VR 3D·CG FEM CAD Cloud UC-1 series UC-win series Suite series

RC下部工の設計・3D配筋(旧基準) Ver.3 ラーメン橋脚の設計・3D配筋(旧基準) Ver.3

Operation Guidance 操作ガイダンス

本書のご使用にあたって

本操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を説明したものです。

ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2016 FORUM8 Inc. All rights reserved.

目次

6	第1章 製品概要
6	1 プログラム概要
14	2 フローチャート
15	第2章 操作ガイダンス
15	1 モデルを作成する
15	1-1 基本条件
17	1-2 橋脚形状
18	1-3 橋脚鉄筋
28	1-4 上部工/支承
29	1-5 地層
31	1-6 杭形状
33	1-7 杭配置
35	1-8 許容応力度法_計算条件
37	1-9 許容応力度法_基本荷重ケース
41	1-10 許容応力度法_組合せ荷重ケース
43	1-11 許容応力度法_はり張出し荷重ケース
44	1-12 レベル2地震動_共通条件
45	1-13 レベル2地震動_橋脚条件
46	1-14 レベル2地震動_基礎条件
49	1-15 レベル2地震動_はり張り出し荷重ケース
50	1-16 基準値
51	2 結果確認
51	2-1 許容応力度法照查_橋脚
53	2-2 許容応力度法照查_基礎
54	2-3 許容応力度法照査_はり張出し部材
54	2-4 レベル2地震動照査_橋脚
56	2-5 レベル2地震動照査_基礎
57	2-6 レベル2地震動照査_はり張出し部材
57	2-7 震度算出(支承設計)連動_断面2次モーメント
58	2-8 震度算出(支承設計)連動_基礎バネ
58	3 計算書作成
58	3-1 計算書作成(詳細)
61	3-2 計算書作成(一覧)
62	4 図面作成
62	4-1 基本情報
63	4-2 形状_柱
63	4-3 形状_はり
65	4-4 形状_フーチング
65	4-5 形状_支承アンカーボルト穴
66	4-6 形状_杭配置
67	4-7 形状_はりの縦断面図位置
67	4-8 形状_柱の縦断面図位置
68	4-9 形状_基礎材
69	4-10 かぶり_はりかぶり

- 69 4-11 かぶり 柱かぶり 4-12 かぶり_フーチングかぶり 70 4-13 鉄筋(簡易)_はり主鉄筋・側面筋 71 4-14 鉄筋(簡易)_はりスターラップ 71 72 4-15 鉄筋(簡易)_柱鉄筋 4-16 鉄筋(簡易)_フーチング鉄筋 73 4-17 鉄筋(簡易) 曲げ長・継ぎ手長 74 4-18 鉄筋(詳細)_鉄筋生成 75 76 4-19 鉄筋(詳細)_鉄筋入力 4-20 鉄筋(詳細)_鉄筋一覧 77 4-21 図面 図面生成 78 4-22 図面_図面確認 79 4-23 3D配筋生成 80 5 保存 81
- 82 第3章 Q&A
- 82 1 適用範囲および制限事項
 83 2 入力
 87 3 計算(橋脚 常時、レベル1地震時)
 90 4 計算(橋脚 レベル2)
 101 5 計算(基礎)
 102 6 ファイル

第1章 製品概要

1 プログラム概要

「RC下部工の設計」は、ラーメン橋脚、張り出し式・壁式橋脚、逆T式・重力式橋台、2連・1連BOX、逆T式・L型擁壁の直接基礎、杭基礎をサポートし、「RC下部工の設計計算」の計算機能に図面作成機能をサポートした「設計-CAD統合」プログラムです。

ラーメン式橋脚の設計計算から図面作成までの業務を一貫して効率的に行えます。ラーメン橋脚の設計機能が充実しており、杭基礎保有耐力、面内保有耐力照査など震度法から保有耐力法までの詳細設計が可能です。

ラーメン橋脚の詳細出力が充実しており、Wordファイル出力、詳細計算書出力、HTML出力、テキスト出力に対応しています。電子納品対応として、禁止文字チェック、しおり機能等をサポートしています。

「ラーメン橋脚の設計」は、補強設計に対応した「RC下部工の設計」の機能限定バージョンで、「ラーメン橋脚の設計計算」の計算機能に図面作成機能をサポートしたプログラムです。

道路橋示方書・同解説V耐震設計編(平成24年3月)に準拠、ラーメン橋脚の直接基礎、杭基礎をサポートし、4柱式ラーメン 橋脚の設計に対応しています。ラーメン橋脚(2柱〜4柱)の配筋図および一般図の作成に対応しています。

▲図1メイン画面(設計計算部) ▲図2メイン画面(図面作成部)

全体概要

1. RC構造物設計計算の統合環境を提供

ラーメン橋脚、3柱式、4柱式ラーメン橋脚、張り出し式・壁式橋脚、逆T式・重力式橋台、2連・1連BOX、逆T式・L型擁壁の 直接基礎、杭基礎をサポート。

杭基礎保有耐力、ラーメン橋脚面内保有耐力照査が行え、震度法から保有耐力法までの詳細設計が可能。

▲3柱式ラーメン橋脚の面内 保耐法照査結果画面

2. 道路橋示方書 (H24.3) に対応

ラーメン橋脚、橋脚、橋台、杭基礎、直接基礎などの計算部において、道路橋示方書(平成24年3月版)に対応しています。 ラーメン橋脚では、杭基礎設計便覧(平成18年度改訂版)に対応しており、また、電子納品対応として、しおり機能、Word ファイル出力、禁止文字チェックに対応しています。

3. 下部工設計調書出力対応(ラーメン橋脚、橋脚、橋台) ラーメン橋脚,橋脚および橋台では、下部工設計調書をサポート。 プリント出力に加え、HTMLファイル出力にも対応しています。

4. 動的解析WCOMDと連動し、一連で性能照査

単柱橋脚、及びラーメン橋脚のメッシュデータをUC-win/WCOMDでインポートすることができます。 形状・材質・鉄筋配置・鉄筋量・地層データの追加可能。橋軸及び橋軸直角の両方向モデルのメッシュを自動生成し、ラーメ ン橋脚の場合は橋軸直角方向が可能。杭基礎であれば、杭及び地層データも生成します。 この機能を利用することにより、保耐法から動的解析までの性能照査を一連で行うことができます。

関連情報

「RC下部工の設計計算 (UC-win/RC) とUC-win/WCOMDの連動に関する資料」 < PDFファイル> (2002.2.26、連動機能によるRC橋脚の耐震性能照査例)

5. Engineer's Studio®、UC-win/FRAME(3D)エクスポート機能

動的解析に必要とされるアウトラインや断面等の諸情報を含めてラーメン形状のままエクスポート。軸力変動の大きいラー メン橋脚の動的解析で推奨される「Fibre」をサポートするほか、「はり(M-φ)+柱(Fibre)」、「M-θ」など各モデル化のエ クスポートにも対応。

6. UC-win/Roadとの3Dモデル (3DS) 連動

全ての対象構造物は、3DSモデル出力ができ、UC-win/Roadで利用することができます。

7. 高速な3D表示、快適なレスポンスを最大限に追求

構造物モデルのソリッド表示、配筋状態のワイヤーフレーム表示(ラーメン橋脚を除く)、プロジェクト全体の3次元表示が可能。

3面図、配筋断面図も詳細出力が可能です。

8. 出力機能(HTML出力、電子納品対応)

出力例入力データ、計算結果、各種図面に至るまで、HTML出力をサポート。ブラウザでの表示、各種ワープロでの編集も可能です。

9. ラーメン橋脚の補強設計に対応

新設、既設の設計の他に補強設計に対応しています。

柱	曲げ耐力制御式鋼板巻立て・鉄筋コンクリート巻立て・鋼板巻立て 鉄筋コンクリート増厚(矩形のみ)
ᄖ	鋼板巻立て・鉄筋コンクリート増厚 鋼板巻立て・鉄筋コンクリート増厚に対応しています。

▲補強工法

また、直接基礎、杭基礎(増し杭工法)のフーチング補強に対応しており、許容応力度法および地震時保有水平耐力法によ る照査を行います。

はり、柱との同時補強も計算可能です。

ラーメン橋脚の機能につきましては、「ラーメン橋脚の設計」をご参照ください。

10. 杭基礎の照査

杭基礎で回転杭工法、レベル1地震時の液状化無視/考慮の一括計算、負の周面摩擦力の照査に対応しています。また、作用 力直接指定による杭基礎レベル2地震時照査に対応しています。

また、水平変位の制限を緩和する杭基礎の設計(道示タイプ、設計便覧タイプ)が可能です。

11. その他計算機能

・PHC杭の杭頭カットオフ区間の杭本体照査に対応しています。

・はりのハンチ無し、フーチング張り出し無しに対応、コーベルとしてのはりの照査に対応しています。

・柱の鉄筋入力において、3段配筋以上に対応、場所打ち杭の帯鉄筋径の変化に対応しています。

■図面作成機能

図面作成は、「ラーメン式橋脚(2柱~4柱)」を作図対象とし、以下の各部形状、および、設計、規準に応じた図面を作成す ることができます。

1. 対象形状、工法

梁形状	左右張出、右張出、 左張出、張出なし
柱形状	矩形、矩形面取、円、小判
フーチング形状	矩形、橋軸方向上面テーバ有無
付属物	支承アンカーボルトの作図、自動よけ配筋、支承補強筋
柱神强	PC巻立て工法 柱鋼板巻立て工法
底版補強	增厚

2. 電子納品対応

国土交通省「CAD製図基準(案)」、NEXCO「CADによる図面作成要領(案)に対応。

また、CADデータ交換標準SXF Ver3.1形式のファイル出力に対応しています。 電子納品ではSXF (p21) ファイルでの納品が原則で、この形式の図面出力に対応しています。

3.3D配筋

シミュレーション機能、3DS形式、IFC形式、Allplan形式のファイル出力に対応

国土交通省の推進するCIMに先駆け「3次元配筋生成とその表示機能」を備えており、躯体、鉄筋の配置情報を3次元デー タとして生成し、「3次元配筋ビューワ」で表示(実際の鉄筋径、曲げ半径を使用してリアルに表示)し、配筋状態の確認や 干渉チェックが容易に行えます。「3次元配筋ビューワ」からは、干渉シミュレーションが可能な弊社「3D配筋CAD」形式や、 3DS形式、Allplan形式、IFC形式のファイル出力が可能で、各3DCADとの連携が可能です。

RC下部工の設計

プログラムの機能と特長

■はり張出し部の照査機能

はりの張出し部に着目した許容応力度法照査と、レベル2地震動照査を行います。橋軸方向、橋軸直角方向ごとに、複数の荷 重ケースを定義することができます。

▲はり張出し荷重入力画面

自動計算される自重、慣性力以外に、支承位置の荷重と任意の位置の荷重を直接入力することが可能です。橋軸方向の荷 重ケースでは、橋軸方向の荷重値が指定可能です。橋軸直角方向の荷重ケースでは、橋軸直角方向、および鉛直方向の荷重 値を指定することが可能です。レベル1、レベル2地震動の橋軸方向の荷重ケースでは、設計水平震度を直接指定すること で、はり自重による慣性力を考慮することができます。

■免震設計、基礎の減衰

平成24年版の道路橋示方書対応以降、簡便法による免震設計を非対応としていましたが、計算オプションの指定により、簡 便法による免震設計に対応します。また、基礎の減衰による補正係数CEを考慮するスイッチを追加します。 これらの条件は、「震度算出(支承設計) Ver.10」と連動します。

■柱上端の補強鉄筋

本製品のRC補強による柱補強鉄筋の非定着鉄筋は、「補強鋼材軸方向有効範囲」以下の範囲で無効とし、この範囲より上 側では全補強鉄筋を無効としていました。今回のバージョンアップでは、上側の範囲(下図の「1」の範囲)で、定着鉄筋のみ 有効とする計算条件を追加しました。

▲RC補強主鉄筋の有効範囲

■基礎の結果画面

基礎の許容応力度法結果画面では、詳細タブでNGの荷重ケース、杭が一目でわかるようの改善を行いました。また、レベル 2では荷重条件に関する表示を結果画面に追加しました。

▲基礎の許容応力度法結果画面

■計算機能

設計計算は「ラーメン橋脚の設計計算Ver.11」と同機能を有しており、 平成24年道示に準拠した設計計算が可能です。また、既設、補強モデル、国総研資料第700号に対応しています。

▲橋軸直角方向レベル2結果画面

■対象構造物

- ・ラーメン式橋脚(両張り出し、片張り出し、門型)
- ・逆T式橋脚(梁下形状:直線、台形、円弧、面取り)、壁式橋脚
- •逆T式橋台、重力式橋台
- ・逆T式擁壁、L型擁壁
- ・BOXカルバート(1室及び2室)
- ・逆T式橋脚におけるフーチング形状(テーパー無し、1方向、2方向、3方向及び4方向テーパー)

■設計の範囲

平成24年道路橋示方書準拠、許容応力度設計法、震度法、レベル2地震動の照査を設計法として採用。 免震設計に対応。

		橋台	BOXカルバート	橋脚	ラーメン橋脚	擁壁
安定語	†算	0	0	0	0	0
≠R≭7≣₽=+	常時	0	0	0	0	0
OP1/Jaxof	地震時	0	-	0	0	0
耐霉腔本	躯体	0	-	0	0	-
MJF586FF	杭	0	-	0	0	-
神強	設計	-	-	-	0	-

▲設計の範囲

■地層条件及び液状化、流動力の計算

液状化の判定、流動力(水平地層にモデル化)、杭基礎震度法(傾斜地盤対応)

■形状諸元の入力

形状入力など、入力データチェック機能。3面図、透視図でのデータ確認。

■荷重及び荷重の組合せ

埋め戻し高さ、水位等の複数ケースの設定。上部工反力、土圧、水圧、慣性力等荷重の組合せ自動生成。 計算時の荷重ケース選択。BOXカルバートは、内空任意荷重(集中荷重、分布荷重)の入力が可能。

	橋台	BOXカルバート	橋脚	ラーメン橋脚	擁壁
躯体自重	0	0	0	0	0
土砂重量	0	-	0	0	0
土圧	0	0	-	-	0
静水圧	0	0	0	0	0
流水圧	-	-	0	-	-
風荷重	-	-	0	0	-
地震時慣性力	0	-	0	0	0
地震時動水圧	-	-	0	-	-
輪荷重	-	0	-	-	-
上部工反力	0	0	0	0	-
乾燥収縮	-	-	-	0	-
温度変化	-	0	-	0	-
上載荷重	0	0	-	_	0
任意死荷重	-	-	-	0	-

▲荷重の種類

■地震時保有水平耐力の計算(柱)

橋脚柱、ラーメン式橋脚柱の面外地震時保有水平耐力。損傷のタイプの判定及び安全性の判定。 横拘束を考慮した応力度-ひずみ曲線、M-Φダイアグラム表示。

■ラーメン式橋脚面内地震時保有水平耐力

塑性ヒンジ位置を仮定し、塑性ヒンジの形成と塑性ヒンジ位置における終局塑性回転角等の計算及び損傷のタイプの判定、 安全性の判定を行う。各塑性ヒンジ位置における塑性ヒンジ形成過程をMu-N図との関係から求める過程と4つの塑性ヒンジが形成された後の挙動を求める計算及び損傷タイプ、安全性の判定を行う。(柱配筋は、対称配筋) 第1章 製品概要

■杭基礎の地震時保有水平耐力

地震時保有水平耐力法による照査(橋脚、ラーメン式橋脚)安全性の判定。(水平地層、杭長一定に限定) Page Top PageTop

■表示

構造物の3面図及び透視図の表示、拡大、縮小、移動。配筋状態も同時表示。透視図の回転表示 表示色の任意指定。

■出力

ラーメン橋脚は、F8-PPF出力に対応。 単柱橋脚,橋台,擁壁,カルバートは、HTML (Hyper-Text Markup Language)出力に対応。 ブラウザでの表示、HTML対応ワープロでの出力データ編集処理が可能。 設計調書(下部工設計調書などラーメン橋脚、橋脚、橋台、擁壁)に対応。 HTML罫線の選択(1重線・2重線)を追加。report出力機能の拡充。

■データ共有連動

震度算出 (支承設計) との下部・基礎データの共有。UC-win/WCOMD (動的解析) へのデータ連動。 UC-1FRAME連動ファイル作成、UC-win/Road 3DS exportをサポート。

■その他

せん断有効高さ、部材のねじり剛性は、矩形や円形等特定の形状以外は本製品で合理的と考えられる算出式を採用。 ラーメン式橋脚の面内解析は、フーチングを剛体(フーチング部材を剛域扱い)と実剛性のα倍(α=1、10、20、50)を準備 して比較検討が可能。 道路橋示方書に準拠。擁壁は、試行くさび法による土圧、壁面摩擦角の取り方を準備。

カルバートは、輪荷重と鉛直土圧係数の取り方については、統一的処理を行う。

ラーメン橋脚の設計

プログラムの機能と特長

「ラーメン橋脚の設計」は、ラーメン橋脚の設計計算に対応した「RC下部工の設計」の機能限定バージョンです。

■設計計算部

1. 2柱式、3柱式、4柱式ラーメン橋脚の常時、暴風時、レベル1地震時の計算およびレベル2地震時照査を行います。基礎 形式は、直接基礎と杭基礎をサポートしています。

2. 道路橋示方書 (平成24年3月) に対応しています。

電子納品対応として、しおり機能、Wordファイル出力、禁止文字チェックに対応しています。

3. 補強設計に対応

柱	曲げ耐力制御式鋼板巻立て・鉄筋コンクリート巻立て・鋼板巻立て 鉄筋コンクリート増厚(矩形のみ)
비	鋼板巻立て・鉄筋コンクリート増厚 鉄筋コンクリート巻立て厚は橋軸方向、直角方向ごとに指定

▲補強工法

また、直接基礎、杭基礎(増し杭工法)のフーチング補強に対応しており、許容応力度法および地震時保有水平耐力法による照査を行います。はり、柱との同時補強も計算可能です。

4. はり、柱、フーチングに対して任意の死荷重を考慮した計算が可能です。

5. 震度算出 (支承設計) との連動 (固有周期および設計水平震度を算出) / 下部工設計調書 / FRAME連動ファイル出力 / UC-win/Road 3Dモデル出力に対応しています。

6. 面内地震時保有水平耐力では、塑性ヒンジ位置を仮定し、塑性ヒンジの形成と塑性ヒンジ位置における終局塑性回転 角等の計算及び損傷のタイプの判定、安全性の判定を行います。各塑性ヒンジ位置における塑性ヒンジ形成過程をN-Mu図 との関係から求める過程と塑性ヒンジが形成された後の挙動を求める計算及び損傷タイプ、安全性の判定が可能です。

7. 橋座の設計に対応しています。

8. 上部工反力入力で機能分離型支承に対応しています。

9. はり、柱、フーチングごとにコンクリートおよび鉄筋材質を指定できます。

10. 水平変位の制限を緩和する杭基礎の設計(道示タイプ、設計便覧タイプ)に対応しています。

11. 杭基礎で回転杭工法、レベル1地震時の液状化無視/考慮の一括計算、負の周面摩擦力の照査に対応しています。また、作用力直接指定による杭基礎レベル2地震時照査に対応しています。

12. Engineer's Studio®、UC-win/FRAME(3D)へのエクスポートが可能です。

適用基準及び参考文献

適用基準

- ・日本道路協会 [道路橋示方書・同解説 | 共通編] 平成24年3月
- ・日本道路協会 [道路橋示方書・同解説 Ⅲ コンクリート橋編] 平成24年3月
- ・日本道路協会 [道路橋示方書・同解説 Ⅳ 下部構造編] 平成24年3月
- ・日本道路協会 [道路橋示方書・同解説 V 耐震設計編] 平成24年3月
- ·日本道路協会 [杭基礎設計便覧] 平成19年1月
- ・東・中・西日本高速道路株式会社 [設計要領第二集橋梁保全編] 平成18年4月
- ・日本道路協会 [道路橋示方書・同解説 SI単位系移行に関する参考資料] 平成10年7月
- ・日本道路協会 [道路土工 擁壁工指針, カルバート工指針] 平成11年3月
- ・日本道路協会 [既設道路橋の耐震補強に関する資料] 平成9年8月
- ・日本道路協会 [既設道路橋基礎の補強に関する参考資料] 平成12年2月
- ·日本道路協会 [杭基礎設計便覧] 平成4年10月
- ·日本道路協会 [杭基礎設計便覧] 平成19年1月
- ・日本道路公団 [設計要領第2集 橋梁・擁壁・カルバート] 平成12年1月
- ・全日本建設技術協会 [建設省制定 土木構造物標準設計第1巻解説書(側こう類・暗きょ類)]昭和61年2月
- ・全日本建設技術協会 [建設省制定 土木構造物標準設計第6~12巻(橋台・橋脚)の手引き]昭和58年2月
- ・全日本建設技術協会 [建設省制定 土木構造物標準設計第2巻手引き(擁壁類)]昭和62年7月

参考文献

・(財)海洋架橋・橋梁調査会 [既設橋梁の耐震補強工法事例集] 平成17年4月

・NIJ研究所 [STマイクロパイル工法 設計・施工マニュアル(案)] 2002年5月

・独立行政法人 土木研究所 [既設基礎の耐震補強技術の開発に関する共同研究報告書 (その3) 高耐力マイクロパイル工法 設計・施工マニュアル(6分冊の2)] 平成14年9月

・独立行政法人 土木研究所 [既設基礎の耐震補強技術の開発に関する共同研究報告書 (その3) STマイクロパイル工法 設計・施工マニュアル(6分冊の3)] 平成14年9月

・独立行政法人 土木研究所 [既設基礎の耐震補強技術の開発に関する共同研究報告書 (その3) ねじ込み式マイクロパイル工法 設計・施工マニュアル(6分冊の4)] 平成14年9月

2 フローチャート

第2章 操作ガイダンス

1 モデルを作成する

使用サンプルデータ・・・Rahmen_1.F4U

ここでは、製品添付の「Rahmen_1.F4U」を新規に作成することを目的とし、説明を進めます。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

操作ガイダンスムービー Youtubeへ操作手順を掲載しております。

RC下部工の設計・3D配筋(旧基準) Ver.3/ ラーメン橋脚の設計・3D配筋(旧基準) Ver.3 操作ガイダンスムービー(14.30) https://www.youtube.com/watch?v=X6bV3zctNUM

項目ツリーアイテム

上から順に入力してください。 入力画面や結果確認画面は、メイン画面のツリー項目 にマウスカーソルを合わせてダブルクリックします。

1-1 基本条件

初期入力を行います。

新規入力 「新規入力」をチェックして、確定ボタンを押します。

	基本	本条件	×
ー般事項 タイトル、コ:	メント、その他 :	名称設定	
─検討対象── ● 新設	○ 既設	C ł	甫 強
■ 「橋脚躯体のオ ○ H14道路相	∀平耐力−水平変 喬示方書	位,許容塑性率の € H24道路橋	の算定方法 示方書
基礎形式 〇 直接基礎	☞ 杭基	礎 () た	ほし(梁柱モデル)
地域区分		A1	•
地盤種別		Ⅱ種	•
鉄筋コンクリ	リートの単位重量	24.5	kN/m ³
水の単位重	'量 Υ ₩	9.80	kN/m ³
ーコンクリートの)設計基準強度		
	orck a		
1+11	(N/mm²) 01		
185	21		
フーチング	21		
	主鉄筋材料	帯鉄筋材料	
내	SD345	SD345	
柱	SD345	SD345	
フーチング	SD345	SD345	
	✔ 確定	🗙 取消	? ^//7(°(H)

