お問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

2次元浸透流解析(VGFlow2D) Ver.3 操作ガイダンス