基本条件

基礎形式

基礎形式 (直接基礎、杭基礎、なし)を選択します。 「杭基礎」を選択

地盤種別

耐震設計上の地盤種別を選択します。 「II種」を選択

入力後、確定ボタンを押します。

1-2 橋脚形状

「橋脚形状」をクリックします。

「形状」、「はり」、「柱」、「フーチング」タブを順に開き入力 を行います。

「2」を選択

柱本数

形状

以下の数値を変更します。

左側		
W(m)	:	「3.200」
H1(m)	:	「1.200」
H2(m)	:	[0.800]
柱高(m)	:	「7.300」
右側		
W(m)	:	「3.200」
H1(m)	:	「1.200」
H2(m)	:	[0.800]
柱高(m)	:	「7.300」

はり

以下の数値を変更します。

支間長(m)	:	「8.400」
断面高(m)	:	「1.500」
左ハンチ	:	「あり」
左ハンチ幅(m)	:	「1.500」
左ハンチ高(m)	:	「0.500」
右ハンチ	:	「あり」
右ハンチ幅(m)	:	「1.500」
右ハンチ高(m)	:	「0.500」

柱

以下の数値を変更します。

矩形R(m) : 柱位置「1」、「2」共に「0.400」

柱の断面サイズが異なるラーメン橋脚をモデル化できますが 柱ごとに異なる断面形状を設定することはできません。 (Q2-29参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcga-2.htm#q2-29

フーチング

以下の数値を変更します。

高さ(m) : 「2.200」 左右張出し(m) 左側 : 「2.050」 右側 : 「2.050」

前後張出し : 「3.750」 面取りあり : チェックを外す

確定ボタンを押します。

確定ボタンを押すと、情報画面が表示されます。

内容を確認し、「はい」をクリックします。

1-3 橋脚鉄筋

					橋服	鉄筋				- • ×
だっこ 斑	66C.22 \$4	月閉鉄箱/横移	陳筋一括入力							
全体				Rig to	用途	供給本数	有効範囲(n)	参照版面	標轄有効長(m)	直角有効長(m) ^
- ほり - 柱 - フーチン - フーチン	///)面内 ///)面外			1約94880。 約1支間1 約1支間1 約1支間1	左側 左端郎 中央部 右端部		001.0	参照なし 参照なし 参照なし	0.000 0.000 0.000	0.000 0.000 0.000
				1355第5日し 柱1 柱1	右側 主鉄筋 帯鉄筋上側			参照なし 参照なし	0.000	0.000
		┍╨┰╇━╸		住1 柱1	帯鉄筋中央 帯鉄筋下側		0.000		 0.000	8.003 8.001
				4E2 4E1	主鉄筋 蒸鉄線 上側	0		参照なし	0.000	0.000
			-	住2 住2	带铁筋中央 带铁筋下侧		0.000 0.000		0.000	0.000
			Π	ノーナンウ県出し フーチング支閉1 フーチング支閉1				参照なし 参照なし		
				2ーチング支配1	支間1右端			参照なし		v
#file/RE	t ⊂ //	Rattin C 7	ンカー鉄筋	P	20160000					
8238	(mm	5 \$1.6612	本意	(nm) (nm)	(n)	2962				
									 E 🗙 1934	i ?~1171B)

オプション

帯鉄筋量の変化数

柱ごとに、帯鉄筋の変化数を指定してください。 柱1、2 →共に「2」を選択

続いて「鉄筋配置」タブを開く

鉄筋配置

はり、柱、フーチング面内、フーチング面外より入力する種類を 選択します。

※今回はそれぞれ種類ごとに入力を行っていますが、「全体」 を選択し入力を行っても構いません。

――定義範囲のリストになります。部位ごとに設定を行います。

一支間の左右側、柱の帯鉄筋範囲などの場合、断面の定義範囲の長さを指定します。

_主鉄筋配置タブ、斜引張鉄筋/横拘束筋タブを選択し、以下の数値を入力していきます。

___「主鉄筋配置参照断面」

他の定義範囲で定義した主鉄筋配置を参照することが可能で すが以下の制限があります。

・自分自身を参照している断面は参照できません。

・はり、柱、フーチング直角方向、フーチング橋軸方向間をまた がる参照はできません。

・はり支間中央断面は、右側、左側の断面を参照できません。

・柱段落し後の断面は、基部側の断面を参照できません。

・フーチングの増幅部の断面は、増幅部以外の断面を参照できません。

(Q2-12参照)

https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q2-12

				橋服	映筋				- 🗆 🗙
オプション 鉄筋配置	斜闭铁筋/横拘	東筋一括入力							
□ 金健 (====11			10.10	用途	鉄筋本数	有効新囲(n)	参照版面	磷酸有効長(m)	适角有効長(m)
- 42 - 7日 - フーチング面内 - フーチング面対		ľ	は初発出し おり支援 おり支援 おり支援 おり気気	生間 左端部 中央部 右側 右側		0.000	参照なし 参照なし 参照なし 参照なし	0.000 0.000 0.000	8.000 8.000 8.000
新面の有効長さ(m) 主鉄協定置を照射面	0.000 (現版/検討策路) (参照しない)								
₢新能/問題 C	補助鉄筋 C 7)。	力ー鉄筋							
記録	(7) 鉄筋隆	本数	ビッチ 移動量 (nm) (nm)	有効範囲 (n)					
								√ ₩2 X 103	N 7 N718

「はり」を選択します。 上から順に以下の拡大図の数値を入力します。

H筋配置参照8	新面 参照し	ない	v				
新設/既設	C 補強鉄	筋 C アン	力一鉄筋				
配置	かぶり (mm)	鉄筋径	本数	ビッチ (mm)	移動量 (mm)	有効範囲 (m)	
上側	110.0	29	17	125.0			
上側	110.0	29	2	2180.0			
上側	210.0	29	8	250.0			
上側	210.0	29	2	2180.0			
下側	110.0	29	17	125.0			
下側	110.0	29	2	2180.0			
側面	110.0	19	6	150.0	360.0	1	

断面の有効長さ(m) 0.0	0.0							
主鉄筋配置 斜引張鉄筋/横拉	東筋							
斜引張鉄筋量 Aw (mm2) □ 直接指定 □ レベル1 レベル2			鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)		
橋軸方向	既設	帯鉄筋	22	2	2	150.0		
直角方向	既設	中間帯鉄筋						
	既設	スターラップ	22	2	2	150.0		
	補強	帯鉄筋						
- 横拘東筋 - Ah算出に既設帯鉄筋を2本分: □ 考慮する	考慮する	(2段配置)				ns(本	co (mm)	ф (mm)
 ■ 横拘束筋の断面二次モーメ ■ 補強時 ρ s 算出用有効長dを 	ントIn直打 自動計算	<u></u> 新定 (する)		4	× 0.200 × 0.400	下側		
新設/既設時 補強 d(m)(ルS用) d(m)(ル	時 S用)d	(m)(Lp用) In(m	m4)		ŀ	199080		
橋軸方向 直角方向								

はり張出し一左側

(主鉄筋配置)

はり張出し-左側 (斜引張鉄筋/横拘束筋)

はり張出し

左側張出し、右側張出しごとに1つの鉄筋配置の定義が可能です。

主鉄筋配置

「主鉄筋配置参照画面」機能により、他の定義範囲で定義した主鉄筋配置を参照することが可能です。

斜引張鉄筋/横拘束筋

はり支間1-左端部 (主鉄筋配置)

はり支間部

可能です。

主鉄筋配置の参照機能は、斜引張鉄筋/横拘束筋にも適用さ れません。各部材の区間ごとに全て入力する必要があります。

1つの支間ごとに、左側、中央、右側の3つの鉄筋配置の定義が

断面の有効長さ(m)	1.500					
主鉄筋配置 斜	引張鉄筋/材	執東筋					
主鉄筋配置参照	新面 参照し	นา	-				
⊙ 新設/既設	C 補強鉄	筋 C アン	力一鉄筋				
配置	カッジョン (mm)	鉄筋径	楼本	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	回転
上側	110.0	29	17	125.0			
上側	110.0	29	2	2180.0			
上側	210.0	29	8	250.0			
上側	210.0	29	2	2180.0			
下側	110.0	29	17	125.0			
下側	110.0	29	2	2180.0			
下側	210.0	29	8	250.0			
下側	210.0	29	2	2180.0			
側面	110.0	19	6	150.0	360.0		
ハンチ筋	110.0	25	10	242.2		1.500	

断面の有効長さ(m) 1500 主鉄筋配置 斜引張鉄筋/検拘束筋 斜引張鉄筋量 Aw (mm2) 「直接指定 鉄筋径 (橋軸方向) (直角方向) 照査用) 照査用) 間隔 s(mm)
 既設
 帯鉄筋

 既設
 中間帯鉄筋

 既設
 スターラップ

 補強
 帯鉢や
 112 5/1/1 1/~5/1/2 橋軸方向 直角方向 150.0 150.0 【補強】 帯鉄 横拘束筋 「約算出に既設帯鉄筋を2本分考慮する(2段配置) 「 考慮する ns(本) со Ф (mm) (mm) α 0.200 β 0.400 上側 円面 □ 横拘束筋の断面二次モーメント動直接指定 ▼ 補銀時のの算出用有効長はを自動計算する。 新設/既設時 d(m)(クs用) d(m)(Lp用) h(mm4) 橋軸方向 直角方向 1.000 1.000 0.727

	断面の有効長さ	(m)	0.000					
	主鉄筋配置 斜	引張鉄筋/枸	前東筋					
・ 新設/ 民級 の、示川 鉄筋度 本数 ビッチ 秋か度 水の川 砂か用 のの 上間 1100 28 17 1250 回転 上間 1100 29 17 1250	主鉄筋配置参照	断面 参照し	นา	-				
記価 次,571 鉄筋径 水数 ビッチ 第66 特別用 回数 上間 1100 29 17 125.0 </td <td>⊙ 新設/既設</td> <td>C 補強鉄</td> <td>筋 C アン</td> <td>力一鉄筋</td> <td></td> <td></td> <td></td> <td></td>	⊙ 新設/既設	C 補強鉄	筋 C アン	力一鉄筋				
上州 1100 29 17 1250 上州 2100 29 8 221800 上州 2100 29 8 2500 上州 2100 29 7 21800 下州 1100 29 7 1250 下州 1100 29 77 1250 下州 2100 29 8 2500 下州 2100 29 8 2500 下州 2100 29 2 21800 小州 2100 29 2 21800 小州 2100 19 150 3800	配置	かぶり (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	回転
Lift 110.0 29 2 210.0 </td <td>上側</td> <td>110.0</td> <td>29</td> <td>17</td> <td>125.0</td> <td></td> <td></td> <td></td>	上側	110.0	29	17	125.0			
上間 210.0 29 8 250.0 上間 210.0 29 2 218.0 2 片間 110.0 29 17 1125.0 2 下間 110.0 29 2 2180.0 2 下間 210.0 29 8 250.0 2 下間 210.0 29 2 2180.0 2 「間 210.0 29 8 250.0 2 「間 110.0 19 8 250.0 3 3 「間 110.0 19 150.0 350.0 3 3	上側	110.0	29	2	2180.0			
上的 2100 29 2 2100 (下的 1100 29 17 1250 (下的 2100 29 2 2160 (下的 2100 29 8 2500 (下的 2100 29 8 2500 (下的 2100 29 8 2500 (例面 1100 19 6 1500 (の 100 19 6 1500 (0 100 19 6 1500	上側	210.0	29	8	250.0			
Trill 110.0 29 17 125.0 Trill 210.0 29 2 2180.0 20 Trill 210.0 29 8 250.0 20 Trill 210.0 29 8 250.0 4 Millio 110.0 19 66 250.0 4	上側	210.0	29	2	2180.0			
TF(M) 110.0 29 2 2180.0 TF(M) 210.0 20 8 2560.0 TF(M) 210.0 29 2 2180.0 MHE 110.0 19 6 150.0 380.0	下側	110.0	29	17	125.0			
TF(#) 210.0 29 8 250.0 T(#) 210.0 29 2 210.0 (#) 110.0 19 6 150.0 80.0	下側	110.0	29	2	2180.0			
TF(#) 210.0 29 2 2180.0 (#) 110.0 19 6 150.0 380.0	下側	210.0	29	8	250.0			
(制西) 110.0 19 6 150.0 360.0	下側	210.0	29	2	2180.0			
	側面	110.0	19	6	150.0	360.0		

はり支間1-左端部 (斜引張鉄筋/横拘束筋)

はり支間1-中央部 (主鉄筋配置)

断面の有効長さ(m)	0.000								
主鉄筋配置 斜引張鉄筋	/横拘束筋								
「斜引張鉄筋量 Aw (mm ²) 「直接指定 レベル1 レベ	1/2		鉄筋	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)			
橋軸方向	既設	帯鉄	6 22	2	2	150.0			- 1
直角方向	既設	中間帯	夫筋 22	2	2	150.0			- 1
	既該	スターラ	ッブ						- 1
	補強	帯鉄	6						
●横拘束筋 ●Ah算出に既設帯鉄筋を □ 考慮する	2本分考慮す	5(2段配置)-				ns(2	5) co (mm)	ф (mm)	
 ■ 横拘束筋の断面二次 ■ 補強時 ρ s 算出用有効 	モーメントル直	接指定 算する			α 0.200 β 0.400	上例 1 下例 1	2		
新設/既設時 d(m)(<i>ρ</i> s用)	補強時 j(m)(┍s用)	d'(m)(Lp用)	Ih(mm4)			19)090	4		
橋軸方向 1.000		1.000							
直角方向 0.727		0.727							

はり支間1-中央部 (斜引張鉄筋/横拘束筋)

はり支間1-右端部 (主鉄筋配置)

断面の有効長さ(m) 1.500 主鉄筋配置 | 斜引 張鉄筋/横拘束筋 | 主鉄筋配置参照断面 参照しない ○ 新設/既設 ○ 補強鉄筋 -配置 からでJ (mm) 鉄筋径 本数 ビッチ (mm) (mm) 有効範囲 回転 上側 上側 上側 下側 下側 下側 (側面 ハンチ筋 110.0 110.0 210.0 110.0 110.0 210.0 210.0 210.0 110.0 110.0 17 125.0 2180.0 250.0 2180.0 125.0 2180.0 250.0 2180.0 150.0 242.2 29 29 29 29 29 29 29 29 29 29 19 25 17 360.0 1.500 10

 断面の有効長さ(m)
 1500

 主鉄筋配置
 料引引鉄筋量

 料引引鉄筋量
 Aw (mm2)

 直接指定

 本数 (橋軸方向 照査用) (i レベル1 レベル2 橋軸方向 直角方向
 既設
 帯鉄筋

 既設
 中間帯鉄筋

 既設
 スターラップ

 補強
 帯鉄筋
 22 22 (相短) 帝秋月 横拘束筋 「Ah算出に既設帯鉄筋を2本分考慮する(2段配置)− 「考慮する со Ф (mm) (mm) ns(本) □ 横拘束筋の断面二次モーメント動直接指定 「 補時時から管理日本が日本のの「「」 α 0.200 β 0.400 下側 側面 12 6 4 新設/既設時 補強時 d(m)(クs用) d(m)(クs用) d'(m)(Lp用) In(mm⁴) 橋軸方向 直角方向 0.727 0.727

本数 直角方向 照査用)	間距离 s(mm)	はり支間1-右端部 (斜引張鉄筋/横拘束筋)
2	150.0	
2	150.0	

新誌/开語 ① 神学は共振 ① アンカー共振 配置 1000 29 17 125.0 回販 上閉 1100 29 17 125.0 回販 上閉 1100 29 17 125.0 上閉 2100 29 8 256.0 上閉 2100 29 2 2180.0 下閉 1100 29 17 125.0	鉄筋配置参照	新面 参照し	นเท	-					
配置 次次3 (m) 鉄筋径 本数 ビッチ (m) 移動面 (m) 内動面 (m) 回転 上例 1100 29 17 125.0	• 新設/既設	C 補強鉄	筋 Cアン	力一鉄筋					
上間 1100 29 17 125.0 上間 1100 29 2 2180.0 上間 2100 29 8 250.0 上間 2100 29 2 2180.0 丁間 1100 29 2 2180.0 下間 1100 29 2 2180.0	配置	かぶひ (mm)	鉄筋径	拔本	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	Dŧz	
上開 1100 29 2 2000 上開 2100 29 8 2500 上開 2100 29 2 2000 下開 1100 29 17 1250 下開 1100 29 2 2000	上側	110.0	29	17	125.0				
上側 2100 29 8 2500 上側 2100 29 2 21600 下側 1100 29 17 1250 下側 1100 29 2 21600	上側	110.0	29	2	2180.0				
上間 2100 29 2 2100 下側 1100 29 17 1250 下側 1100 29 2 2180	上側	210.0	29	8	250.0				
下例 110.0 29 17 125.0 下例 110.0 29 2 2180.0	上側	210.0	29	2	2180.0				
下側 110.0 29 2 2180.0	下側	110.0	29	17	125.0				
	下側	110.0	29	2	2180.0				
側面 110.0 29 6 150.0 360.0	側面	110.0	29	6	150.0	360.0			

鉄筋配置 科約15長鉄肋/使用	*****									
※移 課鉄筋量 Aw (mm2) 直接指定 レベル1 レベル2				鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間 s(mi	ma)		
隋朝方向	既設	帯鉄鮠	ñ	22	2	2	15	50.0		
直角方向	既設	中間帯翁	航							
	既設	スターラ	ップ	22	2	2	15	50.0		
	補強	帯鉄籠	ñ							
239,25,90						-				
 Ah算出に既該帯鉄筋を2本分 「考慮する 「横拘束筋の断面二次モー> 「補強時 ρ s 算出用有効長d? 	考慮する ひト い 直相 指動計算	(2 段配置) 要指定 ぼする			6	× 0.200 3 0.400 -	上側下側	ns(≉	;) (mm)	(mm)

はり張出し-右側 (主鉄筋配置)

はり張出し-右側 (斜引張鉄筋/横拘束筋)

「柱」を選択します。 上から順に以下の拡大図の数値を入力します。

柱

柱は、「主鉄筋配置」と「斜引張鉄筋/横拘束筋」を、それぞれ 別に定義します。

配置	力いごひ (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	Dŧz	
R部	110.0	82	5					
R部	210.0	32	1					
前後	110.0	32	9	125.0				
前後	210.0	32	9	125.0				
前後	210.0	32	2	1200.0				
左右	110.0	32	12	150.0		1		

柱1-主鉄筋 (主鉄筋配置)

柱1-带鉄筋:上側 (斜引張鉄筋/横拘束筋)

折面の有効	長さ(m)	0.000										
料引張鉄龍	/ 横拘束筋											
斜引張鉄類 □ 直接指	5量 Aw (mm?) 定 レベル1 レベ	11/2			鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間 s(n	高 m)			
橋舶方向		既訪	(帯鉄)	筋	22	2	2	1	50.0			
直角方向		既訪	(中間帯)	鉄筋	22	1	2	1	50.0			
		既訪	(スターラ	ップ								
		補強	き 帯鉄)	筋								
横拘束筋 - Ah算出: □ 橋軸:	:既設帯鉄筋を 5向	2本分考慮す	る(2段配置)- 1方向				橋軸方向 2 0200	背面	ns(本) 12	co (mm)	¢ (mm)	
☑ 補強時	₽°\$算出用有效	モータント Ind	ligitate Le ligita			Ľ	0 0,400	前面	12			
	新設/既設時 d(m)(ρs用)	補強時 d(m)(クs用)	d'(m)(Lp用)	lh(m	m4)		直角方向 2 0.200	右側 左側	8			
橋軸方向	0.890		0.890				6 0.400					
	0.000		0.000									

断面の有効長さ(m) 1.3	33										
斜引張鉄筋/横拘束筋											
斜引張鉄筋量 Aw (mm2) 直接指定 レベル1 レベル2				鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	n Billin s(m	扁 m)			
橋軸方向	既設	帯鉄筋		22	2	2	11	50.0			
直角方向	既設	中間帯鉄	筋	22	1	2	11	50.0			
	既設	スターラッ	ブ								
	補強	帯鉄筋	i								
横拘束筋 Ah算出に既設帯鉄筋を2本分・ □構動方向 □構 □横動東筋の断面二次モーメ	考慮する 軸直角ガ ント16直打	(2段配置) 行向 著指定			i c k	構動方向 2 0.200 3 0.400	背面	ns(本 12) (mm)	¢ (mm)	
☑ 補強時♀s算出用有効長dを	自動計算	釘する				,	前面	12			
新設/既設時 補強 d(m)(ρs用) d(m)(,	時 s用)	ľ(m)(Lp用)	Ih(mr	n4)	i	直角方向 2 0.200	右側 左側	8			
橋軸方向 0.890		0.890			6	3 0.400					
直角方向 0.727		0.727									

柱1-帯鉄筋:中央 (斜引張鉄筋/横拘束筋)

断面の有効長さ(m) 1.3	33										
斜引張鉄筋/横拘東筋											
斜引張鉄筋量 Aw (mm ²) □ 直接指定 □ レベル1 レベル2				鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向) 照査用)	1859 s(m	扇 m)			
橋軸方向	既設	帯鉄倉	ň	22	2	2	1	50.0			- 1
直角方向	既設	中間帯影	航	22	1	2	13	50.0			- 1
	既設	スターラ	ップ								- 1
	補強	帯鉄倉	ň								
●横拘束筋 Ah算出に既設帯鉄筋を2本分部 「 橘軸方向 □ 橘	考慮する 軸直角7	5(2段配置) 方向				橋軸方向 2 0.200		ns(本)	(mm)	ф (mm)	
└ 横拘束筋の断面二次モーメ	ントIn直	接指定				6 0.400	背面	12			
☑ 補強時ρs算出用有効長dを	自動計算	寛する					前面	12			
新設/既設時 神磁 d(m)(クs用) d(m)(ク	時 Ss用)	d'(m)(Lp用)	lh(m	m4)	d	直角方向 2 0.200	右側 左側	8			
橋軸方向 0.890		0.890				6 0.400					
直角方向 0.727		0.727									

柱1-帯鉄筋:下側 (斜引張鉄筋/横拘束筋)

断面の有効長さ(m) 柱2一主鉄筋 (主鉄筋配置) 主鉄筋配置参照断面 参照しない • C Z ● 新設/既設 ○ 補強鉄筋 かぶり (mm) 移動量 有効範囲 (mm) (m) ピッチ (mm) 配置 鉄筋径 本数 回転 R部 R部 前後 前後 五石 110.0 210.0 110.0 210.0 210.0 110.0 32 32 32 32 32 32 32 125.0 125.0 1200.0 150.0 12

断面の有効長さ(m) 斜引張鉄筋/横拘束筋 1 0 0 0 →斜引張鉄筋量 Aw (mm2) □ 直接指定 本数 (補軸方向 照査用) (直角方向 照査用) 間隔 s(mm) ル1 レベル2
 既設
 帯鉄筋

 既設
 中間帯鉄筋

 既設
 スターラップ

 補強
 帯鉄筋
 橋軸方向 直角方向 150.0 22 150.0 (相違) 帝鉄
 横拘束筋
 (Ah算出に既設帯鉄筋を2本分考慮する(2段配置)・
 「 橋軸方向 「 橋軸直角方向 構軸方向 な 0.200 β 0.400
 よ
 200
 背面

 当面
 前面

 市面
 前面

 本
 0.200

 よ
 0.400
 □ 1998は旦内万向 □ 横拘束筋の新面二次モーメント№直接指定 ▼ 補注時々s質出用有効長くたちました 12 12 8 8 新設/既設時 d(m)(クs用) d(m)(Lp用) In(mm4) 0.890 橋軸方向 0.890 直角方向 0.727

柱2-帯鉄筋:上側

(斜引張鉄筋/横拘束筋)

断面の有効長さ(m) 斜引張鉄筋/横拘東筋 1.333 44引張鉄筋量 Aw (mm²)
□ 直接指定 間隔 s(mm) レベル1 レベル2 橋軸方向 直角方向
 既設
 帯鉄筋

 既設
 中間帯鉄筋

 既設
 2ターラップ

 補強
 帯鉄筋
 150.0 150.0 22 22 2 スターシッ 帯鉄筋 (補強) 帯获
 横拘束筋
 「朴質出に既設帯鉄筋を2本分考慮する(248配置)・
 「 橋軸方向 「 橋軸直角方向 構
総方向 α 0200 β 0.000 新面 左向 左側 ■ 横拘束筋の断面二次モーメントh直接指定 2 細部時/2×首出田右か長はた白針もはすす。 12 12 直角方向 α 0.200 β 0.400 新設/既設時 d(m)(クs用) d(m)(のs用) d'(m)(Lp用) Ih(mm⁴) 8 8 0.890 0.727 0.890 橋軸方向 直角方向

新面の有効長さ(m) 1.2 料理(理経筋/積約車筋)	33										
料引張鉄筋量 Aw (mm2) 「直接指定			á	铁筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間調 s(mm)	Γ			
橋軸方向	既設	帯鉄筋		22	2	2	150.0				
直角方向	既設	中間帯鉄庫 スターラッ:	わ ブ	22	1	2	150.0				
播加市站	補強	帯鉄筋									
- Ah算出に既設帯鉄筋を2本分 - 「橋軸方向 □ 橋	考慮する 軸直角:	5(2段配置) 方向			Ľ	橋軸方向	ns	(本)	co (mm)	ф (mm)	
■ 横拘束筋の断面二次モーメ ■ 補辞時の5首出用有効長は	ントい直					8 0.400	背面 前面	12 12			
新設/既設時 補配 d(m)(,ρs用) d(m)(,	脚 ps用)	d'(m)(Lp用)	lh(mm4	4)	ľ	直角方向 2 0200	右側 左側	8			
橋軸方向 0.890		0.890			1	6 0.400					
直角方向 0.727		0.727									

柱2-帯鉄筋:中央 (斜引張鉄筋/横拘束筋)

柱2-帯鉄筋:下側 (斜引張鉄筋/横拘束筋)

iji (橋間的	大筋				- • ×
オプション 鉄筋配置 料	引張鉄箱/横拘束筋一括入力							
⊡ 全体		種類	用途	鉄箱本数	有効範囲(n)	参照版面	積虧有効長(r	n) 直角有効長(m)
니라		フーチング閉出し	左側	8		参照なし		
- 11		フーチング支閉!	支閉1左弩			参照なし		
フェエンがある		ノーテノノショー	支配14英	1		参照なし		
-7 77760/1		ラーチング弾出し	右側	Ű.		参照なし	-	
		-						
	E .							
断面の有効長さ(m)								
¥記録絆銘/種和東族								
01711E(A477 E 4 7								
\$4513Rd大助型 AW United	/	本数	本致	1017.0				
1 03.983832		鉄筋径 (橋軸方向	1 (直角方向	i eveni Remi				
UN111 UN	302	98/2011/	99382950					
得動方向	既該 帯鉄筋							
古角方向	周段 中間帯鉄筋							
and 4771*1	円谷 スターラップ							
	2872 2852.52							
10 1010102	10.32 9937300							
ALSO IN THE REPORT OF STAT	(1++/\			1 1	Ι.			
CE CERCERCIPERCERCE	1024 TO BE TO AN ADDRESS		構軸方向	ns(本)	(mm) (m	n)		
L 9998079199	L 9988802570191		CC 0.200	E (A				
▶ 根約束筋の断面二次	モーメント加直接指定		/0.400	10 12		_		
☑ 補強時,○ 8算出用有效	6長6を自動計算する		- 101	80 12				
新禧/把讀書	10100		道角方向 石	<u>11</u> 8				
d(m)(p a用)	d(m)(ps用) d(m)(lp用) In(m	m+)	a 0.200 左	1 8				
總融方向			0 0 400					
(方面:50%)								
Law room								
							A 1000 1 44 1	
							✓ ₩2 × 3	Som 7 (1718)

「フーチング面内」を選択します。 上から順に以下の拡大図の数値を入力します。

フーチング

フーチングの鉄筋配置は、直角方向、橋軸方向のそれぞれについて定義します。

フーチング張出し--左側 (主鉄筋配置)

新面の有効長さ(m) 0.0 主鉄筋配置 斜引張鉄筋/横折	〕〕 〕東筋										
斜引張鉄筋量 Awr (mm2) □ 直接指定 □レベルレ1 レベル2				鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間 s(m	高 m)			
橋軸方向	既設	帯鉄筋	5								
直角方向	既設	#####	筋								
	既設	スターラ:	ップ	22		24	9	69.2			
	補強	帯鉄籠	5								
 ● 横拘束筋 ● Ah貸出に既設帯鉄筋を2本分: □ 考慮する □ 横拘束筋の断面二次モーメ 	考慮する 小い直	(2 段配置) — 新指定				z 0.200	上側	ns(孝	5) (mm)	ф (mm)	
☑ 補服時ℓs算出用有効長dを	目動計:	重する			6	3 0.400	御面	-			
新設/既設時 補強 d(m)(クs用) d(m)(A	時 s用)	f(m)(Lp用)	lh(m	m4)			119080				
橋軸方向 直角方向											

フーチング張出し-左側 (斜引張鉄筋/横拘束筋)

上井小町位置 [科45/長年近/代約3月面] 主鉄砲定置参照計画 参照してよい C 新設 欠 (予読また C アンカー鉄筋 加速 (nm) (新防径 本数 ビッチ (1000) (1000) (25 58) (1250) 上間 100.0 25 52 7300.0 上間 200.0 25 14 250.0 375.0 上間 200.0 25 14 0.0 上間 200.0 25 14 0.0 上間 200.0 25 14 0.0 丁削 150.0 25 58 125.0 下削 150.0 25 52 7300.0	断面の有効長さ(m)	0.000					
古田和田田 学報500 (小山)	王跃励配置 斜	引張鉄筋/材	動拘束筋					
○ 新設、死缺 ○ 排読状 死込 ○ アンカー鉄筋 配置 か(3) (mm) 鉄筋(全 本数 ビッチ (mm) 移動量 (mm) 有効範囲 回転 上間 100.0 25 58 125.0	主鉄筋配置参照的	新面 参照し)	50.1	-				
配置 九(3) (nm) 鉄筋淫 本数 ビッの 移動量 (nm) 有効範囲 (nm) 回陳2 上間 100.0 25 58 125.0 </td <td>◎ 新設/既設</td> <td> 補強鉄 </td> <td>筋 0 アン</td> <td>力一鉄筋</td> <td></td> <td></td> <td></td> <td></td>	◎ 新設/既設	 補強鉄 	筋 0 アン	力一鉄筋				
上朝 1000 25 50 1250 上朝 2000 25 2 73000 上朝 2000 25 2 73075 下州時時期 2000 25 14 2500 3750 上朝 2000 25 14 2500 3750 上朝 2000 25 10 00 下例 1500 25 50 1250 下例 1500 25 2 73000	配置	力以词 (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	回転
上例 100.0 25 2 790.0 上例 200.0 25 2 725.0 下例 200.0 25 14 25.0 375.0 上例 200.0 25 14 0.0 70.0 上例 200.0 25 1 0.0 70.0 下例 150.0 25 58 125.0 1	上側	100.0	25	58	125.0			
上間 200.0 25 2 727.0 下側時端 200.0 25 14 250.0 375.0 上間 200.0 25 1 0.0 77.0 下削 150.0 25 58 125.0 1 下削 150.0 25 2 7300.0 1	上側	100.0	25	2	7800.0			
干預時時端 200.0 25 14 250.0 375.0 上間 200.0 25 1 0.0 - 下例 150.0 25 58 125.0 - 下例 150.0 25 2 7300.0 -	上側	200.0	25	2	7275.0			
上側 200.0 25 1 0.0 下側 150.0 25 58 125.0 下側 150.0 25 2 780.0	下側両端	200.0	25	14	250.0	375.0		
下側 150.0 25 58 125.0 下側 150.0 25 2 7300.0	上側	200.0	25	1	0.0			
下例 150.0 25 2 7800.0	下側	150.0	25	58	125.0			
	下側	150.0	25	2	7300.0	(]	

フーチング支間1-支間1:左端 (主鉄筋配置)

断面の有効長さ(m) 0.00	10								
主鉄筋配置 斜引張鉄筋/横ち	東筋								
斜引張鉄筋量 Aw (mm2) □ 直接指定 □レベル1 レベル2			鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)			
橘軸方向	既設	帯鉄筋							- 1
直角方向	既設	中間帯鉄筋							- 1
	既設	スターラップ	22		24	969.2			- 1
	補強	帯鉄筋	[- 1
【供利果助 Ah(算出)に既設帯鉄筋を2本分 ³ □ 考慮する □ 構動東筋の断面=次チーマ	∮慮する 小™商業	(2 段配置) 44字			x 0.200	ns(本 上側) (^{CO} (mm)	ф (mm)	
☑ 補強時ρs算出用有効長dを	自動計算	(する)		1	0.400	下側			
新設/既設時 オ(m)(クs用) d(m)(の	時 s用)d	(m)(Lp用) Ih(m	m4)			创油			
橋軸方向 直角方向									

フーチング支間1-支間1:左端 (斜引張鉄筋/横拘束筋)

新面の有効長さ(主鉄筋配置 斜	m) 引張鉄筋/精	0.000 黄拘束筋					
主鉄筋配置参照時	「面」参照し	<i>โล</i> เม	•				
⊙ 新設/既設	C 補強約	筋 0 アン	力一鉄筋				
配置	かぶい (mm)	鉄筋径	拔本	ビッチ (mm)	移動量 (mm)	有効範囲 (m)	回転
上側	100.0	25	58	125.0			
上側	100.0	25	2	7300.0			
上側	200.0	25	2	7175.0			
上側両端	200.0	25	14	250.0	375.0		
上側	200.0	25	1	0.0			
下側	150.0	25	58	125.0			
下側	150.0	25	2	7300.0			

フーチング支間1-支間1:中央 (主鉄筋配置)

新面の有効長さ(m) 0.0 主結節配要 総合議会部/構成)) 1車筋									
#引張鉄筋量 Aw (mm ²) □ 直接指定 □ 広切し1 レベル2				鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)			
橋軸方向	既設	帯鉄論	ň							
直角方向	既設	中間帯診	簸							
	既設	スターラ	ップ	22		24	969.2			
	補強	帯鉄筒	ñ							
 ● Ah算出に既設帯鉄筋を2本分> □ 考慮する □ 横拘束筋の断面二次モーメ □ 補強時ρs算出用有効長dを 	考慮す ? ントい直 自動計	5(2 時配置) — 接指定 算する			4	z 0.200 3 0.400	ns(2 上側 下側	(mm)	ф (mm)	
新設/既設時 補弱 d(m)(ァs用) d(m)(ル	時 s用)	d'(m)(Lp用)	lh(m	m4)			199080			
橋軸方向 直角方向										

フーチング支間1-支間1:中央 (斜引張鉄筋/横拘束筋)

■ 鉄筋配置参照 ● 新設/既設	新面 参照し C 補強鍵	ない 第 0 7ン	▼				
配置	かぶり (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	Dŧz
上側	100.0	25	58	125.0			
上側	100.0	25	2	7300.0			
上側	200.0	25	2	7175.0			
上側両端	200.0	25	14	250.0	375.0		
上側	200.0	25	1	0.0			
下側	150.0	25	58	125.0			
下側	150.0	25	2	7300.0		1	

フーチング支間1-支間1:右端 (主鉄筋配置)

断面の有効長さ(m) 0.00	0				断面の有効長さ(m) 0.000 (32) 0.000 (3											
主鉄筋配置 斜引張鉄筋/横拘	東筋															
斜引張鉄筋量 Awr (mm ²) 直接指定 レベル1 レベル2			鉄筋径	本敬 (橘軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)										
橋軸方向	既設	帯鉄筋														
直角方向	既設	中間帯鉄筋														
	既設	スターラップ	22		24	969.2										
	補強	帯鉄筋														
新設/既設時 d(m)(クs用) d(m)(ク	時 s用) d	'(m)(Lp用) lh	(mm ⁴)			19080										
橋軸方向 直角方向																

フーチング支間1-支間1:右端 (斜引張鉄筋/横拘束筋)

フーチング張出し-支間1:右側 (主鉄筋配置)

開方向 現象 状態 中間率統約 原方向 現象 中間率統約 月現金 日本 月度金 スターラップ 22 24 9692 日本 事後節 中間 小園 日本 市場(本) 日本 市場(本) 日本 日本 日本 日本<	将 張鉄筋量 Aw (mm2) 直接指定 レベル1 レベル2			鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)				
財職 又ターラップ 22 24 9692 補強 帯鉄筋 <	橋軸方向 百角方向	既設 既設	帯鉄筋 中間帯鉄筋								
様和実施のが高二次モーン/ト加速接触定 予格は少のの高二次モーン/ト加速接触定 予格は外のが高二次モーン/ト加速接触定 予格は外ののの高二次モーン/ト加速接触定 予格は外ののの高二次モーン/ト加速接触定 予格は外ののの高二次モーン/ト加速接触定 予格は外ののの一次の手用 体的(本)/の分用 d(m)/20月 d(m)/20月 d(m)/20月 d(m)/20月 d(m)/20月		既設	スターラップ	22		24	969.2				
	構築確認 「 考慮世ンに転送事鉄筋をなか分考慮する(24設置) 「 考慮する 「 考虑する 「 様地球なのが面面」次モージント加速排指定 ○ (mm) (mm) → (mm) ↓問 - 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一										
	■ 考慮する ■ 横拘束筋の断面二次モーメ ■ 補強時のs質出用有効長dを	ント15直接 自動計算	措定 する			ε 0.200 0.400	上創 下創				

フーチング張出し-支間1:右側 (斜引張鉄筋/横拘束筋)

「フーチング面外」を選択します。 上から順に以下の拡大図の数値を入力します。

报/既設	C 補強鉄	筋 C アン	力一鉄筋				
配置	力\ (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	D₽Z
上側	100.0	25	2	12175.0			
上端部	100.0	25	24	250.0	375.0		
上端部	100.0	25	24	250.0	375.0		
上側	100.0	25	1	0.0			
下側	150.0	25	98	125.0			
下側	150.0	25	2	12300.0			

フーチング張出し-前側 (主鉄筋配置)

断面の有効長さ(m) 3.75	50										
主鉄筋配置 斜引張鉄筋/横ち	東筋										
科引張鉄筋量 Awi (mm2) □ 直接指定 □ レベル1 レベル2			鉄筋径	本数 (橋軸方向 照査用)	本数 (直角方向 照査用)	間隔 s(mm)					
橋軸方向	既設	帯鉄筋									
直角方向	既設	中間帯鉄筋									
	既設	スターラップ	22	12		300.0					
	補強	帯鉄筋									
構切単節 小百型に実践単鉄筋を2本分考慮する(2約配置) □ 考慮する											
 ■ 横拘束筋の断面二次モーメ ■ 補強時 ρ s 算出用有効長dを 	小hh直排 自動計算	8指定 〔する		6	2 0.200 3 0.400	上1別 下側					
新設/既設時 補強 d(m)(クs用) d(m)(ク	時 s用)d	'(m)(Lp用) lh(m	m ⁴)			创始					
橋軸方向 直角方向											

フーチング張出し-前側 (斜引張鉄筋/横拘束筋)

主鉄施配置 斜引線鉄施/横均電筋 主鉄施配置参照断面 参照しない ・新設/開設 C 補鈕鉄筋 C アンカー鉄筋 配置 加333 鉄筋怪 本数 ビッチ 移動量 有効範囲 (mm) (mm) (mm) 回転	「面の有効長さ(m)	0.000						
は新記』書参照所面 参照しない マ ・ 新設/既設 C 補記注語 C アンカー注語 配置 7/37 (mm) は新述 本数 ビッチ 移動量 有効範囲 (mm) (m	主鉄筋配置 斜	, 引張鉄筋/材	黄拘束筋						
の 新設/開設 C 部注該部 C アンカー鉄道 配置 か(3) (mm) 鉄筋堡 本数 ビッチ (mm) 移動量 (mm) 有効範囲 (m) 回転	E鉄筋配置参照I	新面 参照し	ระบ	•					
配置 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm	⊙ 新設/既設	C 補強鉄	筋 C アン	ウー鉄筋					
	配置	カッジョン (mm)	鉄筋径	本数	ピッチ (mm)	移動量 (mm)	有効範囲 (m)	Dŧz	
	-								

将限鉄筋量 Aw (mm2)			1	+**	-+-#2			
直接指定			鉄筋径	~数 (橋曽方向 照査用)	4 (直角方向 照査用)	間隔 s(mm)		
レベルトレベル2	既設	帯鉄筋					1	
巨角方向	既設	中間帯鉄筋						
	既設	スターラップ	22	12		300.0		
	補強	帯鉄筋						
【40果動 - Ah算出に既設帯鉄筋を2本分 □ 考慮する - #も市本の地帯ーンケーー)考慮する 〇十h直相	(2段配置) 新定			× 0.200	ns(オ 上側 下側	5) (mm)	ф (mm)

フーチング中央-中央 (主鉄筋配置)

フーチング中央-中央 (斜引張鉄筋/横拘束筋)

記置 かいぶり (mm) 鉄筋径 本数 ビッチ 移動量 有効範囲 (mm) (m)	回転
上側 100.0 25 2 12175.0	
左上端部 100.0 25 24 250.0 375.0	
右上端部 100.0 25 24 250.0 375.0	
上側 100.0 25 1 0.0	
下側 150.0 25 98 125.0	
TF(1) 150.0 25 2 12300.0	

. 🗆 🗙 は オジッム 新設置 料料保健協 検知実施-抵入力| □ 会体 - 143 - モージング酸内 - フーデング酸内 種類 フーチング研出し 新用 フーチング研出し 新用 フーチング研出し 新用 オーサ フーチング研出し 新用 オーサ フーチング研出し 新用 オーサ フーチング研出し 新用 オーサ フーチング研出し 新聞 (物給有効長(m)) 直角有効長(m) 1 新語の有効長さ(n) 8.750
主鉄総配置 参弓 防鉄銃 / 検知車筋
¥村 引除鉄筋量 Awi (mn2)
直接指定 フーチング現出し後期 鉄磁径 (機能方向) (適角方向) 類碼 (機能方向) (適角方向) 類蛋用) 類素用) 56.7E
 問題
 帯鉄筋

 問題
 中間帯鉄筋

 問題
 スターラップ

 補強
 帯鉄筋
 積極方向 直角方向 22 300.0 横狗車筋 (A)第出し、既該帯鉄筋舌2本分考慮する(2)5配置)
 ∞
 0.200
 ⊥(H)
 (mm)
 (mm)

 ∅
 0.000
 ⊥(H)
 (mm)
 (mm)
 (mm)
 得触方向 直角方向 ✓ WEE ¥ 10/m ? \1/7(E)

フーチング張出し-後側 (主鉄筋配置)

フーチング中央-中央 (斜引張鉄筋/横拘束筋)

全て入力後、確定ボタンを押します。

1-4 上部工/支承

「上部工/支承」をクリックします。

支承	直角方向 位置(m)	橋軸方向 位置(m)	レベル1 水平力作用高 直角方向(m)	レベル1 水平力作用高 橋軸方向(m)	荷重負担
支承1	-6.250	0.000	0.000	0.000	鉛直,水平
支承2	-3.750	0.000	0.000	0.000	鉛直,水平
支承3	-1.250	0.000	0.000	0.000	鉛直,水平
支承4	1.250	0.000	0.000	0.000	鉛直,水平
支承5	3.750	0.000	0.000	0.000	鉛直,水平
支承6	6.250	0.000	0.000	0.000	鉛直,水平

上部工数

ラーメン橋脚上に配置される上部工の個数を指定します。 「1」を選択

上部工1

位置(m):「4.200」 支承数:「6」

支承

支承認1~支承6までを拡大図の数値を参考に入力します。

すべて入力後、確定ボタンを押します。

1-5 地層

0 1		地層	×
地域地域 中で時時に以、制作方向 中で時に以、制作方向 中で時時に以、制作方向 中でまたし、1000 地域、アスカニードが中地域の小の「のの」」を用 ・「学校」というのでの「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	-10 0 10 10	閉(時)地驗面 土質 淡伏化 基礎/(字(震樂迷動)	
		伊賀(16) 1860 1860 1860 1860 1860 1860 1860	
	0 (5)		
10月1日 0.001 - 000.000		<u>-10</u> 97-50/822	171B)

「地層」をクリックします。

「地層、設計地盤面」、「土質」、「液状化」、「基礎バネ (震度 連動)」タブを順に開きます。

地層、設計地盤面

支持 「	層 6」	No を	入7	ታ
層厚 1:	<mark>1(</mark> г	<mark>n)</mark> 3.0	00	J
2	· Г	1 0	00	1

2:	「4.000」
3:	[3.000]
4:	「2.500」
5:	「4.500」
6:	「3.000」

					地層									×
-10 0 10 地址 設計地址面 土質 淡沃化 基础/字(震速通動)														
	の推定方法 2810N(常時)	5610N(地震)	 も C 入力値				平均せんれ (*)計算 非数規制()	inter C	創度 入力値					
	いの加速するの しみ枕 に同節魔猿力	8、「 夏の補完方法] :(3581:11MP/#	o1137.74#	C MPR#1 ±3	Edb)	 	Eの基題 定 定	間 <i>層</i> 目の上	面を基盤	感 とする			
○ N里 (N<=84C ((から音出)) ○ N里 (N<=84C ((から音出)) ○ N里 (N<=84C ((から音出)) → 100 ((から音出))														
±)背 N语	cz Eo(常時) (k.N/m²)	a:Eo(地震時) (k:N/m²)	Vsi (m/s)	7 sat (kN/m³)	0kN/m1	粘着力 (kN/m²)	φ(°)	改良信 gu (kN/m²)	せん新振 抗力度で (kN/m²)	既設枕 (kN/m ²)	既除机 fn (k.N/m²)		
1 87	聞土 8.0	16800.0	33600.D	145.370	19.00	18.00	0.01	24.00	0	0.0	12.0	12.0		
2 781	生土 5.0	14000.0	28000.0	170.998	17.00	16.00	50.00	0.00	0	0.0	50.0	50.0		
3 833	100 11 10 10 10 10 10 10 10 10	42000.0	12630.0	197.297	19.00	17.00	60.00	0.00	0	0.0	60.0	80.0		- 11
(3) 5 50	g+ 200	56000.0	112000.0	217.158	19.00	18.00	0.00	32.00		0.0	40.0	40.0		- 11
6 851	t± 40.0	112080.0	224000.0	278.596	20.00	19.00	0.00	39.00	0	0.0	80.0	80.0		- 11
												_		- 11
0														
(5)														
(6)														
					地	₩データ	の読込			v 6	<u> </u>	🗙 取消	? ∿67∜ <u>H</u>)	
範囲: 0.0 ~ 9999.9														

Γ	土質	NſĒ	∝Eo(常時) (kN/m²)	αEo(地震時) (kN/m²)	Vsi (m/s)	γsat (kN/m³)	γt (kN/m³)	粘着力 C (kN/m²)	$\phi(^*)$	改良体 qu (kN/m²)	せん断抵 抗力度で (kN/m²)	既設杭 f (kN/m²)	既設杭 fn (kN/m²)
1	砂質土	6.0	16800.0	33600.0	145.870	19.00	18.00	0.00	24.00	0	0.0	12.0	12.0
2	粘性土	5.0	14000.0	28000.0	170.998	17.00	16.00	50.00	0.00	0	0.0	50.0	50.0
3	砂質土	15.0	42000.0	84000.0	197.297	19.00	18.00	0.00	30.00	0	0.0	30.0	80.0
4	粘性土	6.0	16800.0	33600.0	181.712	18.00	17.00	60.00	0.00	0	0.0	60.0	60.0
5	砂質土	20.0	56000.0	112000.0	217.158	19.00	18.00	0.00	32.00	0	0.0	40.0	40.0
6	砂質土	40.0	112000.0	224000.0	273.596	20.00	19.00	0.00	39.00	0	0.0	80.0	80.0

土質

<mark>最大周面摩擦力度f</mark> 「打込み杭」を選択

各層のデー	ター
拡大図の	データを入力します。

····································
Other CLAI Math 34 (2014) CAIN CAIN Math 34 (2014) CAIN CAIN Math 34 (2014) CAIN
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se
Switch (SMM) Order (SMM) <thorder (smm)<="" th=""> <tho< th=""> Orde</tho<></thorder>
0 0 0.00 0.000
07 0 0.00 0.000 0.00 0.0
OP C 0 10000
10 10 10 10 10 10 10 10 10 10

	s₩	σN (kN/m²)	D50 (mm)	D10 (mm)	FC (%)	Ιp	DE1	DE2I	DE2II
1	0	0.00	0.00000	0.00000	10.00	0.0			
2	0	100.00	0.00000	0.00000	0.00	0.0			
3	0	0.00	0.00000	0.00000	10.00	0.0			
4	0	100.00	0.00000	0.00000	0.00	0.0			
5	0	0.00	0.00000	1.20000	10.00	0.0			
6	0	0.00	0.00000	2.00000	10.00	0.0			

液状化

<mark>液状化の判定</mark> 「する」を選択

<mark>低減係数DE</mark> 「計算値」を選択

<mark>水位深さ H1(m)</mark> 「3.000」を選択

各層のデータ

拡大図のデータを入力します。

	地圈	×
10 0 10	地震、時計地論語 土質 淡伏化 基礎バネ(蕨原連動)	
	平均せん新潮性波達度 あたいかわせい こうかいた かわせいかか こういがかせん このためのかか アイトウル	
	□ F計算 C 人力値 BathBall(小) 0.000 米BathBall(コノーナノ) Ball(からの)米さてお足し (くとらい	
	「 動的変形得動Edの直接指定	
	+ m Nill a Chan Vij 20 動的変形形態	
3.0	- (KO/H) (H/S) Ed (KO/H)	
	2 244+ 50 160 170 998 0500	
	3 84mm + 150 180 197297 0500	
	4 #411+ 50 170 181712 0500 ·····	
	5 82mm + 20.0 18.0 217.153 0.500	
(2)	6 砂黄土 40.0 19.0 273.598 0.500	
(D) (0) (5)		
(6)	±0#7-20455 ₩ 10#	? 1677ED

基礎バネ(震度連動)

※基礎バネは震度連携を行う場合のみ設定します。 今回、入力に変更はありません。

すべて入力後、確定ボタンを押します。

1-6 杭形状

「杭形状」をクリックします。

「新設・既設杭」、「設計方法」タブを順に開きます。

	形状	×
新讀·既讀杭 設計方法		
traic Totation 【 該有 75.5	カ) 状態接合条件 各の原語障理力 「開設式 「明認式にない(16倍)) - 「時間式にない(16倍)) - 「日本」 - 「日本」	
RC株1号の種名U選択 作 (*) 注意 (*) 注意 (*) 注意 (*) 注意	97990000 0 v mm 0.000 m (SXX40 v 3490844 1 mm PallsAft 0 mm	
 「打込みびイブロハンマ) 「打込みびイブロハンマ) 「中暦川(最終打撃) 「中暦川(最終打撃) 「中暦川(コングリート打談) 「ブレボーリング 		
範囲: 0 ~ 5	_ ✓ 確定 _ ★ 取消 ? ∿:	7"(H)

新設·既設杭-杭条件①

杭データ

杭径	:「800」mmを選択
鋼管厚 (第1断面)	:「10」 mmを選択
外側錆代	∶ 「1」 mm

PBA ビンジ ● 器種 ビンジ PBA ・ ビンジ tht#編44 CB型 ・ ビンジ ● 自由 ・ バネ ● BR Km ● 1000 With mixed DBX F * ビンジ ● 自由 ・ バネ ● DBX Km ● 000 Mix mixed wet may wet man ● 計画種 * C 入力値 Ky ● 1000.000 Mixem wet man ● Mixel ● 入力値 Ky ● 1000.000 Mixem wet man ● Mixel ● 入力値 Ky ● 1000.000 Mixem Mixel ● 入力値 Ky ● 1000.000 Mixem Mixel ● 入力値 C ● JD Mixel ● JD Ky ● Mixel ● JD Ky ● J	0.5e ○ 杭 ○ 支	長(固定 Xm) 特層から枕長き	16.400 決定		
統律のヤング係数比(SC統, RC統, SC統+PHC統)-	安全率n		常時	地震時	
and a second a second second second	支持枕	許容支持力	80	2.0	
常時の許容引抜力=叱する		許容引抜力	6.0	3.0	
▶ 基本荷重ケースに温度変化の影響を含むケースは除外する	廢擦材	許容支持力	4.0	3.0	
せん断応力度照査方法(マイクロパイル) ☞ 平均 C 最大		許容引抜力	6.0	3.0	

新設·既設杭-杭条件②

杭頭ヒンジ時の曲げモーメントに対する軸力の扱い(杭頭条件 が剛結・ヒンジ)

杭頭結合条件が剛結・ヒンジのときの抗体応力度照査において、杭頭ヒンジ時の曲げモーメントに対する軸力を選択します。

「剛結」を選択

杭長

杭長 (固定) (m) :「16.400」

	形状
該·既該杭 設計方法	
条件① 杭条件② 支持力/引抜力 杭頭接合条件 負の周面摩擦	章力
使用枕 ④ <u>该時税</u> 〇 摩擦枕	
株式帯データ 場別行いたグリート打影ののd 0.000 の 骨間はのっと大見様が載きに計) の すけないのは人気増が載きに計) の すけないないたりまうのに成ま行う 計込み低け着ないたクロンマク 中田県は低級付打型ののd畳は 換置体入れた 000 来一の入力がビビバ 0.0 かと計 設計Nie 0.0 支持端への低れたかの計算	ж 13
自重の影響(軸方向許容持込み支持力算出時) C 無視 C W = Ws = 0 C 有効重量(WWs)を考慮する	
自重の影響(軸方向許容引抜き支持力算出時)	
 E 無視 C 無視 C 有効重量(W)を考慮する 	
	✓ 確定 🔰 🏹 へルブヒӇ

新設·既設杭-支持力/引抜力

今回入力に変更はありません。

R&A+G) R&D (RAFR (2) (前期任意報告】 ●の回画要単の) (前期任意報告】 ●の回画要単の) (「以知: 「する。」 (「以知: 「する。」 (「」」」」」」 (「」」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」」 (「」」」 (「」」」 (「」」」」 (「」」」 (「」」」 (「」」」」 (「」」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」」」 (「」 (「 (「」 (「 (「 (」 (「 (「 (」 (「 (」 ((」 (
40時時会社室 である で である である である で	
福奈方法 今 方法点「今方法和(三型の)」 (1997年) 「日本(日本)」) 日本(日本)」 日本(日本) 日本(日本) <	
43度カルオスを4360人かり (予考え) (101 G = σ to 3/(4 + co) + y = 0	
200月の2017 [Lot = 0 tao/(4 * 7 co)* ク ヱ a 8500 作注意	
1 で VOI 見出る、 ノーチノン時間の人利を対象とす G。 ※n EI// 0/とき 30m///とします。 し (mm) 0	
h D=1000mm h (mm) 0	
	<u> </u>

新設·既設杭-杭頭接合条件

今回入力に変更はありません。

		形	伏			
读·既酸杭 設計方法						
条件① 杭条件② 支持 負の周面摩擦力 の #811 + 11 - 1	持力/引抜力│杭頭接合条件 []	(の店)面摩擦力	統対する荷重な	r-2		
 ・ (使いしない 群杭としての負の周面摩 の ・ ・ 油目しない ・ 	(使計) る 擦力 ① 適用する		 死荷重 選択 ※「組合せる 	許能ケースの設定後、	遅択可能となります。	
杭の有効重量 C 考慮しない	・ ALL 1 0・ 予成する		※自の周囲 方向	連接力の検討は、 満時/地震時 荷重	開、死荷重時を対象と ケース名 水位	します。 立 温度
コンクリート枕の網材軸ガ C 考慮しない	5向力(※1) 停 考慮する		 ■直角 ■直角 	第時 D 常時 D 常時 D	無行	見 無視 見 上昇 見 下降
PHC杭の杭体応力度 C J ceを考慮しない	○ σ ceを考慮する		✔ 橋軸	常時 D	無治	9
1:洞村軸方向力を考慮 材の降伏応力度(σsy)	する場合は、↑の <i>の</i> yはのoyとし 0.00 (N/mm2)	こ取扱います。				
						1

新設・既設杭ー負の周面摩擦力

今回入力に変更はありません。

Я	Ĕ状 ▲
新設・課題984 読計方法 林差磁の設計方法 ゆ 通常設計 で 水平度にを振わする状基磁の設計[杭基磁設計便覧(H19.1)モデル]	
★平麦位を採知する林基礎の設計:計算の場合せ	
「 核基础」の288条件(6個属子信言、科質)と運動する	
- 諸術設計的の非容定(Q(mm) - 新設: 弦数4 - 直接指定 - 首時指定 - 一直接指定 - 一直接指定 - 一面接指定 	
	✔ 確定 ★ 取清 ? ∿57(1)
	✔ 確定 ★ 取消 ? ∿47 XH

設計方法

杭基礎L2の諸条件(杭間隔÷杭径、材質)と連動する チェックを外す

全て入力後、確定ボタンを押します。

1-7 杭配置

「杭配置」をクリックします。

「新設・既設杭」、「基礎天端」タブを順に開きます。

新設・既設杭ー初期配置

はじめに配置タイプと杭縁端距離と杭列本数を指定した後、 「杭の再配置」ボタンを押下します。

今回入力の変更はありません。

「杭の再配置」をクリックします。

新設・既設杭ー各方向毎の杭頭座標

今回入力に変更はありません。

新設·既設杭-全杭頭座標

座標を確認します。

基礎天端

地表面からフーチング底面までの深さ(m) 「3.000」を入力

全て入力後、確定ボタンを押します。

1-8 許容応力度法_計算条件

「許容応力度法・計算条件」をクリックします。

「荷重条件」、「骨組解析条件」、「断面照査条件」、「コーベ ル」、「フーチング剛体照査」タブを順に開きます。

荷重条件

慣性力

慣性力にある「←計算」をクリックします。 入力された固有周期と基本条件で設定された地域別補正係数 と地盤種別から内部計算した震度がセットされます。

温度荷重

温度荷重 上昇:「10.0」 下降:「10.0」

乾燥収縮

乾燥収縮による影響を考慮する場合の温度荷重(-15/-20) を入力してください。なお、考慮しない場合には0としてください。

(Q3-15参照)

https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q3-15

レベル

上載土高(m) :「3.000」 水位ケース数 :「2ケース (高水位/低水位)」を選択 高水位 (m) :「2.000」

骨組解析条件

フーチングの断面2次モーメント

許容応力度照査の正面モデルのみに適用される設定です。 通常、「剛体とする」を選択してください。 「実剛度」、および「直接指定」は、本プログラムの前身である 「UC-win/RC」の機能を継承したもので、剛体とした場合との 結果比較検証用に設けているものです。 (Q2-10参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q2-10

基礎反力の取扱い

直角方向:「鉛直反力Vのみ考慮する」を選択

	計算条件
荷重条件 骨組解析条件 断面照査条件 コーベル フーチング	朝本照査
鉄筋許容応力度の取扱い(常時荷重ケース)	
はり 曲げ照査: 死荷重ケースは死荷重時の♂saを用いる	 柱 一般の部材 ・
せん断照査: 一般部材	 フーチング 水中部材
はりの断面照査	記録(前面)土全鉄院を登録) ます
主鉄筋のモデル化(張出し部) 複鉄筋 ・ ・	せん断照査:引張鉄筋比ptを求めるとき側面鉄筋を考慮する
主鉄筋のモデル化(径間部) 複鉄筋	せん断照査:軸方向圧縮力による補正係数CNを考慮する
□ 5年回しまれて戦力で考慮する □ 1 「 橋軸方向照査に常時荷重ケースを含める □ 1	橋軸方向照査に上下主鉄筋を考慮する ▽ 曲げ照音時、「側面」鉄筋上り外側のみ考慮する
□ ハンチ勾配が1:3より急勾配でもハンチ筋を考慮する ▼ E	曲げ照査、せん断照査時にハンチ筋を考慮する
柱の断面照査	
✓ 田け熊査では側面鉄筋を考慮しない※補強防面は全鉄筋を考 □ → / 新設本・2154年にしませめるとき側面鉄筋を考慮する	「庖します 柱の上端位置 ※住上端の何気和田にも影響します ※レベル2のオブションとしても反映されます
▼ せん断照査:動方向圧縮力による補正係数CNを考慮する	柱1 左右ハンチ開始高の平均値
してん断耐力照査における補強鉄筋の取扱い(保耐照査にも適用)	柱2 左右ハンチ開始高の平均値
(* すべて考慮する) (*) 定着鉄筋のみ考慮する - 小判断社 く 新新西小振形(約定文法 (2)を提案)(本) 適用)	
○ 短辺を固定しない ○ 短辺を固定しない	
由げ照査:(RC補強「柱基部」)補強鉄筋を無効とする断面は補 曲げ照査:(RC補強「柱上端」)補強鉄筋を無効とする断面は補	Bコンクリートも無効とする 健コンクリートも無効とする
フーチングの断面照査	- コーチング服務位置と通路時の方針値 ※1.ペルの計算へも反映されます
主鉄筋のモデル化 複鉄筋 ▼	直角方向照查時の柱前面位置一小判形、R付矩形柱前面位置
 ○ 考慮する ○ 考慮しない 	□ 柱捕強幅を考慮する □ 毎面積の矩形に換算する
柱内面の設計曲げモーメントの取扱い	補給方向照査時の柱前面位置
(* 社内国がら取得 (社中心から取得	
「柱間のせん助人バンの影響」 ○ 考慮する (○ 考慮しない)	服青位置
せん斯スノシック上陽値	既設 1.12 1.120
□ 考慮する 上信引張時の上限信 L + min(tcc/2,d)	補強 1.12
✓ せん断照査:軸方向圧縮力による補正係数CNを考慮する	せん断照査位置 H/2- 有効幅算出に柱補強厚を含める
▶ 増厚時の既設上面鉄筋を考慮する	C H3照查位置高さ [直角方向照查時
	_ ✔ 確定 🛛 🗶 取消 🛛 🦿 🗤 7 (日)

断面照查条件

鉄筋許容応力度の取扱い(常時荷重ケース) フーチング:「水中部材」を選択

はりの断面照査

主鉄筋のモデル化 (張出し部):「複鉄筋」を選択

柱の断面照査

側面鉄筋を含めて引張鉄筋比ptを算出する場合にはチェックを つけてください。 (Q3-5参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q3-5

フーチングの断面照査

軸力:「考慮する」にチェック

せん断照査位置 H/2

「Hは最大高さ」にチェック

コーベル

今回入力の変更はありません。

	計算条件		×
「重条件 骨組解析条件 断面照査条件 コーベ	フーチング剛体照査		
フーチング副体照査時の取扱い			
フーチング厚さ (付け根位置の厚さ(=最大厚)	• 0.000 (m)		
□ 厚さの上限値を考慮 □ 壁式として照査	(系数n: 5.00		
▶ 既設時の柱前面位置で計算する			
		🗸 確定 🛛 💢 取消	? N17"(H)

フーチング剛体照査

フーチング剛体照査時の取扱い

フーチング厚さ:「付け根位置の厚さ(=最大厚)」を選択

全て入力後、確定ボタンを押します。
1-9 許容応力度法_基本荷重ケース

「許容応力度法 - 基本荷重ケース」 をクリックします。

「上部工荷重ケース」、「任意荷重ケース」 タブを順に開きま す。

上部工荟不何加(kNkNm)													
荷重ケース名	217	ν	H(株直)	M(橋直)	H(稿軸)	M(積極)			r~~					
V	10	010	0.00	000	0.00									
									_للے		ш.,	للللم	L	
Zeto I 2024	1 at 10				ibe B	Des the sale will be								
15/0 8/08					118	377条計幅12								
温泉実住の#	9層を含むケー のケーフは は	八ま安定計:	観察行わない	1 99418	a: ,4/1/00	HITESTRA			- tkt.		- 4			
※子遊後後秋本			IT LITTLE A DA.	HC013E	in in college	10111204			44	<u></u>	÷μ			
※活荷重衝撃為 ※活荷 <u>重</u> 衝墜悪	のケースは、支	定計算。フ・	ーチングの順	出日に用いては	KO MECORAL	13174,0301								
※活荷重衝撃高 ※活荷重衝撃高 上部工基本荷重の	のケースは、安 X組合せ(kN k	定計算。フ・ Nan)	- チングの順	uticitiuni la	NO. RECORDE	13114,/301								
※活得重衝撃為 ※活荷重衝撃系 上部工基本荷重の 荷重ケース名	のケースは、安 X組合せ(kN k タイプ	売計算。フ・ Nan) V	- チンヴのig H(橋直)	dHに用い()a M()構直)	H(積和)	maint()a()								
※活向重通菜有 ※活向重重重整票 上部工基本荷重の 荷重ケース名 図 D	のケースは、安 X組合せ(kN k タイプ D	売計算。フ・ Nm) V 0.10	- チンヴの調 H(構直) 1,01	10HIC用して13 M(構直) 0.10	H(積朝) 1.01	M(補給) 0.00	0 (3)						
※活得重衝撃為 ※活筒重衝撃馬 上部工基本荷重の 荷重ケース名 ▼D	のケースは、装 X組合せ(kN k タイプ D	市計算、フ・ Nan) V 0.00	- チンヴの超 H(構直) 1.0	位Hに用い、13 M(構直) 0.10	H((1999)	M(積極) 0.00	0 (3)	+400	9\ 8 +m	28.10	100240201	1824-0-0	2010-0221
※活得重備整為 ※活荷重備整果 上部工基本荷重の 荷重ケース名 マD	のケース1ま、装 X組合せ(kN k タイナ D	売計算。フ・ Nun) V 0.10	- チンヴのJB H(構直) 1.01	12H1C用U、13 M(構直) 0.10	H(1200000 H(1200000 0.00	M(補給) 0.10	D (3) 支承	支承给置 (n)	鉛直方向 ():N0	直角方向 0:N0	病軸回-J (kNn)	機動方向 ():N0	正内回り (kN/m)
※活荷重濃葉菊 ※活荷重香葉馬 上部工基本荷重の 荷重ケース名 ▼ D	がケースは、装 X組合せ(kN) タイプ D	定計算、フ・ Nm) V 0.00	- チンヴの線 H(構直) 101	12Hに用い(13 M(構査)) 0.10	H(18800000 0.00	M(項軸) 0.00	0 (3) 支承 支承1	支承位置 (n) -6.251	鉛直方向 0:N0	直角方向 0:N0 0.101	橋崎田-J (kNm) 0.000	構動方向 0kN0 0.010	正角回-J (k.N.m) 0.101
※活荷重濃葉菊 ※活荷重香蕈馬 上部工基本荷重の 荷重ケース名 図 D	がケースは、装 X組合せ(kN k タイプ 0	定計算、フ・ Nm) 0.00	- チンヴの線 H(構直) 1.01	0110日(1日) (1100日) (1100日)	H(4548) 0.01	M(項軸) 0.00	0 (3) 支承 支承1 支承1	支承位置 (m) -6250 -3750	松道方向 (kN) 0.010 0.010	直角方向 0×N0 0.101 0.101	精細のよ (kNm) 0.000 0.000	構動的方中i 0kN0 0.010 0.010	面角回り (kNm) 0.100 0.101
※活得重調整為 法得重調整無 上部工基本得重の 資重 ワース名 ☑ D	のケースは、安 X雑合せ(kN k タイプ D	施計算、フ・ Nm) 0.10	- ヂンヴのJB H(構直) 0	19H1C用U、13 ()()() ()()	H(8888) 0.01	M(場軸) 030	0 (3 1871 1871 1871 1871) 支承 支承1 支承1 支承1	支承位置 (m) -6.250 -3.750 -1.260	総正方向 0×N0 0.000 0.000 0.000 0.000	副時方向 (×N) 0.101 0.101 0.101	構動(日) (-N m) 0.000 0.000 0.000	構動的方向 (kN0 0.010 0.010 0.010	直角回归 (kNm) 0.100 0.100 0.100
※活得重勝葉為 ※活得重傷葉素 上記工基本得重の 「 一 一 一 一 一 二 し 本 同 一 の の 一 の の の の の の の の の の の の の	のケースは、表 XM組合せ(kN k タイプ D	施計算。フ- Nan) 0.00	- デングのJB H(構 <u>定)</u> 1.01	19H1C用U、13 ()()() 0.10	H(8500) H(8500)	main(Ast) (機種) 030	0 181 181 181 181 181 181 181 18) 支承 支承1 支承1 支承1 支承1	支承位置 (n) -6.251 -3.751 -1.261 1.250	移通方向 ():N0 0.010 0.010 0.010 0.010	副傳方向 (×N) 0.101 0.101 0.101 0.101 0.101	構動的J (Nm) 0.000 0.000 0.000 0.000	構動的方向 ()、N0 0.010 0.010 0.010 0.010 0.010	(k N.m) (k N.m) 0.100 0.100 0.100
※活得進機構為 ※活得進働構築 上部工基本得量の 清重サース名 ▼D	のケースは、表 XM組合せ(kN k タイナ D	施計算。フ- Nan) 0.00	- デングのJB H(構 <u>査)</u> 1.01	19H1C用U、13 M(構直) 0.00	H(858 8) 0.01	(初(項約)) (初(項約)) (30)	0 (3 1871 1871 1871 1871 1871	支承 支承1 支承1 支承1 支承1 支承1	支承位置 (m) -6.250 -3.750 -1.260 1.250 3.750	総正方向 ():N0 0.00 0.000 0.000 0.000 0.000	副門方向 0×N0 0.101 0.101 0.101 0.101 0.101 0.101	構動(D) J ()-N m) 0.000 0.000 0.000 0.000 0.000	888875179 ().N0 0.010 0.010 0.010 0.010 0.010	(kNJn) (kNJn) 0.100 0.100 0.100 0.100

上部工荷重ケース

上部工基本荷重ケースの追加、削除、編集を行います。上部工 基本荷重では、支承ごとにその荷重値を定義します。

上部工基本荷重ケースの追加、削除、編集

上部工荷重ケースを選択し(①)、追加、削除、編集の何れかを 行います(②)。選択中の上部工荷重ケースについて、各支承の 荷重値を編集します(③)。

以下をご確認ください。

基本荷重	ケース名の編集
名称 死	-
_荷重属性	
€ 死荷重(D)	C 風荷重(活荷重無載荷時 ₩)
C 活荷重(L)	○ 風荷重(活荷重載荷時 W)
C 活荷重+衝撃荷重(L+I)	○ 地震の影響/橋軸方向(EL)
€ 温度変化の影響(工)	○ 地震の影響/直角方向(ET)
₩	定 🛛 🗶 取消 🦵 ? ヘルブ(出)

死 支承位置 (m) 鉛直方向 (kN) 直角方向 (kN) 橋軸回り (kN.m) 橋軸方向 (kN) 直角回り (kN.m) 上部工 支承 上部工1 支承1 -6.250 1755.450 0.000 0.000 0.000 0.000 上部工1 支承2 -3.750 1420.050 0.000 0.000 0.000 0.000 1305.310 0.000 0.000 上部工1 支承3 -1.2500.000 0.000 上部工1 支承4 上部工1 支承5 1305.310 0.000 0.000 0.000 0.000 1.250 1420.050 0.000 3.750 0.000 0.000 0.000 上部工1 支承6 6.250 1755.450 0.000 0.000 0.000 0.000 荷重ケース名:死

「荷重ケース名:D」を選択し、編集をクリックします。 編集をクリックすると左画面が表示されますので、名称を 「死」と入力し、確定をクリックします。

荷重ケース名:死

荷重値は拡大図のように設定します。

						基本	◎荷重ケース							
上部工商重ケース	2 任意荷重ケ	-2												
上部工基本创重。	(kNkNm)-						-							
荷重ケース名	タイプ	V	H(横直)	M(橋直)	H(桟軸)	M(積軸)					ل اسمار			
死	0	8981.82	0.00	0.00	0.00	0.00]		ſ			
titte a site	@# /													
□ 温度変化の ※活荷重通葉有 ※活荷重通葉用 上部工基本荷量の	影響を含むケー 1のケースは、15 1のケースは、5 のゲースは、5	- スは安定計 封)、柱の間 (元計算、フ・ kNm)	置き行わない Hに用いて安 ーチングの設	1 総計算。フー・ 計に用しては	 チングの頃 り、桂の頃	月力集計確認 計ま行わない 計ま行わない			Ę.	0] 0 0	<u>.</u>			
□ 温度変化の利 ※活得重領整有 ※活荷重倍整票 上部工基本荷量の 荷重ケース名	影響を含むケー 1のケースは、12 1のケースは、五 の組合せ(kN I タイプ	2は安定計 約,柱の間 (売計算,フ kN.m) V	重き行わない。 HIC用い、安) ーチングの設 H(構直) H(構直)	1 記計算。フー・ 計に用しては M(構直)	作時 デンダの間 り、柱の間 日(積頼)	用力集計確認 計は行わない 計は行わない M(積輪)			Ę.	0] 0 0	<u>.</u>			
▲ (1995) 「温度変大化の利 ※活行重備整算 上部工基本符重の 荷重ケース名 ▼ 死	形容を含むケー 1のケースは、12 のサースは、雪 の組合せ(KN I タイプ D	- 21ま変定計 計J、柱の開調 で定計算、フ・ kNun) 	置き行わない Hに用いて安 ーチングの設 H(構直)]	、 総計量、フー・ 計に用し、は M(構直) 0.00	- 作5 デンダの(約 ドリ、桂の(約 H(積頼) 1,01	日力集計幅22 計 は行わない 計 は行わない (M(積輪)) 0.10	死	支承	支承位置	0] 0 0	 <u> ā</u>角方向	病論のリ	機動方向	通用間、
	影響者含むケー 10ケースは、日 00ケースは、日 00ケースは、日 00ケースは、日 0	- 21ま要定計 計J、柱の開始 に応計算、フ・ kNm) 		、 宅計算。フー: 計に用しては <u>M(構直)</u> 010	 デンダの頃 り、桂の頃 H(横軸) 1.01	用力集計編22 計は行わない。 計は行わない 計は行わない の10 0.00	死 上郎工 上郎工	支承 支承	支承位置 (n) -6251	o) o o 鉛直方向 (kN0	。	精細(D) (Nn) 0.00	構動方向 (kN)	面角回。 (k.N.m)
▲ 2000 「温度重新整束 ※活貨重量重整業 上部工基本得重の 第重ケース名 マ死	影響者含むケー 10ケースは、E 10ケースは、雪 の組合せ(KN I タイプ 0	2.1ま安定計 払)、柱の1000 定量計算、フ・ kNm) V 8961.62		N 記計室, フー・ 計に用し、は M(構直) 0.10	- 作野 ギン・号の(約 ド)、桂の(約 日(特約) 1,01	H力集計編22 計は行わない 計は行わない (M)構動) 0.10		支承 支承1 支承1	支承位置 (n) -6251 -3751	o) o o 約面方向 (kN0 1755.450 1420.050	。 () () () () () () () () () ()	機能回入」 (J.N.m) 0.000 0.000	構動的方向 ():N0 0.010 0.010	面角回。 (kNm) 0.10 0.10
 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	10 10 10 10 10 10 10 10 10 10	2.1ま安定計 払)、柱の1000 定量計算、フ・ kNun) V 8961.62		N 記計室, フー・ 計に用し、1 M(構直) 0.10	 デングの頃 り、柱の道 日(構動) 1.01	H力集計編記 計は行わない 計は行わない (M)構動) 0.10	₹	支承 支承1 支承1 支承1	支承位置 (n) -6.251 -3.751 -1.261	o) o o 総直方向 (L/N) 1755,450 1423,050 1305,310	 	内袖(D-) (kNm) 0.000 0.000 0.000	構動方向 G-N0 0.00 0.010 0.010 0.010	通典题 (KN/m) 010 010 010
2000 一 温度変化の ※活得重新整果 ※活得重新整果 上部工基本得重。 「重重小」ス名 ■ 死	100 100 100 100 100 100 100 100	- スノよ安定計 (大), 柱の間 (空計算, フ・ kNn) - V (8961.62	第さ行わなι H=用い安 - チングの設 H(構直) 0.01	1 記計算。フー 計に用しては M(構直) 010	 デンジの(約 以, 柱の(約 H(構動) 1,01	用力集計編22 計は行わない 計は行わない 計は行わない の10 0.00	一 一 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 第 二 お 二 お 二 お 二 お 二 お 二 お 二 お 二 お 二 お 二 お 二 お 二 、 お 二 お 二 、 お 二 、 二 お 二 、 二 お 二 、 二 お 二 、 、 、 、 、 、 、 、 、 、 、 、 、	支承 支承1 支承1 支承1 支承1	支承位置 (n) -6258 -1259 -1259	o) o o 参加方向 (N) 1755.450 1421.050 1105.310 1305.310	 <!--</td--><td>構動(日子) (Nm) 0.000 0.000 0.000 0.000</td><td>構動方向 G-N0 0.010 0.010 0.010 0.010</td><td>01/10/2010 0.10 0.10 0.10 0.10</td>	構動(日子) (Nm) 0.000 0.000 0.000 0.000	構動方向 G-N0 0.010 0.010 0.010 0.010	01/10/2010 0.10 0.10 0.10 0.10
●2000 「温度変化の人 ※活得重測整素 ※活行重測整素 上却工基本得重。 「重加」 「工具変化の人 一温度変化の人 一面、 一面、 一面、 一面、 一面、 一面、 一面、 一面、	100 100 ケースは、15 100 ケースは、55 0 10 0 0	2月ま産定計 計, 株の間期 (定計算, 2* KNm) 1061.62	Ⅲで用い、安 Hで用い、安 - チングの設 H(構直) 1.01	、 宅計算、フー・ 計に用し、は M(構直) 0.10	 デンジの間 り、柱の間 H(構動) 1.01	用力集計編22 計は行わない 計は行わない 計は行わない 0.00	元 元 正部工 上部工 上部工 上部工 上部工 上部工 上部工 上部工	支承 支承1 支承1 支承1 支承1 支承1	支承位置 (m) -6250 -3250 -1250 1250 3.750	0) 0 0 8計画方向 (kN0 1755,450 1420,050 1105,310 1420,050 1420,050	 	(内)(日) (k,N,m) 0.000 0.000 0.000 0.000 0.000	構動方向 (k-N0 0.010 0.010 0.010 0.010 0.010	010 0.10 0.10 0.10 0.10 0.10 0.10

上部工基本荷重ケースの追加
名称 活川
荷重属性
○ 死荷重(D) ○ 風荷重(活荷重無載荷時 W)
 ● 活荷重(L) ○ 風荷重(活荷重載荷時 W)
○ 活荷重+衝撃荷重(l+I) ○ 地震の影響/橋軸方向(EL)
○ 温度変化の影響(T) ○ 地震の影響/直角方向(ET)
確定 業 取消 ? ヘレブ(円)

活1							
上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	545.270	0.000	0.000	0.000	0.000
上部工1	支承2	-3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承3	-1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承4	1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承5	3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承6	6.250	545.270	0.000	0.000	0.000	0.000

上部工基本荷重ケースの追加
名称 活2
荷重禹性
C 死荷重(D) C 風荷重(活荷重無載荷時₩)
 ● 活荷重(L) ○ 風荷重(活荷重載荷時 ₩)
○ 活荷重+衝撃荷重(L+I)○ 地震の影響/橋軸方向(EL)
○ 温度変化の影響(T) ○ 地震の影響/直角方向(ET)
確定

活2							
上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	0.000	0.000	0.000	0.000	0.000
上部工1	支承2	-3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承3	-1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承4	1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承5	3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承6	6.250	0.000	0.000	0.000	0.000	0.000

(上部工荷重ケース)

荷重ケース名:活1

続いて、荷重ケースの追加をクリックします。 名称は「活1」と入力、荷重属性は「活荷重(L)」を選択し、確定 をクリックします。

荷重ケース名:活1

荷重値は拡大図のように設定します。

荷重ケース名:活2

続いて、荷重ケースの追加をクリックします。 名称は「活2」と入力、荷重属性は「活荷重(L)」を選択し、確定 をクリックします。

荷重ケース名:活2

荷重値は拡大図のように設定します。

上部工基本荷重ケースの追加								
名称 活衝1								
┌荷重属性								
○ 死荷重(D) ○ 風荷重(活荷重無載荷時 W)								
○ 活荷重(L) ○ 風荷重(活荷重載荷時 W)								
● 活荷重+衝撃荷重(L+I) ○ 地震の影響/橋軸方向(EL)								
○ 温度変化の影響(T) ○ 地震の影響/直角方向(ET)								
確定 X 取消 ? ヘレフ℃	Ð							

活衝1

上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	545.270	0.000	0.000	0.000	0.000
上部工1	支承2	-3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承3	-1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承4	1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承5	3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承6	6.250	545.270	0.000	0.000	0.000	0.000

上部工基本荷重ケースの追加							
名称 活衝2							
C 死荷重(D) C 風荷重(活荷重無載荷時 ₩)							
○ 活荷重(L) ○ 風荷重(活荷重載荷時 W)							
● 活荷重+衝撃荷重(L+I) ○ 地震の影響/橋軸方向(EL)							
○ 温度変化の影響(T) ○ 地震の影響/直角方向(ET)							
確定 _ ★ 取消 _ ? ヘレレブ(]	Ð						

活衝2

上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	0.000	0.000	0.000	0.000	0.000
上部工1	支承2	-3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承3	-1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承4	1.250	788.480	0.000	0.000	0.000	0.000
上部工1	支承5	3.750	660.010	0.000	0.000	0.000	0.000
上部工1	支承6	6.250	0.000	0.000	0.000	0.000	0.000

上部工基本荷重ケースの追加							
名称 地震(軸)							
「荷重属性	_						
○ 死荷重(D) ○ 風荷重(活荷重無載荷時W)							
○ 活荷重(L) ○ 風荷重(活荷重載荷時 W)							
○ 活荷重+衝撃荷重(L+I) ④ 地震の影響/橋軸方向(EL)							
○ 温度変化の影響(T) ○ 地震の影響/直角方向(ET)							
✔ 確定	Ш						

荷重ケース名:活衝1

続いて、荷重ケースの追加をクリックします。 名称は「活衝1」と入力、荷重属性は「活荷重+衝撃荷重(L+I)」 を選択し、確定をクリックします。

荷重ケース名:活衝1

荷重値は拡大図のように設定します。

荷重ケース名:活衝2

続いて、荷重ケースの追加をクリックします。 名称は「活衝2」と入力、荷重属性は「活荷重+衝撃荷重(L+I)」 を選択し、確定をクリックします。

荷重ケース名:活衝2

荷重値は拡大図のように設定します。

荷重ケース名:地震(軸)

続いて、荷重ケースの追加をクリックします。 名称は「地震(軸)」と入力、荷重属性は「地震の影響/橋軸方向(EL)」を選択し、確定をクリックします。 地震(軸)

上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	0.000			338.730	0.000
上部工1	支承2	-3.750	0.000			338.730	0.000
上部工1	支承3	-1.250	0.000			338.730	0.000
上部工1	支承4	1.250	0.000			338.730	0.000
上部工1	支承5	3.750	0.000			338.730	0.000
上部工1	支承6	6.250	0.000			338.730	0.000

上部工基本荷重ケースの追加						
名称 地震(直)						
┌荷重属性────						
€ 死荷重(D)	○ 風荷重(活荷重無載荷時 W)					
○ 活荷重(L)	○ 風荷重(活荷重載荷時 ₩)					
○ 活荷重+衝撃荷重(L+I)) 🖱 地震の影響/橋軸方向(EL)					
○ 温度変化の影響(T)	● 地震の影響/直角方向(ET)					
¥	跎★取消?ヘルフ℃	Ш				

地震(直)

上部工	支承	支承位置 (m)	鉛直方向 (kN)	直角方向 (kN)	橋軸回り (kN.m)	橋軸方向 (kN)	直角回り (kN.m)
上部工1	支承1	-6.250	-277.340	248.900	186.730		
上部工1	支承2	-3.750	-166.420	248.900	186.730		
上部工1	支承3	-1.250	-55.510	248.900	186.730		
上部工1	支承4	1.250	55.510	248.900	186.730		
上部工1	支承5	3.750	166.420	248.900	186.730		
上部工1	支承6	6.250	277.340	248.900	186.730		

基本荷重ケース hannah
 Terr
 <t 60.00 (m) -6.258 -3.758 -1.258 1.250 3.750 185.73 185.73 185.73 185.73 185.73 -55.51 55.51 金で選択 金で解除 T +、-有効 ▼ W +、-有効 ▼ ✓ HR 🗶 REM ? \47\10

-上部工基本荷重の組合せ(kN kN.m)-∨│ H(橋直)│ M(橋直)│ H(橋軸)│ M(橋軸)│ 荷重ケース名 タイプ 8961.62 0.00 0.00 ☑死 D 0.00 ✓ 死+活1
 ✓ 死+活2 D+L 12949.14 0.00 0.00 0.00 D+L 11858.60 0.00 0.00 0.00 ✔ 死+活衝1 D+L+I 12949.14 0.00 0.00 0.00 ☑ 死+活衝2 11858.60 0.00 D+L+I 0.00 0.00 ☑ 死+地震(軸) D+EL 8961.62 0.00 0.00 2032.38

0.00

1493.40

-1493.40

0.00

-3733.29

3733.30

-2032.38

0.00

0.00

8961.62

8961.62

8961.62

上部工基本荷重の組合せ(kNkN.m) 以下の拡大図と同様箇所にチェックを付けます。

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

荷重ケース名:地震(軸)

荷重値は拡大図のように設定します。

荷重ケース名:地震(直)

続いて、荷重ケースの追加をクリックします。 名称は「地震(直)」と入力、荷重属性は「地震の影響/直角方 向(ET)」を選択し、確定をクリックします。

荷重ケース名:地震(直)

荷重値は拡大図のように設定します。

画面左は全て入力を終えた状態になります。

上部工基本荷重の組合せ(kNkN.m) 以下の拡大図と同様箇所にチェックを付けます。

☑ 死+地震(直)

D-EL

D+ET

D-ET

1							基本荷	重ケース					- • ×
上部工術1	上部工作量作量ゲース(任意符重ゲース)												
任意死荷	1É												
-871	柱番号	動対開始 位置(m)	載演長 (n)	高さ位置 (n)	奥行教育 位置(n)	央行動符 偕(m)	間始点用 資量0kN/m)	終了点側 荷重(kN/m)	滑油力				
柱	0	0.000	0.010				0.010	0.000	考慮する				
									1		41977		1 2 10 10 10
部⊞·1 ~	4									_	✓ ₩2	X REM	? \\$7(B)
範囲:1~	4												10

(任意荷重ケース)

今回入力に変更はありません。

「任意荷重ケース」で定義した任意死荷重は、レベル2地震動 照査時の死荷重として考慮されます。 (Q4-32参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q4-32

1-10 許容応力度法_組合せ荷重ケース

「許容応力度法 - 組合せ荷重ケース」をクリックします。

2000年10月1日日 1歳 水位 「湯度は」、 「湯(市長畑) ▽ 左から右(→) ▽ 後から前(↓)				吃前(↓)	増し枕工法時の既設のみが負担する	10重9-2,00倍報 荷重タイプ: - D	
温度上昇 下低水 温度下降 下高水	位 位 差本ケ・ マ 樹	ら左(←) −スの水平 創方向 🔽	☑ 前加 荷重方 直角方	46後(†) 句を慣性力と一致させる― (向			はい作 (2) 開査する 基礎・フーチング: 開査する
青軸方向(12 Case)	第15/地震 的	水位	温度	首重ケースタイプ		賃性力	1.000 7x(0):
- 2687 (10 Case)	✓ #844	低水位		死	現		0.000m
「自動時代2 Case) 西面方向(32 Case)	☑ 常時	高水位		死	死		
- 2000 (30 Case)	☑ 第5時	低水位		死+活1	死+活1		基本荷重ケースの内訳
地震時(2 Case)	☑ 常時	低水位		死+活2	死+活2		2000-0447-0170-021-0170
	☑ 常時	高水位		死+活1	死+活1		Total Contraction of the
)	₩ 第8時	高水位		死+活2	死+活2		組合せ 可重ケース名
	▼常時	低水位		死+活衝1	死+活衝1		* B <u>\$</u>
	▼常時	低水位		死+活箭2	死+活衝2		* 注意死何重
	▼ 常時	高水位		死+活衝1	死+活衝1		目室消在力→
	12 12 12 12 12 12 12 12 12 12 12 12 12 1	高水位		死+活箭2	死+活衝2		自動併住力に
	▶ 地震時	低水位		死+地震(軸)	死+地震(軸)	1	自動調性/川
	▼ 地震時	高水位		死+地震(軸)	死+地震(軸)	Ť	日星頃江/14 任會花苗新婦性力>
	_						任意花花爱佛地力在
							任意花苗重要推开十
							任意获得重要的计划
							上動領重の水位ない。
							+ 上統領筆(低水(行)
							上載倚重(高水位)
							 洋力(低水位)
							洋力(高水位)
							風荷重(活水位なし)-
							風荷重(活紙水道)→
							風荷重(活高水位)→
							風荷重(活水位なし)+
							風荷重(活低水位)←
							風何重(活高水位)→
							風雨重(水(立なし)→
							風(町重(1批水(辺)→
							■111重(1877(12)→
	全て課題	2-7 8339	20 m	ケーフ書元名			周辺電気のないた
		a cu490		2 PORTENIA			man12(18/7(12)**

組合せ荷重ケース選択オプション

温度、水位、慣性力

表示されている組合せケースのうち、照査を行うケースに チェックを付けます。 水位 水位無視 チェックを外す

リスト表示

ツリーで選択したケースをリストに表示します(①)

荷重の内訳表示

リストで選択した組合せケースの内訳を表示します(2)

荷重ケース名指定

組合せ荷重ケース名を指定することが可能です。 ケースを選択し、「荷重ケース表示名」 をクリックするか、ケー スをダブルクリックします。

橋軸方向-常時

ツリーより、「橋軸方向-常時」を選択します。 左画面と同様箇所にチェックを付けます。

ii:					組合	世荷重ケース		- 🗆 🗙
組合せ荷重ケ	- ス選択7	ブションー						荷重ケースの情報
温度 「 温度なし 「 温度上昇 「 温度下降	水位 「 水位 「 水位 「 高水	構	:力 をから右(→) もから左(←) ドケースの水平 橋軸方向 🔽	▼ 後か ▼ 前か 荷重方 「直角方	心前(↓) 心強(↑) 向を慣性力と一致させる― 5向	- 増し枕工法時の既設のみが負担す 特胎方向 直角方向	る既設死荷重 <u>-</u> - -	荷重タイプ: D は・4 酸査する 基礎・フーチング: 物査する たかどの形象的の555
田 橋軸方向(3)	Case)	2633/1922	188 3810	38.02	荷飯ケーフタイプ	荷香ケーフ表示名	働きた	1.000
- 常時(10	Case)	同時間は	低水位	ance	双+抽雷(動)	(1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	1	0.000m
	2 Gase)	▼ 地震時	高水位		死+排震(軸)	死+決費(論)	1	
- 第時(30	Case)							基本简重ケースの内訳
地震時(2 Gase)							※組合せ"+"は加算、"-"は減算
								相合せ「荷重ケース名」へ
								白鯊
								任意死荷重
								目室慣性力→
								日期間圧力←
								白垩间位方门
								任兼存宿棄優件力→
								任意获得新聞件力←
								任意死荷重備性力↑
								任意死简重情性力↓
								上載荷重(水道なし)
								上載荷重(低水位)
								上載何重(高水位)
								洋刀(157(15))
								(注力)(画)(1)(加)
								周市重いるホロ(30)~~
								周南重(注高水位)→
								服育業(活水位ない)ー
								風荷重(活低水位)←
								風荷重(活高水位)←
								風荷重(水位なし)→
								風荷重(低水位)→
								風荷重(高水位)→
		全て選択	全て解除	衛重	ケース表示名			風荷重(禾位急)← 風荷重(低水位)← ~
							√ ≋	E X 10:4 7 \4-7(H)

橋軸方向-地震時

ツリーより、「橋軸方向-地震時」を選択します。 左画面と同様箇所にチェックを付けます。

今回変更はありません。

2				組合	させ荷重ケース		- • ×
組合せ荷重ケース選択:	オブション						荷重ケースの情報
温度 水位	價性	<u>л</u>			増し枕工法時の問題のみが負担する	荷重タイプ	
▼ 温度なし □ 水田	歳なし □ 水位無視 🕑 左から石(→) 🖌 彼から雨(↓)		模帧方向		D Internet		
▶ 温度上昇 ▶ 低水	位 2.3	5から左(←)	✓ 1677)	い(彼(干)			¹⁰ 無置する
□ 温度下降 □ 高水	位 基7	(ケースの)水平 接触支向 屋	回来万日	司を慣任力と一致きせる― cria	直角方向	Y	基礎・フーチング: 国際する
			Gal. 77.	//-1			許容応力度割増係数
- 橋軸方向(3 Case)	常時/地震	時 水位	温度	荷重ケースタイプ	荷重ケース表示名	慣性力	2000
- %97(1 Case)	✔ 常時	低水位	無視	死	死		0.000m
一方面本伝(11 Case)	☐ 2688	低水位	上昇	死	死		
- 2099(9 Case)	口常時	低水位	下降	死	死		基本荷重ケースの内訳
地翻時(2 Gase)	口常時	高水位	無視	死	死		WIRESHALL THE MARK TO HOUSE
	1 7684	高水位	上昇	死	死		WHEELC . ISUNDER
	口常時	高水位	下陆	死	死		相合せ 何重ケース名 -
	口常時	低水位	無視	死+活1	死+活1		E E
	口常時	低水位	無視	死+活2	死+活2		往基先何重
	▼常時	低水位	上昇	死+活1	死+活1		日星街社/小→
	V 2689	低水位	上昇	死+活2	死+活2		日星街社ノルー
	121 光時	低水位	下稿	死+活!	死+活1		自産損任/川
	▼常時	低水位	下路	死+活2	死+活2		日並得任/1+
	1 7695	高水位	無視	死+活1	死+活1		任會在改新優性力在
	口常時	高水位	無視	死+活2	死+活2		任意死前重 個性力 1
	1 7689	高水位	上昇	死+活1	死+活1		任意死荷重備性力」
	☐ %#	高水位	上昇	死+活2	死+活2		上載荷重(水(0なし)
	口常時	高水位	下路	死+活1	死+活1		上載荷重(低水位)
	1 2695	高水位	TIS	死+活2	研+活2		上載荷重(高水位)
	口常時	低水位	無視	死+活箭1	死+活衝1		洋力(低水位)
	1 2010	低水位	98.78	死+活衝2	旺+活衝2		洋力(高水位)
	1 米時	低水位	上昇	死+活箭1	死+活衝1		風荷重(活水位なし)→
	X 350	低水位	上程	夜+沃油2	Ŧ+沃施2		風荷重(活紙水位)→
	121 2030	低水位	TIS	死+活衛1	死+活漸1		風雨重(活高水位)→
	1 ※時	低水位	TM	死+活箭2	死+活衝2		■両重(活水位なし)+-
	17814	高水位	3828	双+沃油1	ŦF+活用1		■同重(活係水位)←
	17689	高水位	無視	死+活箭2	死+活衝2		風雨重(活高水位)←
	口茶時	高水位	上昇	死+活箭1	死+活衝1		■111重(7(115,0,))→
	1 2000	高水位	上桿	死+沃浦2	死+活潮2		周辺(広水辺)→
	1 2614	高水位	下稿	死+活箭1	死+活施1		国産産(の小位)→
	T 7814	商水位	TIA	双+沃油2	ŦF+沃甸2		周荷重(任水位)
	1 manual						風荷垂(高水位)←
	全て選択	全て解除	荷重	ケース表示名			温度荷重(上昇)
						1 90	E 🛛 🗶 取消 🔮 🦿 NP7(H

直角方向一常時

ツリーより、「直角方向ー常時」を選択します。 左画面と同様箇所にチェックを付けます。

10				組合	せ荷重ケース		- • ×
相合せ荷重ケース選択 温度 水位 戸温度上昇 戸低村 戸温度下降 戸市村	(清重ケース線択オジェン 水位 営性力 激化 「水位無機」「支から右()」▽(後から前(1) 度上昇) 豆(水から友()」▽(後から前(1) 度上昇) 豆(水から友()」▽(後から前(1)) 歳ヤケースの水平電査(市向を借力)と一致させる □ (場略から) 豆(西角から) 豆(西角から)		- 増し枕工法時の問題のみが負担す 特胎方向 直向方向	- 荷重ケースの情報 - 荷重タイプ: D は)・柱 暗査する 基礎・フーチング: 瑞査する			
Hereit Care Hereit C	<u> </u>	★位 低水位 高水位	<u>温度</u> 	(前)(ホースタイプ) 見や経営(血) 見や経営(血) 見や経営(血)	☆ 荷泉ケーフえ表元-5 丹・松麻(面) 戸・松麻(面)	黄色力 	
						_ √ वर	€ X RCH ? ∿671 <u>H</u>

直角方向-地震時

ツリーより、「直角方向ー地震時」を選択します。 左画面と同様箇所にチェックを付けます。

今回変更はありません。

全て入力後、確定ボタンを押します。

1-11 許容応力度法 はり張出し荷重ケース

1	はり張出し荷重ケース(許容応力度法) -	×
樽朝方向 直角方向 追加 排入 名前支軍 利除 前重ケース名 状除	許容伝力度の影響(4数 守重状態] 素明音作系: 000	
	▲ 「 確定 」 ▲ 取消	? ∿⊮7″⊞)

出し荷重ケース」をクリックします。

橋軸方向、直角方向

どちらのタブも今回変更はありません。

全て入力後、確定ボタンを押します。

共通条件 ×						
地震動タイプ © 地震動タ	「選択 イブI	○ 地震動)タイプⅡ	С	地震動タイプ(Ⅰ・Ⅱ)	
死荷重時の行	苛重ケース――		はい柱	フーチング・基礎		
橋軸ケース	死温無 水低		● 計算	▼ 計算(水無/低)		
		○ 計算	□ 計算(水低/高)			
一設計水平震風	e 地域区分:A1	(CIz=1.20,CII	z=1.00) :	地盤種別(Ⅱ		
		Cz•khco	khc	khg	固有周期(s	0
タイプI	橋軸方向	1.4520	0.00	0.54	1.00	Ĵ
	直角方向	1.4520	0.00	0.54	←計算 1.00	1
タイプロ	橋軸方向	1.7500	0.00	0.70		J
	直角方向	1.7500	0.00	0.70	1.00	1
 しいで解れ、 「橋軸方作 「橋軸方作 「橋軸方作 「筒便法は 基礎の減衰り 「橋軸方作 	(10.022W当FA) 同の照査をする 同を免震とする こよる免震設計を こよる補正係数C 同	日 「直角方に 「直角方に 行う※簡便 Eを考慮する 「i	のの照査を 可を免震とう 法は、参考 直角方向	する する 値として表示	7項目の選択 解7.4.1照査のみ 通常の設計+解7.4.1照査 ・出力します	10-4
免震橋、基礎 地震動タイ	ŧの減衰定数hlこ 橋軸方 f I : 「	よる補正係数	女CE 5角方向 100		芯答塑性率 μr算出時 Eを考慮しない	
- 5.505 - 1	eπ.	1.00	1.0	00	Eを考慮する	
心嚴動文化。	/ /	1.00	1.0	יאן © 0 0	<mark>/2地震動の基礎照査時</mark> - Eを考慮しない Eを考慮する	
			✓	確定	🗙 取消 🔤 🥐 ヘルフ℃	н

「レベル2地震動-共通条件」をクリックします。

地震動タイプ選択

「地震動タイプリ」を選択

死荷重時の荷重ケース

本設定は地震時保有耐力法の計算を行う際に参照するケース (死荷重時)を指定します。 「橋軸ケース|死|温無|水低」を選択 「フーチング・基礎の「計算(水低/高)」のチェックを外す 橋軸方向ケースを選択した場合は、橋軸方向、直角方向とも偏 心を考慮することができます。 直角方向ケースを選択した場合は、橋軸方向の偏心を考慮す ることができません。 (Q4-24参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q4-24

全て入力後、確定ボタンを押します。

1-13 レベル2地震動_橋脚条件

	橋脚条件
荷重条件 計算条件 柱基部断面力算定	
前重 多イブI	m <u>¥</u> s
構 輸 方向 WulkN0 Km と M の Km の	
LEFI1 8002.510 0.000 5972.460 2.500	
	÷
\$47 1	8200 8.00 8200
構 輸方向 WulkN) H(m)	
上部工1 8052510 0.000 5972.480 2.500	1200 1500 1200
	0500 0500 0.000
	1500
	7.00 + 2.00 + 7.00
	🗸 HIDE 🗙 TIDIA 🏅 🔧 VADYED
範囲: 0.000 ~ 1000000.000	

「レベル2地震動 - 橋脚条件」をクリックします。

「荷重条件」、「計算条件」、「杭基部断面力算定」タブを順に 開きます。

荷重条件

荷重

地震動タイプ別、各上部ごとに慣性力作用位置と上部構造部 分の重量をそれぞれ下記の数値を設定します。

タイプ I (上部工1) 橋軸方向Wu(kN):「8002.510」 橋軸方向h(m):「0.000」 直角方向Wu(kN):「5972.460」 直角方向h(m):「2.500」

タイプⅡ(上部工1)	
橋軸方向Wu(kN):「8002.510」	橋軸方向h(m):「0.000」
直角方向Wu(kN):「5972.460」	直角方向h(m):「2.500」

計算条件

橋の重要度区分

許容塑性率の安全係数αと残留変位の照査を行うかの判定に 用いています。構造物の重要区分を選択します。 「B種」を選択

商業会社「世営会社・任業部時間が加速工」 シスは治定にまた「住宅会」の経営が行動した。 19月前には、地会には「日田工人」の経営してたため、 19月前には、地会には「日田工人」の経営してたため、 19月前には、地会には「日田工人」の経営してため、	
※半統治主、野社委協の設計計算、状基礎の設計小の特社式機能のフーチング社際原面に使用する任基認知識力を算直すなフール構能です。 ド時ルスは始合は対計量、ネルしは設定してたたい、 *26条種屋として小型機能構成で、増加、直合方向一部線 - 仕基語が感力がで見ます。	
住基部所面力 の 肝菌(方瓜) C 肝菌する	
★平要度70%+60場合(社会部所面力の運出方法) (*) (情力)による至くの制面力で認知方法) (*) (情力)による回びの時分はお直力で分担させる	
水平器度1万kvを未満の場合の機制器材の曲げ開始 「の「初時以外の前性 で 全部価格がの前性	
MERID 7400L Atta Marga Baby Name 1 marga 0.000 4 0.000 4 0.000 4 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7 0.000 7 0.000	
¥≣X10A?√	-7% <u>H</u> 9

柱基部断面力算定

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

1-14 レベル2地震動_基礎条件

HALANALA	പകികം	مأميرها	基礎栄作	t		
1911年10日茶件(2)日茶	件③ 杀件	④ 杀件⑤ `	フーチング			
注算条件 ◎ 液状化を無視	03	液状化参考慮	C 液状	化参一括	○ 流動(上を考慮
Caller Steam (10.54-05-84		1.000-44-500-4-5			
作用力と照査方向	- 155.061未致	DE(LAS)] <	1.0000298194	U I		
□ 作用力を直接	指定する	慣性力の向き	き(橋軸方向)	前から後(<u>↑)</u>	-
		慣性力の向き	き(直角方向)	 右から左(⊢)	•
着目点ピッチ(m)						
上 0.10	中間	0.20 下	1	0 分割機	τ 1	00
요리+ Hate 2007(니 1)(~~)	0.000	W BARLIN AND	Filter, and	1度また。C の	32-4	7/# ***
	0.000	本訳訂 地論目	副るノーテノン	AREEN AND AND AND AND AND AND AND AND AND AN	WAG CERLEU	(LACOUT
地盤反力度の上限(C「地層 液状化	直算定:上載 上水位深さ日	(何重(q)計算 (1)で指定した?	用の水位―― 水位			
●「レベル2地震動	共通条件	死荷重時の	荷重ケース」で	指定した水位		
M- ¢ 算出用軸力の	取扱い		塑性化した部	材の曲げ剛性	の取扱い	10000
● 平均反力	ে গ্যাসন	2200反力	Y-U, Y-Y'区	間に対する低	減率 1/	10000
資計水平震度khp算 ・検討方向と同じ	出時の偏心	・七ーメノト(禘 するとき無視す	髀⊞万回)─── でる	御正係数	受度khp算出時 CdE	607相止1条数 11
 検討方向と同じ; 	方向に作用す	するとき考慮す	3	THILDRAK		
せん断耐力照査方: © 枯基礎のせん断	去 行1≤結其破	まのまと、肝筋す力	こ 右体の	せん断力られ	前体のせん期前	idth
	17 5 - 1753E5 Kot		-		761407 C 70471	(123
	リンはのおけ	5++ / Bb TB8442	2			
SC杭+PHC杭時のP © しない	HC杭の杭体	₽せん助刀照査 ○ する(ス)	E バイラル鉄筋無	(親) Cす	5(スパイラル	鉄筋考慮)
SC杭+PHC杭時のP © しない フーチング前面抵抗	HC杭の杭体 I	をせん助力照査 で する(ス)	イラル鉄筋無	観) C す	5(スパイラル	鉄筋考慮)
SC杭+PHC杭時のP © しない フーチング前面抵抗 © 無視する	HC杭の杭体	₩せん助刀照査 ○ する(ス)	1 パイラル鉄筋無 C 考慮す	観) C す る	5(スパイラル	鉄筋考慮)
SO杭+PHO杭時のP © しない フーチング前面抵抗 © 無視する	HC杭の杭付	₩世ん助刀照査 ○ する(ス)	1 バイラル鉄筋無 C 考慮す	観) C す る	5(スパイラル	鉄筋考慮)
SC杭+PHC杭時のP © しない フーチング前面抵抗 © 無視する	HC杭の杭付 に	Fせん助刀照査 「「する(ス)	パイラル鉄筋無 C 考慮す	観) C す る	5(スパイラル	鉄筋考慮)
SO杭+PHO杭時のP © しない フーチング前面抵抗 © 無視する	HC杭の杭体	▶世ん助刀照査 ○ する(ス)	i パイラル鉄筋無 C 考慮す	観) C す る マ も	5(スパイラル 毎定 X	扶筋考慮)

「レベル2地震動-基礎条件」をクリックします。

「条件①」、「条件②」、「条件③」、「条件④」、「条件⑤」、 「フーチング」タブを順に開きます。

条件①

慣性力の向き(直角方向)

「右から左 (←) 」 を選択

着目点ピッチ

杭頭から杭の特性長 ($1/\beta$) と $1/\beta$ から先端までを2分した合計 3区間 (\perp /中/下) に分けて部材長ごとにピッチを設定します。 部材ごとに地盤の弾塑性判定、抗体の曲げ剛性設定を行いま すので、ピッチが小さいほど精度が高くなります。 ただし、その分演算時間も要することになります。 分割ピッチは、地層ごとに設定しています。 (Q5-12参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q5-12

上:「0.10」 中間:「0.20」 下:「1.00」

基礎条件	×
条件の 条件② 条件③ 条件④ 条件⑤ フーチング	
杭間隔÷杭径 係数①:橋軸方向の計算に使用	
新設林・既設林	
杭間隔÷杭径	
係数の 2.62500 計算	
1条要型 3.43750	
·鋼材材質	
第1断面 SKK400 - 235.0	
✓ 確定 🔰 🗶 取消 🔰 🤈 ヘルフ (H)	1
	1

条件②

新設・既設杭及び増し杭ごとに設定します。

新設杭・既設杭 杭間隔÷杭径

№1回帰・約1至 砂質地盤のηp・ap値を意味しています。杭間隔は荷重載荷直 角方向の杭中心間隔をさします。 「計算」をクリックします。

	基礎多	桑件			×
\$件① 条件② 条件③ 条件④ 条件⑤	フーチング				
橋脚の終局水平耐力に十分大きな余裕があ ・ 内部判定	5るかの指定− ○ 直接指定	1			
┌橋脚の応答塑性率条件[橋軸方向]┐	検討方向	慣性力	地震動	余裕(0:舞1:右)	
 ・ ・ ・	橋軸方向	前から後(↑)	I	0	
○ 十分大きな終局水平耐力があろ		前から後(↑)	Π	0	
C 1 202 (C 40000000 1 012200 40 0		後から前(↓)	I	0	
		後から前(↓)	Π	0	
	直角方向	左から右(→)	I	0	
		左から右(→)	Π	0	
		右から左(←)	I	0	
		右から左(←)	Π	0	
主たる塑性化が生じる部材は、次のよう) khyF≧khp ・・・ 機脚基部に主たる塑性 khyF <khp th="" ・・・="" 基礎~地盤系に主たる<=""><th>に判断します。 自化が生じる 5塑性化が生じ</th><th>75</th><th></th><th></th><th></th></khp>	に判断します。 自化が生じる 5塑性化が生じ	75			
※橋脚の終局水平耐力に大きな余裕があ 増し株工注時 「降伏判定」 の「既設抗ノ増し抗全て」	る,または液材 〇 全既設	化の影響を考慮 杭または全増しお	するときに	通用	

条件③

今回入力に変更はありません。

		基礎条件			×
条件① 条件②	条件③ 条件④ 条件⑤	フーチング			
降伏判定用:杭康	順反想鉄筋コンクリート断面の	降伏曲げモーズ	トMy算出用の軸力	の取扱い	
新設·既設杭	○ 死荷重反力 ○ 軸	л=0 C	押込み側:死荷重励	え力、引抜き側:軸力=	
増し杭	 C 死荷重反力 C 軸 	л=о с	押込み側:死荷重5	え力、引抜き側:軸力=	
※杭頭部()深度 この「杭頭仮	=0)の杭の降伏判定は、mir 想RC断面My」算出に用いる	n(杭体My,杭頭 油力を選択してくだ	反想RC断面My)をF さい。	則ています。	
-杭頭仮想鉄筋⊐ 照査方法 ◎ 1	ノウリート断面の照査 列(本)ごとに照査 ○ 全列	(杭)で照査			
照查判定用:杭	遺仮想鉄筋コンクリート断面の 脚生化を考慮するとき 「林谷	の降伏曲げモーズ	ントMy算出用の軸ナ SC IL S 仮相PC#5	の取扱い	
新設・既設杭	C 死荷重反力 C 軸	#0)##K曲りに一 内=0 C	// = (X/3006) 押込み側:死荷重)	回り輝い曲りて一久。 豆力、引抜き側:軸力:	=0
増し杭	C 死荷重反力 € 軸	内=0 C	押込み側:死荷重)	支力、引抜き側:軸力	
二其相に主たる第	財性化素素膚(たい)とき 【精	「商祭生曲」ヂモー・	ハル < (石相日の)新行	面の感は出まーン	/h1
新設・既設杭	C 死荷重反力 C 軸	あませい。 内=0 C	"シー" = (火気)の前に 押込み側: 死荷重)	立力、引抜き側:軸力:	=0
増し杭	C 死荷重反力 € 軸	内=0 C	押込み側:死荷重)	支力、引抜き側:軸力:	
※杭基礎設計 算出に用いる軸	暫((H19.1)の図ー皿.8.8(P.304) 力を選択してください。	の「仮想RC断面の	防除伏曲げモーメン	1	
			▲確定	🗙 取消 🛛 🥐	N17℃ <u>H</u>)

	基礎条件	条件⑤
条件① 条件② 条件③ 条件④	条件 ⁶ フーチング	
	耐鬱酸計上の地盤面 CA CB CC ※液状化生態時の設計地域面の取扱いさ指定してください。 設計化電気中の設計地域面 (24件の)画面) ル以深 が対象して、低水体数次び上記数定(AG)を参照し、自動的に設定し ます。 ※O選択時1:2 Eと同じ設計地盤面を設定し、設計地盤面以送の)低減係 数DEを00ご設定します。	今回入力に変更はありません。
	▲ 一 確定 ┃ 🔰 取消 🦵 🦓 ルフで出)	
-		

条件④

今回入力はありません。

			基礎条件	1
条件① 条件②	条件③ 条件	④ 条件⑤	フーチング	
- 杭中心位置の曲 ○ 照査しない	げ照査		◎ 照査する	
 ぜん断照査(版) ○ 柱前面から最 ○ 柱前面に生じ)のせん断スパ 3外縁の杭中心 る曲げモーメン	ン算出方法 位置までの。 小とせん断り	距離 うとの比	
せん断照査(版):	:Ss算出のスタ	ーラップ		
	鉄筋径	本数	降伏点(σsy)	
照査区間左	13 🔻	0	295.0	
照査区間右 🔤	13 🔻	0	295.0	
照査区間前 1	13 💌	0	295.0	
照査区間後 🛛	13 💌	0	295.0	
- 柱間照査				
⊙ 照査しない			○ 照査する	
 水平震度がkhpの ◎ 慣性力による ○ 慣性力による)場合(柱基部 全ての断面力 曲げはそのま:	断面力の算 。 を割り増す まとし、曲げの	出方法) D増分は鉛直力で分担させる	
水平震度がkhp非 (で 初降伏時の間 (で 全断面有効の)	€満の場合の構 性 ○同性	雛師部材の曲	17回州主	
水平方向押抜き	せん断照査		昭查対象結範囲	
□ 照査する ₹	育効幅が重なる う 番かりを無な	場合―― 目する	◎ 端部に最も近い杭のみ 透動方向 直角方向	
6	 重なりを考加 	たする をする	○ 底版端部からの距離指定 1.000 1.000	
4) (1)	部杭の有効 体 0.5Dとする	晶の広がり―	─考慮する底版下面鉄筋範囲	
0	「端部また」よ	1.0Dとする	フーチング下面から(m)以内	
			【 ✔ 確定 】 ★ 取消 2 ヘルフマヒ!)	

フーチング

今回入力に変更はありません。

杭中心位置の曲げ照査

この設定はフーチング張出部に配置された杭(中心)位置を対象としております。柱間照査を行った場合でも柱間にある杭は対象としません。 (Q5-6参照)

https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q5-6

1-15 レベル2地震動_はり張り出し荷重ケース

「レベル2地震動-はり張出し荷重ケース」をクリックします。

「計算条件」、「荷重条件」タブを順に開きます。

計算条件

曲げ照査・主鉄筋のモデル化

「単鉄筋」を選択

(引張側に配置される鉄筋のみを考慮したモデル化で計算を 行います。「複鉄筋」を選択した場合は、圧縮側及び引張側に 配置される鉄筋を考慮したモデル化で計算を行います

※補強断面では上記条件は参照せずに、全ての鉄筋を考慮し て計算を行います。

1	はり照査ケース(レベル2)		- 🗆 🗙
計算条件 可重条件 [理難方回] 直角方向 	◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆		
		🗸 確定 🛛 🗶 町	2肖 ? ヘルブ(円)

荷重条件

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

1-16 基準値

基準値												
コングリード(補助用))コンクリード(場所打ち杭用) 鉄筋 鉄筋径と公将断面積												
一冊 材質追加 材質削除												
設計基準強度(σck) (N/mm ²)	21	24	27	30								
許容曲げ圧縮応力度 (σca)	7.0	8.0	9.0	10.0								
許容軸圧縮応力度 (σca)	5.5	6.5	7.5	8.5								
コンクリートのみでせん断力を負担 する場合の許容せん断応力度(てal)	0.22	0.23	0.24	0.25								
斜引張鉄筋と共同で負担する場合の 許容せん断応力度(てa2)	1.60	1.70	1.80	1.90								
押抜き許容せん断応力度(てa3)	0.850	0.900	0.950	1.000								
コンクリートが負担できる平均せん断応力度(てこ)	0.33	0.35	0.36	0.37								
コンクリートの許容付着応力度(異形)	1.40	1.60	1.70	1.80								
コンクリートの許容付着応力度(丸鋼)	0.70	0.80	0.85	0.90								
コンクリートのヤング係数(Ec)×104	2.35	2.50	2.65	2.80								
					規定値に戻す	✓ 確定	🗙 取消	7 NF2 (B)				

基準値											
コングリート(構即用) コングリート(場所打ち杭用) 鉄筋 鉄筋径と公称断面種											
村質道加 村質削除											
設計基準強度(σck) (N/mm ²)	21	24	27	30							
許容曲げ圧縮応力度 (♂ca)	7.0	8.0	9.0	10.0							
コンクリートのみでせん断力を負担 する場合の許容せん断応力度(てal)	0.22	0.23	0.24	0.25							
斜引張鉄筋と共同で負担する場合の 許容せん断応力度(てa2)	1.60	1.70	1.80	1.90							
コンクリートが負担できる平均せん新応力度(て。)	0.33	0.35	0.36	0.37							
コンクリートのヤング係数 (Ec)×104	2.35	2.50	2.65	2.80							
1											
					規定値に戻す	✓ 確定	🗙 取消	? NJ710			

「基準値」をクリックします。

「コンクリート (橋脚用)」、「コンクリート (場所打ち杭用)」、 「鉄筋」、「鉄筋径と公称断面積」タブを順に開きます。

コンクリート (橋脚用)

コンクリート材質の基準値は、はり、柱、フーチングを対象にしています。

今回入力に変更はありません。

コンクリート (場所打ち杭用)

コンクリート (場所打ち杭用) 画面で設定するコンクリート材 質の基準値は、場所打ち杭のみを対象にしています。

今回入力に変更はありません。

	基準値											
コンク	コンクリード(横脚用) コンクリード(場所打ち杭用) 鉄筋 鉄筋径と公将断面機											
	日本 材質 追加 材質 削除											
SD295A SD295B SD345 SR285 SD390 SD490												
	活荷重及び衝撃以外の3 作用する場合(はり部材)	主荷重が	100.0	100.0	100.0	80.0	100.0	100.0				
	荷重の組合せに衝突	一般の部材	180.0	180.0	180.0	140.0	180.0	180.0				
륐 張	荷重又は地震の影響を 含まない場合の基本値	水中又は地下水位 以下に動力る部材	160.0	160.0	160.0	140.0	160.0	160.0				
応力	荷重の組合せに衝突 荷重又は地震の影響を 含む場合の基本値	軸方向鉄筋	180.0	180.0	200.0	140.0	230.0	290.0				
度		上記以外	180.0	180.0	200.0	140.0	200.0	200.0				
	鉄筋の重ね維手長又は定着長を算出 する場合の基本値		180.0	180.0	200.0	140.0	230.0	290.0				
圧縮	応力度		180.0	180.0	200.0	140.0	230.0	230.0				
隨伏	点(軸方向鉄筋)		295.0	295.0	345.0	235.0	390.0	490.0				
隐伏	点(上記以外)		295.0	295.0	345.0	235.0	345.0	345.0				
鉄筋	種別(0:異形鋼棒、1:丸鋼)		0	0	0	1	0	0				

					基準値				×
Ц	ンクリート(橋脚用	1) コンクリート	(場所打ち杭用) 鉄筋	鉄	筋径と公称断面積	ă			
	鉄筋径D(mm)	断面積(mm ²)		Π	鉄筋径¢(mm)	断面積(mm2)			
1	6	31.67		1	9	63.62			
2	10	71.33		2	10	78.54			
3	13	126.70		3	11	95.03			
4	16	198.60		4	12	113.10			
5	19	286.50		5	13	132.70			
6	22	387.10		6	14	153.90			
7	25	506.70		7	16	201.10			
8	29	642.40		8	18	254.50			
9	32	794.20		9	19	283.50			
10	35	956.60		10	20	314.20			
11	38	1140.00			22	380.10			
12	41	1340.00		12	24	452.40			
13	51	2027.00		13	25	490.90			
				14	27	572.60			
				15	28	615.80			
				16	30	706.90			
				17	32	804.20			
				18	34	907.90			
<u> </u>							1 4	1 and Warthle	
						規定値に戻す	₩定	▲ 取消	<u>7</u> ∿⊮71⊞
-				_					

鉄筋

鉄筋材質の基準値は、はり、柱、フーチング、場所打ち杭鉄筋、 杭頭補強鉄筋を対象にしています。

今回入力に変更はありません。

鉄筋径と公称断面積

本プログラム内で使用する鉄筋径と断面積を表示(画面左が 異形棒鋼、画面右が丸鋼鉄筋) しています。

入力を確認します。

全て入力後、確定ボタンを押します。

結果確認 2

「計算」をクリックします。 「一括計算」をクリックし、計算を行います。

2-1 許容応力度法照查 橋脚

「許容応力度法照査ー橋脚」をクリックします。

「照査結果」、「曲げ照査」、「せん断照査」タブを開き、結果 を確認します。

						結果	確認((許容応	₅-橋脚)	- 5
査結果 🗋 曲	げ照査 せん	断照3	5		1	部材長	が0.10n	n以下の	存在しています。はり(18-25-)	
【場所別集調	计結果】									
	曲If照査	せん	新照	渣						
はり	OK		Ж							
柱	OK		Ж							
フーチング	OK		Ж							
「荷重ケーフ	80									
++		温	7K	20	曲げ	照査	せん	听照査		
何里	ケース	籄	位	犹	判定	場所	判定	場所		
	死	-	低	-	OK	-	OK	-		
橋軸方向	死+地震(軸) -	低	無	OK	-	OK	-		
	死+地震(軸) –	高	無	OK	-	OK	-		
	死	無	低	-	OK	-	OK	-		
	死+活1	Ŀ	低	-	OK	-	OK	-		
	死+活2	Ŀ	低	-	OK	-	OK	-		
	死+活1	T	低	-	OK	-	OK	-		
	死+活2	下	低	-	OK	-	OK	-		
		1	(0C	-	OK	-	OK	-		
直角方向	死+活衝1	노	ISC.		011					
直角方向	死+活衝1 死+活衝2	L L	低低	-	OK	-	OK	-		
直角方向	死+活衝1 死+活衝2 死+活衝1	上 下	低低低	-	OK OK	-	OK OK	-		

照査結果

許容応力度法の結果を簡略に表示します。

曲げ照査

断面

ドロップダウンリストより確認したい断面を選択できます。

骨組結果

断面力算出に使用した骨組解析に関する情報を表示します。 (Q3-4参照) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q3-4

判定の厳しい順、荷重ケース順 結果リストを表示します。

詳細、鉄筋配置

応力計算で考慮した鉄筋の断面積などを、位置ごとに表示します。

照査結果、断面力、材料

左下の「結果リスト」で選択されている照査に使用された断面 図を表示します。

せん断照査

曲げ照査と同様に、入力の確認を行います。

全て確認後、閉じるボタンを押します。

2-2 許容応力度法照查 基礎

腰	I¥\$B				
安定計	算】				
DaseNo	δx (δa) (mm)	PNmax (Ra) (kN)	PNmin (Pa) (kN)	判定	
1	0.00≦15.00	1021.7≦1886.6	1021.7≧-340.1	OK	
2	6.20≦15.00	2162.7≦2829.9	-119.3≧-680.3	OK	
3	6.20≦15.00	2060.6≦2829.9	-221.3≧-680.3	OK	

単用力P CaseNo	າ] [ລັ× (ລີລ.) (mm)]	PNmax (Ra) (kN)	PNmin (Pa) (kN)	制定	
1	0.00≤15.00	1021 7≤1886.6	1021 7≥-340 1	OK	
2	0.00≤15.00	1243.3≤1886.6	1243.3≥-340.1	OK	
3	0.00≤15.00	1182.7≤1886.6	11827≥-3401	OK	
4	0.00≦15.00	1243.3≦1886.6	1243.3≧-340.1	OK	
5	0.00≦15.00	1182.7≦1886.6	1182.7≧-340.1	OK	
10	3.98≦15.00	1764.9≦2829.9	278.6≧-680.3	OK	
11	3.98≦15.00	1662.8≦2829.9	176.5≧-680.3	OK	
杭体応 橋軸方 第1断面	力度】 可】 》				
CaseNo	σc, σca (N/mm	2) σt, σta (N/mm ²) τ,τa (N/mm²)	判定	
1	45.80≦140.0	0	- 0.000≦80.00) OK	
2	149.01≦210.0	0 57.41≦210.0	0 10.922≦120.00	OK OK	
3	144.43≦210.0	0 61.98≦210.0	0 10.922≦120.00) OK	

「許容応力度法照査-基礎」をクリックします。

「概要」、「詳細」タブを開き、結果を確認します。

概要

安定計算

各項目ごとに全杭の中で一番厳しい結果を判定表示(OK、 NG) します。 杭体応力度

各荷重ケース内の曲げ応力度とせん断応力度に着目し、各項目 ごとに全杭の中で一番厳しい結果を表示 (OK、NG) します。

and an and a second s			安定計算 材体应力度			
• 曲げモーメント図	 麦位図 		福軸方向 直角方向			
○ せん断図	⊂ Kv, K1-K4, Kh		荷垂在7	-		
戦禄・ピンシ			■ 1死 温無 水低	- 0	00	000
-20 -10	0 10	20	2死+地震(軸))水低	- 1ōŏ	ŏč	ŏŏ
			■ 3死+地震(軸) 水高	-1ōō	ŌŌ	οōōl
4 000m		-				
				【杭条	件】	
7.000		4		杭径	(mm	800.0
7.000m				杭長	(m)	16.400
9500m	_	-		杭種		鋼管杭
3.000				便用机	t	支持杭
				【作用	荷重】	
		_		荷重		常日
14.000m				V	(MN)	18391.22
10.100		1		H	(IdN)	0.00
10.400m				M	(kinim)	0.00

詳細

それぞれの項目を切り替えて結果を確認します。

全て確認後、閉じるボタンを押します。

2-3 許容応力度法照査_はり張出し部材

 情報
 ×

 はり張出し用荷重ケースが定義されていません。
 す

 入力画面「許容応力度法」はり張出し荷重ケース」で荷重ケースを定義してください
 ※

 OK
 万

「許容応力度法照査ーはり張出し部材」をクリックします。

はり張出し部材 はりの張り出し部分に着目した照査結果を表示します。

「はり張出し部材」を開くと、左図のような情報が表示されま す。

※今回は、入力画面の「許容応力度法-はり張出し荷重ケース」で荷重ケースを定義していないため、このような情報が表示されます。

2-4 レベル2地震動照査_橋脚

「レベル2地震動照査-橋脚」をクリックします。

「橋軸方向」、「直角方向」タブを開き、結果を確認します。

橋軸方向_概要

慣性力作用方向別に、結果を一覧表示します。

NAME OF TAXABLE PARTY.	新	課	確認(レ	ベル25	也震動	照査-橋	掤)			-	×
周軸方向 直角方向 概要 詳細											
方向 前→後 💌 ⊙ タイプI C ら	イプロ	表示	項目相	1(前か)	5後)		• 1	離期重量算	[出用骨約	11解析結果	
内容 備考 損傷位果 基部	【損	傷位	置:基音	狷傷】							
磁壊形態 曲げ破壊型 地震時保有水平耐力 OK		慣		り位置a あさ (m	tでの)				水平耐力 (kN)		
残留変位 OK 初隆伏変位 ∂y0=31.4mm 水平力 - 水平変位 ∂12=149.1 計容塑性率 μa2=3.213 設計水平震度 khc=0.62	B	面	断面 位置 Yi	慣性 力位 著p	高さ h Yp- Yi	Mc (kN.m)	My0 (kN.m)	Mts2 (kN.m)	Po	Ру0 2586.8	Pu
等価重量 W=4791.4kN M- ゆー覧 55着日点	W=4791.4kN 55着目点 3逝而面	下端	0.000	9.300	9.300	6342.3	24057.5	29609.0	682.0	2586.8	3183.8
		上端	1.333		7.967	6279.1	23945.8	29487.7	788.1	3005.6	3701.2
		下端	1.333		7.967	6279.1	23945.8	29487.7	788.1	3005.6	3701.2
	央	上端	2.666		6.634	6215.8	23833.8	29364.7	937.0	3592.7	4426.4
	F	下端	2.666		6.634	6215.8	23833.8	29364.7	937.0	3592.7	4426.4
	偑	上端	7.300		2.000	5995.9	23443.0	28933.5	2997.9	11721.5	14466.7
							HTML E	161 -	開じ	3(D)	? NU79E

橋軸方向_詳細

画面上端の「方向」、「タイプ」、「表示項目」を選択して、画面 に表示する解析結果を選択します。

U.				結果	確認(レ	ベル2地	震動	照査-橋脚)			- 0	×	
橋軸方向 (1	直角方向	1											
板要 詳細	an Ì												
	~ 												
][0]	•											
【設計条(4]											^	-111
慣性力 方向	地震動 タイブ	重要度	C _{2z} .khco	上部工1 Wu (ki	€量 躯(本重量 , (kN)							
左→右	I		1.4520	59	72.5	2160.0							ш
右→左	I	в	1.4520	59	72.5	3100.8							
【耐震性の	D照査】												
慣性力 方向	地震動 タイプ	照査結署	果 破壊形	地震 水平 日本	時保有 「耐力 (kN)	慣性 khc.W	力 (kN)	設計水平震度 khc	等価重量 ₩(kN)	許容塑性率 μa2			
左→右	I	[OK]	曲げ破壊	型	9021.8	36	325.4	0.48	7552.8	6.165			
右→左	I	OK]	曲げ破壊	<u>99</u>	9021.8	3	525.4	0.48	7552.8	<u>6.165</u>			
【残留変作	立の照査	1										_	
慣性力 方向	地震動 タイブ	照查結響	R R R R R R	立 許容3 い δ _R	美留变 位 。(mm)	応答望	塑性率						
左→右	I	[OK]	5	.0	118.	c	1.239	ī.					
右→左	I	[OK]	5	.0	118.	0	1.239						
【線形部	才端照查	1											
慣性力 方向	地震動 タイブ	照査結察	R 塑性ヒン 候補点	ジ位置	曲げモ M (k	ーメント N.m)	限界	状態曲げモーン Misz (kN.m)	ぐいト			•	1
								HTML	E[1,16] +	閉じる(0)	1	^⊮7"∐	D I

直角方向_概要

慣性力作用方向別に、結果を一覧表示します。

直角方向_詳細

詳細画面は、上側のモデル図表示部と、下側の結果表示部から 構成されています。モデル図の左側の「ステップ」で選択された 解析ステップは、結果表示部とも連動しています。

(照査結果_破壊形態の判定)

赤文字のせん断力が1つ以上あれば、せん断破壊型です。 赤文字がなく青文字のせん断力が1つ以上あれば、曲げ損傷からせん断破壊型です。

赤文字も青文字もない場合は、曲げ破壊型です。

(Q4-33参照)

https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm#q4-33

「レベル2地震動照査-基礎」をクリックします。

「概要」、「詳細」タブを開き、結果を確認します。

II				結果確認	(レベル25	也震動	照査-	杭基	礎)		- 🗆 🗙
极要	8¥88										
【橋軸方	向】										
				安?	包計算			フーチング照	ŧ.		
地震 動 タイプ	液状 化	水位	基礎降伏 杭体,支持 力	応答望性 率	基礎変位	せん 断	杭頭	総合 判定	曲げ照	せん断照査(はり)	せん断照査(版)
タイプI	無視	低水 位	ОК					ок	NG	ок	
【直角方	向]										
				安治	包計算					フーチング照	έ .
地震 動 タイブ	液状 化	水位	基礎降伏 杭体,支持 力	応答塑性 率	基礎変位	せん 断	杭頭	総合	曲げ照査	せん断照査(はり)	せん断照査(版)
タイプI	無視	低水位	降伏		ОК			ок	ок		
□ 判定の	DK時の許	容比率〈	计算值/制限值	シを表示する					HTML ERBI	• \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2 ? ^#7(H)

概要

基礎が降伏したか否かの大まかな判定結果を確認することが できます。

詳細

方向、地震動タイプ、条件を選択することで、各項目の詳細結 果を確認することができます。

全て確認後、閉じるボタンを押します。

2-6 レベル2地震動照査_はり張出し部材

「レベル2地震動照査-はり張出し部材」をクリックします。

はり張出し部材

はりの張り出し部分に着目した照査結果を表示します。

「はり張出し部材」を開くと、 左図のような情報が表示されます。

※今回は、入力画面の「レベル2地震動-はり張出し荷重ケース」で荷重ケースを定義していないため、このような情報が表示されます。

2-7 震度算出(支承設計)連動_断面2次モーメント

「震度算出 (支承設計) 連動-断面2次モーメント」をクリック します。

断面2次モーメント

震度算出(支承設計)連動における橋脚の断面2次モーメントの結果を表示します。

全て確認後、閉じるボタンを押します。

2-8 震度算出(支承設計)連動_基礎バネ

「周有周期賞字	1	
	- 橋軸方向	直角方向
Ass (kN/m)	3.016338E+006	3.016338E+006
Åsr (kN/rad)	-3.053780E+006	-3.053780E+006
Ars (kN.m/m)	-3.053780E+006	-3.053780E+006
årr (kN.m/rad)	3.106123E+007	6.962776E+007
Åsv (kN/m)	0	0
Årv (kN.m∕m)	0	0
Åvs (kN/m)	0	0
Åvr (kN/rad)	0	0
Avv (kN/m)	4.931256E+006	4.931256E+006
"你!!!!		
np or T	橋舳方向	直角方向
Åss (kN/m)	6.781829E+005	6.781829E+005
Ast (kN/rad)	-1.196036E+006	-1.196036E+006
Års (kN.m/m)	-1.196036E+006	-1.196036E+006
Årr (kN.m/rad)	2.888197E+007	6.744850E+007
Åsv (kN/m)	0	0
Årv (kN.m/m)	0	0
Åvs (kN/m)	0	0
Âvr (kN/rad)	0	0
	102125654006	4 931256E+006

「震度算出(支承設計)連動-基礎バネ」をクリックします。

基礎バネ

震度算出 (支承設計) 連動における ①固有周期算定用の基礎バネ ②常時の基礎バネ の結果を参照できます。

確認後、閉じるボタンを押します。

3 計算書作成3-1 計算書作成(詳細)

「ファイル」メニューから「計算書作成(詳細)」 をクリックしま す。

出力項目の設定/選択	×
 出力項目の選択 マ 設計条件 マ 許容応力度法計算条件 マ 骨細解析 マ 回去一覧 マ 抽出結果 マ 結果詳細 マ 化の設計(許容応力度法) マ 照査一覧 マ 抽出結果 マ 結果詳細 マ 一手ングの設計(許容応力度法) マ 照査一覧 マ 抽出結果 マ 結果詳細 マ 二手ングの設計(許容応力度法) マ 照査一覧 マ 抽出結果 マ 結果詳細 マ 13/3県出し部の許容応力度法照査 「はり部材のレベル2照査 マ 骨細解析 マ 中細胞の(染育耐力法照査(面内方向) マ 木基礎のレベル2地震時照査 マ 時用力計算(骨細解析) マ 株基礎のレベル2地震時照査 マ 設計用水平震度 区 柱基部断面力 区 柱間モデル マ 震度算出(支承設計): 基礎バネ 全選択・解除 (ユノビュー) 	設計条件(一般事項) □ データ名 □ タイトル □ コント □ その他 - 号組入力モデル図(共通) □ 格点番号描画 □ 部材番号描画 □ 部材番号描画 □ 前面力結果(共通) □ 中間着目点の削除

出力項目の設定/選択

出力項目を選択し、「プレビュー」をクリックします。

計算書作成

計算過程等の詳細な結果詳細計算書を出力します。 出力項目は、選択をチェックすることで、表示したい結果のみ 確認できます。

- 🗆 🗙 F8出力編集ツール(F8-PPF互換) 印刷プレビュー ○ ● ^ ブルビュ 1 1.2 橋脚形状 1.2.1 外形寸法 * 8.400 00 ● はう発生 ● はう発生 ● にはうな ● 日本 ● 日本</li ¥ 1.200 0.800 1.500 1. 200 1°e B 7.300 . 300 2.200 3. 2. 050 2.050 12.500 < 12/814 ► ► 210 x 297mm ▲ +

プレビュー画面が表示されます。

見出しの編集

画面左端の各ボタンを押下することで、見出しの編集を行うことが可能です。

ツリー左にある編集ボタンをクリックした後、章番号に対する 下記の編集が可能となります。

■出力項目を選択

プレビューに出力する:ツリーの「全選択ボタン」、

- プレビューに出力しない:ツリーの「全解除ボタン」をクリック ■章番号を全て振り直す
- ツリーの「章番号の振り直しボタン」をクリック
- ■章番号を入れ替える
- 見出しを入れ替えたい場所へドラッグして移動させる ■章番号と見出しの文字列を編集する
- 見出しをダブルクリック ■全章の章番号表示/非表示を切り替える
- ッリーの「全章の章番号表示/非表示切り替えボタン」をク リック
- ■章の追加/削除をする

対象となる見出し番号を右クリック

スタイル設定

画面上部のスタイル設定を押下することで、
 ■表示
 ■目次の追加
 ■ページ情報の設定
 ■文書全体の体裁を設定
 などを行うことが可能です。

ソースの編集

画面上部のソースを押下することで、ソースの編集が可能で す。

保存

下記の形式で保存が可能です。

●テキスト形式(TXT)
●HTML形式(HTM、HTML)
●PPF形式(PPF)
■WORD形式(DOC)
●PDF形式(PDF)
■一太郎形式(JTD、JTDC)

ファイル(F) 表示(V) 電子納品(C) ヘルプ 開33(2) 番 日 語 州 ▲ ▶ ▶ 日 雪 単語(A) 本 しは 基本条件 「した	F8出力編集ツール(F8-PPF互換)印刷九ピュー - □ H) II □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
日-1.2 機制時状 - 1.2.1 分形対点 - 1.2.2 分形対点 - 1.2.2 対形対理 - 1.2.3 規制鉄道 日-1.3.1 はツ - にツ発出した	印刷	「見てていて」。
	- プルクキー プルクキー (K): [OneNota 2010 152:5) プロパディ(P)… 対応: 事業官丁 種類: Send To Microsoft OneNote 2010 Driver 欄所: mul: コンパ:	
 ● 1:3.8 マーチング ● フーチング ● コーチング ● コーチング ● コーチング ● コーチング ● コーチング ● コーチング ● コーチング ● コーチング	(2) (2) (2) (2) (2) (2) (2) (2)	
- 1.4.1 上部工1 - 24.1 荷里弘神 - 2.1 荷里弘神 - 2.1 荷里弘神 - 2.3 短期時報会件 - 2.3 短期時報会件 - 2.3 短期時報会件 - 2.5 短期代報 - 2.6 三十 - 2.5 三十 - 3.5 三十 - 2.6 三十 - 2.5 三十	OK _ #17202.6	Ť

現在表示している文書の印刷が可能です。

3-2 計算書作成(一覧)

2	F88	出力編集ツール(F8-F	PFE	換) EP	刷プレビュ	-			-	□ ×		
ファイル(E) 表示(Y) 電子結品(G) ヘルプ(H) 開じる(2) ● 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500	100 -	_	5	:	8 Q.	8	E					
	リソース												
												Ē	
○ 4章 柱2の設計(許容応力度 ○ 4章 柱2の設計(許容応力度 ○ 4.1 曲げ照査 ○ 4.4 世紀照本	1.2 せん断照査 左導出課金												
	左張出隅角												
- 4.1 曲げ照査 - 4.2 せん断照査 - 4.2 せん断照査	方香	荷重ケース	遺慶	木位	뤳	(N/mm²)	(N/nn)	; a2 (N/mm²)	Aw (mm ⁴)	AwReq (mm ⁴)	判定		
	<u>학</u>	死+地震 (軸) 死+地震 (軸)	=	低高	前前	0.097	0.153 0.153	2. 400 2. 400	1548.4 1548.4	0.0 0.0	OK OK		
- 6.1 地震動タイプI □ 7章 杭基曜の設計	1. 经税纳多イプ1 体理の設計 第二式1000年期8												
	方響	荷重ゲース	濃度	水位	潮道	(N/mm ²)	(N/mm)	;; a2 (N/mm²)	Â* (mm*)	AwReq (mm)	判定		
	約 約	光+地震(軸) 光+地震(軸)	Ξ	憲術	前前	0.102 0.102	0. 153 0. 153	2.400 2.400	1548.4 1548.4	0.0 0.0	OK OK		
	梁第1支	間右隅角部									_		
	方響	荷重ケース	暹皮	木位	引張	(N/mm ⁴)	(N/nm)	∵a2 (N/mm²)	A# (mm*)	AwReq (mm)	判定		
	約 約	2 光+地震 (軸) 光+地震 (軸)	Ξ	低高	前前	0.102 0.102	0. 153 0. 153	2.400 2.400	1548.4 1548.4	0.0	OK OK		
	右張出國	青角											
	方書	荷重ケース	暹史	木位	引張	(N/mat)	(N/mm ²)	r e2 (N/mm²)	A# (mm*)	AwReq (mm ²)	判定		
	현 현	花+地震 (軸) 花+地震 (軸)	Ξ	低高	前前	0.097 0.097	0. 178 0. 178	2. 400 2. 400	1548.4 1548.4	0.0 0.0	OK OK		
	梁第1支	間左ハンチ									_		
x > M 4 5.	22	₩ 210 x 297mm 4	8	*	<u>3</u> 1	τm	ca	ca2	Å۳	AwRea	¥I -	÷	

「ファイル」メニューから「計算書作成(一覧)」をクリックしま す。

計算過程等の詳細な結果詳細計算を出力します。

計算書作成(詳細)と同様に以下の操作が可能です。

- ■見出しの編集
- ■スタイル設定
- ■ソースの編集
- ■保存 ■印刷

4 図面作成

4-1 基本情報

	基本情報	×
 作図対象 ● 新設(既設) ○ 補助 	金 柱本数 2	
Hはり/推形状 正面 反右張出 ・		杜形状 (断面) 矩形面取り ▼
★社補強 ○ あり ○ なし ● なし ● RC巻立て	 つーチング補強 ○ あり ○ なし ○ 鋼板巻立て 	支承アンカーボルト穴
作図有無 一般図 ・ する	より配筋図 ● する	
柱配筋図 でする へしない	フーチング配筋図 ① する	
柱補強配筋図 でする ©しない	フーチング補強配筋図 C する © しない	
	【【】 確定】	🗙 取消 🛛 🥐 ᠭ/プ(Ⴞ)

- 「図面」 メニューから 「図面作成」 をクリックします。

※「図面作成」メイン画面が、「基本情報」「かぶり」「鉄筋 (簡易)」入力済の状態(「緑」表示)で表示されます。 各入力データを確認することなく図面生成を行う場合には、 「4-6-1 図面生成」の操作へ移行してください。

基本情報

作図する橋脚の形状や図面などの指定を行います。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-2 形状_柱

「形状」-「柱」をクリックします。

形状

作図する橋脚の形状データの入力を行います。

柱

「柱」の形状寸法(単位:m)を入力します。柱の形状に応じた 入力画面が表示されます。

断面

柱の断面寸法の入力を行います。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-3 形状_はり

「形状」ー「はり」をクリックします。

はり

「はり」の形状寸法(単位:m)を入力します。はりの形状に応じた入力画面が表示されます。

「平面・縦断面」、「正面(端部)」、「正面(支間部)」タブを 順に開きます。

平面・正面(端部)・正面(支間部)

はりの平面寸法と正面寸法の入力を行います。

平面・縦断面 今回入力に変更はありません。

正面 (端部)

今回入力に変更はありません。

正面 (支間部)

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-4 形状_フーチング

× フーチング 入力値 B1 2 B2 1.0500 L1 L2 1.0500 B1 3.7500 0.0000 B2 H1 2.2000 0.0000 H2 H2 > 単位(m) H1 【 ✔ 確定 】 ★ 取消 ? ヘルプ(円)

「形状」ー「フーチング」をクリックします。

フーチング

「フーチング」の形状寸法(単位:m)を入力します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-5 形状_支承アンカーボルト穴

「形状」ー「アンカーボルト穴」をクリックします。

			支承アンカ	カーボルト	穴					×
		径	L1	L2	θ	長さ	L1	の中点	L2の中点	
	タイプ1	0.0650	1.2000	1.0000	0.000	0.50	100	なし	あり	
$+$ $e \in \theta$	タイブ2	0.0200	0.0000	0.0000	0.000	0.50	00	なし	なし	
L2	タイプ3	0.0200	0.0000	0.0000	0.000	0.50	00	なし	なし	
L1	タイブ4	0.0200	0.0000	0.0000	0.000	0.50	100	なし	なし	
							1000	V 10148	5/-1	Tr
							人理慎	1 建精業	タイフ カイゴエ	۱°
						2	-2 7500	0.0000	カイディ	- 11
						3	-1.2500	0.0000	カイゴエ	
T T					Ť		1 2500	0.0000	タイプリ	
						5	3,7500	0.0000	4171	
						6	6,2500	0.0000	タイプ1	
						394.04	()			
						卑凹	002			
							確定	🗙 取消	i 🥐 🗤)*(E)
										_

支承アンカーボルト穴

はり上面または柱上面の支承穴カーボルト穴に関する情報を 入力します。

支承の配置情報

はり上面または柱上面の支承の配置情報を入力します。「最大 30」まで配置できますので支承ごとに必要数分設定してくだ さい。

①X座標・・・支承中心のX方向(橋軸直角方向)設置位置(単 位:m)

②Y座標・・・支承中心のY方向(橋軸方向)設置位置(単位: m)

③タイプ・・・支承のタイプ

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

「形状」ー「杭配置」をクリックします。

4-6 形状 杭配置

× 杭配置 新設(既設) ₩ 🗱 🖂 💠 単位(m) 杭条件 杭行数 0.8000 杭径 3 杭長 16.4000 杭列数 埋め込み長 0.1000 鋼管杭 杭種 行列毎の座標 X座標 Y座標 1.0000 1.0000 3.1000 3.7500 2 2 5,2000 6.5000 4 7.3000 9.4000 自動配置 6 11.5000 左側縁端 1,0000 自動配置 右側縁端 1.0000 上側縁端 1.0000 1.0000 Xサイス゚:12.5000 m Y#72°:7.5000 m

✓確定 X 取消 ? ¼フ°(H)

杭配置

フーチング下面の杭の配置情報を入力します。なお、フーチン グ補強の場合は、「新設(既設)」・「増し杭」それぞれで指定 してください。(入力の方法は同じです)。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-7 形状_はりの縦断面図位置

「形状」ー「はりの縦断面図位置」をクリックします。

はりの縦断面図位置

はりの縦断面図作図位置(単位:m)を入力します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-8 形状_柱の縦断面図位置

「形状」ー「柱の断面図位置」をクリックします。

4-9 形状_基礎材

柱の断面図位置

柱の断面図位置に関する情報を入力します。

今回入力に変更はありません。 ※入力値が「0」の部分の断面の作図は行いません。

全て入力後、確定ボタンを押します。

「形状」ー「基礎材」をクリックします。

基礎材

基礎材の設置寸法(単位:m)を入力します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-10 かぶり_はりかぶり

× はりかぶり 入力値 Щ^{*}С2 C1 110.0 C2 150.0 C3 110.0 C4 100.0 C5 110.0 C6 110.0 ≯ |< C1 C7 250.0 C8 200.0 **°**C3 C5₄ C7₄ C9 350.0 C10 C10 300.0 C4 ÷ C11 210.0 50.0 CA PA 51.0 C6 C11 単位(mm) 自動よけ 기 K 기 K (最小ピッチ) PA CA 【 ✔ 確定】 ★ 取消 ? ヘルプ(円)

「かぶり」ー「はりかぶり」をクリックします。

かぶり

作図する橋脚のかぶりデータの入力を行います。

はりかぶり

はり鉄筋のかぶり(単位:mm)を指定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-11 かぶり_柱かぶり

「かぶり」ー「柱かぶり」をクリックします。

柱かぶり

柱鉄筋のかぶり(単位:mm)を指定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-12 かぶり_フーチングかぶり

× フーチングかぶり 外側の上面主鉄筋 C1, C4, ○ 橋軸方向主鉄筋 ☞ 橋軸直角方向主鉄筋 C2→ C5→ 外側の下面主鉄筋 ○ 橋軸方向主鉄筋 ☞ 橋軸直角方向主鉄筋 C31 C61 ※C1~C6全て外側の主鉄筋かぶり 入力値 C1 100.0 C2 110.0 C3 150.0 200.0 C4 C5 210.0 C6 250.0 単位(mm) ▲ 確定 🗶 取消 🦿 パルフ*(円)

「かぶり」ー「フーチングかぶり」をクリックします。

フーチングかぶり

フーチング鉄筋のかぶりを指定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-13 鉄筋(簡易)_はり主鉄筋・側面筋

「鉄筋(簡易)」-「はり主鉄筋・側面筋」をクリックします。

<mark>鉄筋(簡易)</mark> 橋脚の簡易鉄筋情報の入力を行います。

はり主鉄筋・側面筋										
主鉄筋							34107-114			
	鉄筋径	鉄筋形状	_	上面1段 上面2段 隅角半径						
L mm 1 fg 23 ▼ 4t2 F 1 18 ▼ T mm 1 fg 28 ▼ 10.5 Φ										
1001+2 13 ▲										
2 26配動情報(視出訳, 各支間部の鉄筋径, 配置給数(1.548、249)) 上面124 差準ビッチ ▼ 数小ビッチ 100.0										
2段配筋	左端径	左段数	中央径	中段数	右瑞径	右段数	上面3段 基準ビッチ ▼ 端数調整 両端 ▼			
瑞 部上面	29	1.5			29	1.5	下面 基準ビッチ ▼ 単位 (xp)			
1支間上面	29	1.5	29	1.5	29	1.5	下面ハンチ 基準ビッチ ・			
2支間上面										
3支間上面										
1支間下面	29	1.5	29	1.5	29	1.5				
2支間下面										
3支間下回										
(創成)第										
鉄筋径	19	•	鉄箱	高種調	配筋	タイプ	記笏情報			
鉄筋種類	鉄筋種類 端止 ▼						基準ピッチ 150.0 単位 (nm)			
鉄筋形状	鉄筋形状 タイプ1 ▼						最小ビッチ 100.0			
配筋タイプ	上端平	<u>•</u> ت				_				
(#約1+24) 配筋情報										
87.4071.425										
🖌 🕸 🗧 🗶 105 M 💡 14.7 (H)										

はり主鉄筋・側面筋

はりの主鉄筋および側面筋の簡易鉄筋情報を設定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-14 鉄筋(簡易)_はりスターラップ

「鉄筋(簡易)」-「はりスターラップ」をクリックします。

はりスターラップ・他									
_「 スターラップ									
鉄筋径 鉄筋形状 上面鉄筋 下面鉄筋 内周鉄筋 たな筋									
上面鉄筋 22 ▼ 維ぎ手なし ▼									
下面鉄筋 22 ▼ 半円 (維ぎ手) ▼									
内周鉄筋 22 💌 下側鉄筋なし 💌									
たな筋 22 ▼ 半円(維ぎ手)▼ に									
3段たな筋 なし ▼ 形状は上と同じ									
D 99 97 67 68 1 1 2 2500 0 B (c) (m)									
たな筋の配置方法 上面鉄筋と同ビッチ 💌									
A鉄筋の扱い 柱内は別鉄筋 ・ A鉄筋の扱い L1									
内周スターラップ組数 1 日秋肋									
版小C 9 7 10000 及映CA12 9 0									
<u> 大力 いた </u>									
- 光頭文字 B									
バターン 側面筋→スターラップ ▼									
古丞浦降筋 粉合 化									
<u></u>									
【 ✔ 確定】									

4-15 鉄筋(簡易)_柱鉄筋

「鉄筋(簡易)」-「柱鉄筋」をクリックします。

柱鉄筋

はりスターラップ

筋情報を設定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

柱に配筋する鉄筋の簡易鉄筋情報を設定します。

「主鉄筋」、「帯鉄筋他」タブを順に開き入力を行います。

はりのスターラップ・鉄筋記号・その他の鉄筋に関する簡易鉄

	柱鉄筋 ×													
主約	主鉄筋 帯鉄筋色													
	代約(左編~) (〒№).1 ○№.2 全ての柱主鉄範配筋傾輪の生成													
E S														
			針辥	径	最大県	継ぎ	ŧ .	ずらし景	1 - 7	端R作図				
	1.69	(創背)	32	-	9000.0	圧接		1000.0	t ,	€しない	04	5		
	1.69	(左右)	32	1	9000.0	厅接	-	1000.0	τι.			·		
	1 #2	(1-1-)	32	-	8000.0	ラップ	•	1000.0	1	対象最小得	29	Ψ.		
	218	(前背)	32	-	9000.0	圧接	-	1000.0						
	2段	〈左右〉	なし	-	8000.0	ラップ	Ψ.	1000.0	1	「読高				
	2段	(コーナー)	32	-	8000.0	ラッブ	-	1000.0	ī I I	63	統節	s I		
	3段	〈前背〉	なし	-	8000.0	ラッブ	Ψ.	1000.0		1.82		0.0		
	3段	〈左右〉	なし	Ψ	8000.0	ラッブ	Y	1000.0		2段	1	3.0		
	3段	〈コーケー〉	なし	-	8000.0	ラッブ	Ŧ	1000.0		3段).0	-	
1	-04 8778	53674880	,											-
	ISA JUJE		·											
			基準ビッチ		最小ビッチ		センタ	ター (戦	調整	配筋バタ 1段	-2	記 部 パターン 2 段	記筋バターン 3段	
	前・	背	125.0		100.0		ねし	ъп,	浦	基準ビ、	ソチ	基準ビッチ	基準ビッチ	
	左・	右	125.0		100.0		なし	. ji	両端 基準ビッ		ッチ	基準ビッチ	基準ビッチ	
	3-1	+-	125	.0	100	.0	-		-	※準ビ、	ッチ	基準ビッチ	基準ビッチ	
				11	柱基部									
	主鉄節配筋情報生成 配筋情報 1 段 配筋情報 2 段 配筋情報 3 段													
1]													
													確定 🗙 取済	ă ? №7*(E)

主鉄筋

柱の主鉄筋に関する情報を指定します。

今回入力に変更はありません。

帯鉄筋他

柱の帯鉄筋に関する情報を指定します。

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-16 鉄筋(簡易)_フーチング鉄筋

2 - チング鉄筋
 23 - ラッブ後
 23 - ラッブ後
 25 新語
 23 - ラッブ後
 25 新語
 23 - ジー
 25 - ジ

「鉄筋(簡易)」-「フーチング鉄筋」をクリックします。

「主鉄筋」、「スターラップ他」 タブを順に開き入力を行いま す。

主鉄筋

フーチングの橋軸方向主鉄筋・橋軸直角方向主鉄筋に関する 情報を指定します。

今回入力に変更はありません。

フーチング鉄筋	×
主鉄筋 スターラップ他	
スターラップ ● 「スターラップ ● 「シックガ K タイプ * ● 「シックガ K タイプ * ● 「夏万方法 〒島2 * ● 「夏万方法 〒島2 * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● 「日本 1 (2000.0 ラップ * & ひょ) * ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
<u></u>	《 取消 ? 147*(出)

スターラップ他 フーチングのスターラップに関する情報を指定します。 今回入力に変更はありません。 全て入力後、確定ボタンを押します。

4-17 鉄筋(簡易) 曲げ長・継ぎ手長

× 曲げ長・継ぎ手長 はり 柱 |フーチング| 主鉄筋 曲げ長 継ぎ手長 ○ 作図条件(主) ● 15 φ(SD345) ○ 作図条件 側面筋 曲げ長 「直角フック―― 継ぎ手長 ─鋭角フック─── ||半円フックー ○ 作図条件 ○ 作図条件(主) ○ 作図条件(主) ○ 作図条件(主) ☞ 規定値 ☞ 規定値 ☞ 規定値 € 40 d ※規定値とは以下のようになります。 フックが直角の時:15¢(SD345) フックが鋭角の時:15¢(SD345) フックが半円の時:8¢(120mm以下の場合は120mm) 外周スターラップ・内周スターラップ・たな筋 ー曲げ長 「直角フック――」「鋭角フック―― 継ぎ手長 □□半円フックー ○ 作図条件 ○ 作図条件(主) ○ 作図条件(主) ○ 作図条件(主) ⊙ 規定値 ⊙ 規定値 規定値 ※規定値とは以下のようになります。 フックが進角の時:15φ15φ(S0345) フックが進角の時:15φ15φ(S0345) フックが進角の時:2.5φ/tan(22,5)+10φ(円超形を除く曲げ長が10φ) ※フックが半円の場合の継ぎ手長は、 40 φ 固定とします。 フックが半円の時:8¢(120mm以下の場合は120mm) ✓確定 × 取消 ? ヘルプ(円)

「鉄筋(簡易)」-「曲げ長・継ぎ手長」をクリックします。

「はり」、「柱」、「フーチング」タブを順に開き入力を行いま す。

曲げ長・継ぎ手長

構造物の各部位における鉄筋の曲げ長・継ぎ手長を鉄筋情報 生成時にどのように設定するかを決定します。各鉄筋毎に目的 となる設定を行ってください。

はり

今回入力に変更はありません。

	曲げ長	・継ぎ手長	×
はり 柱 フーラ	Fング		1
王鉄助 一曲げ長 〇 作図条件(主)		継ぎ手長 〇 作図条件	
帯鉄筋 ─曲げ長 ─直角フック ○ 作図条件(主)	鋭角フック ○ 作図条件(主)	半円フック C 作図条件(主)	─継ぎ手長 ○ 作図条件
 規定値 	 規定値 	 規定値 	• 40 φ
フックが直角の時 フックが脱角の時 フックが半円の時	5:15φ(SD345) 特:円弧部を除く曲げ 特:8φ (120mm以下の	長が10 <i>φ</i> 場合は120mm)	
中間帯鉄肋 曲げ長			継ぎ手長
- 直角フック ○ 作図条件(主)	- 鋭角フック ○ 作図条件(主)	-半円フック ○ 作図条件(主)	○ 作図条件
 規定値 	☞ 規定値	☞ 規定値	
※規定値とは以下の、 フックが直角の時 フックが鋭角の時 フックが半円の時	ようになります。 : 15々(SD345) : 円弧部を除く曲げ長 : 8々(120mm以下の場	※フックが 40 ゆ固定 が10 ゆ 合けは120mm)	半円の場合の継ぎ手長は、 とします。
		▲ 確定	× 取消 / ? №7°(<u>H</u>)

柱

今回入力に変更はありません。

フーチング

今回入力に変更はありません。

全て入力後、確定ボタンを押します。

4-18 鉄筋(詳細)_鉄筋生成

「鉄筋(詳細)」-「鉄筋生成」をクリックします。 すると、ツリービューに鉄筋入力、鉄筋一覧の項目が表示され ます。(選択可能となります)

鉄筋(詳細)

詳細鉄筋情報の生成や各鉄筋ごとの確認・修正、入力されて いる鉄筋の一覧表示を行います。

4-19 鉄筋(詳細)_鉄筋入力

鉄筋生成

ツリービューの「形状」・「かぶり」・「鉄筋(簡易)」の各情報 から配筋図を生成するための詳細鉄筋情報の生成を行いま す。

→再び「鉄筋生成」をクリックすると、左の画面が表示されま すので、確定ボタンを押します。

「鉄筋(詳細)」-「鉄筋入力」をクリックします。

鉄筋入力

橋脚に配筋する各鉄筋ごとの詳細鉄筋情報の確認・修正を行います。

「鉄筋選択ウィンドウ」を開き、追加・編集したい鉄筋を選択 することで表示される「詳細鉄筋情報入力画面」で確認・修正 を行ってください。

鉄筋入力

詳細鉄筋情報の生成を行います。 →「はり」、「柱」、「フーチング」それぞれを選択し、各鉄筋ご との詳細鉄筋情報の確認・修正を行います。

鉄角	5選択画面 ×
鉄筋グループ名称一覧	鉄筋一覧
上面1段主鉄筋 上面2段主鉄筋 一面2段支鉄筋 下面主鉄筋 スターラップ 側面筋 支承補強筋	上面1段主统筋(全系)1 语加
	編集 削除 閉じる(<u>c</u>)

「鉄筋グループ名称一覧」より鉄筋を選択すると、「鉄筋一 覧」に鉄筋一覧が表示されます。 編集または、ダブルクリックをして詳細鉄筋情報の確認・修正 を行います。

確認・修正後、確定ボタンを押します。

上面1段主鉄筋	(全長)	×
	鉄筋形状 鉄筋配置 批ぎ手1ヶ所 → 交互配置 → 曲げ形状 曲げあり(計算)→ 左腸角半径 310.0 右腸肉半径 310.0 名鉄筋 日鉄筋	
確認表示	✓ 確定 × 取消 ? ∿17	°(<u>Н</u>)

4-20 鉄筋(詳細)_鉄筋一覧

		鉄筋一覧			-		
鉄筋種類	記号1	徑 1	記号2	径 2	記号3	径 3	^
上面1段主鉄筋(全長)1	B1	29					
上面2段主鉄筋(全長) 1	B2	29					
下面主鉄筋(張出) 1	B3	29					
下面1段主鉄筋(支間)1	B4	29					
下面主鉄筋 (ハンチ) 1	B5	25					
下面2段主鉄筋(支間) 1	B6	29					
外周スターラップ 1	B11	22	B10	22			
内周スターラップ 1	B13	22					
内周スターラップ 2	B14	22					
たな筋 1	B15	22					
たな筋 2	B16	22					
創面第 1	B7	19					
支承補強筋 1	B17	16	B18	16			
1 段主鉄筋(前面) 11	C1	32					
1.段主鉄筋(前面) 21	C15	32					×
<						>	
					[閉じる(0)	Σ

「鉄筋(詳細)」-「鉄筋一覧」をクリックします。

鉄筋一覧

橋脚に配筋される鉄筋の記号・径の一覧表示を行います。 左図のような画面が表示されますので、確認したい鉄筋が含ま れる部分の名称ボタンをクリックしてください。

詳細鉄筋情報の確認・修正が行えます。

確認・修正後、確定ボタンを押します。

4-21 図面_図面生成

図面生成 🗾 🗾
鉄筋情報を生成した後に図面生成を行いますか?
「「はしい」:鉄筋生成を行い図面を生成します。
現在の鉄筋情報を破棄し「入力・形状・かぶり・鉄筋」画面の 設定を反映した鉄筋情報を再生成して図面を生成します。 ※「入力・形状・かぶり・鉄筋」画面の設定を変更した場合に 「はい」を指定して下さい
「いいえ」:現在の鉄筋情報で図面を生成します。
※「鉄筋情報」画面を開いて、鉄筋情報を変更した場合に 「いいえ」を指定して下さい
「キャンセル」:図面生成を中止します。

「図面」ー「図面生成」をクリックします。

図面生成

図面の一括生成や生成した図面の確認表示を行います。

ツリービューの図面生成をクリックすると、詳細鉄筋情報を再 生成して図面生成を行うかの確認メッセージが表示されます ので、目的に応じて選択してください。 今回は「はい」を選択します。

図面確認画面が表示されます。

画面左に表示された図面リストより確認したい画面を選択しま す。 選択後、「編集」をクリックします。

4-22 図面_図面確認

図面確認画面にうつります。 生成した図面の表示や編集、印刷、出力を行います。

~各操作方法~

拡大 マウスを左クリックしたままマウスをずらし、拡大する部分を 囲み、マウス左ボタンから指を外します。

引出編集

編集する引出線を選択(マウスを左クリックしてください。)、 引出文字中央のハンドル(水色マーク)選択(マウス左クリッ ク)してください。 マウスをずらして引出線の表示位置を編集してください。

S X F 一括出力 図面一覧 〈反転表示で出力〉 .PSX: 図相2 .PSX: 図相4 .PSX: 図目相4 .PSX: 図目相6 .PSX: 図目相6 .PSX: 図目相7 .PSX: 図目相7 .PSX: 図目相9 出力ファイルー 出力フォルダ: C:¥Users¥有香子¥Documents¥前田有香子¥Yukako¥ 変更 参照 ◎ ここで入力したファイル名で出力する: 新規.SFC ※「ファイル名 + 図面番号」で出力されます (例 : Sample.sfc(.p21) → Sample-1.sfc(.p21)) ○ 基準類の命名規則に従ったファイル名で出力する ※ファイル名が <未設定> の図面は選択されていても無視されます 出力形式一 ◎ SFCファイル形式 ○ P21ファイル形式 🗙 取消 🗃 🔚 設定... 🔰 🗸 確定 📗 7 \\$7°(<u>H</u>)

SXF出力

「出力」ー「SXF出力」をクリックします。

SXF-括出力画面にて各種設定を行った後、「設定」をクリックします。

SXF出力の設定画面が展開されるので設定後、確定を押し画 面を閉じます。

4-23 3D配筋生成

SXF出力の設定画面が展開されるので設定後、確定を押し画 面を閉じます。

「3D配筋生成」をクリックします。

ツリービューの図面生成をクリックすると、詳細鉄筋情報 を再生成して図面生成を行うかの確認メッセージが表示さ れますので、目的に応じて選択してください。 今回は「はい」を選択します。

3D配筋生成

「3D配筋生成」を押下すると、3次元での配筋生成が行われ、3D配筋ビューワによる表示が行えます。(左図参照)

5 保存

🦉 RC下部工の設計・3D配筋 Ver.3 ラーメン橋脚の設計・3D配筋 Ver.3 - 新規.F4U 🛛 = 🗖 📉 🗙
ファイル(E) 表示(V) 計算(C) 結果確認(R) 付属設計(A) 震度連携(T) オブション(O) 回面(D) ヘルプ(H)
新規作成(N) 👂 🖻 🎹 🌆 🦓 📦 📼 🦉
開((0) コメント:
開き直す(L) ・ (側面図)(左側:前右側:後)
サンプルデータフォルタを開く(M)
上書を保存(S) Ctrl+S 目
名前を付けて保存(A)
FRAMEデータのエクスポート(F)
3DSファイルのエクスポート(3)
基础連動用XMLファイルのエクスポート(K)
UC-win/FRAME(3D)データのエクスボート(E)
Engineer's Studioテータのエクスホート(G)
計算書作成(詳細)(V)
計算書作成(一覧)(H)
スタイル設定(T)
)))/H20/E(R)
調表出力(Z)
終了(X)
B ● 新面2次モー>Cト
単独設計

ーファイルメニューから 「名前を付けて保存」また「上書き保存」をクリックします。 ファイル名に名前を入力し、「保存」をクリックします。

(名前を付けて保存
(保存する場所(1):	51750	▼ ⇐ 🖻 🕋 🖬 ▼
最近表示した場所	F+2X>h 57751	ビクチャ ライブラリ
777	ビデオ ライブラリ	32-540 7(77)
PC		
1010.0	ファイル名(N): 「 ファイルの種類(I): [:	
┌ファイル情報──		
製品名:RC	下部工の設計・3D配筋	
製品バージョン: 3.0).0.0	
ファイルバージョン: 13.	.0.0.0	
作 成 日: 201	16/07/29	
会社名:		
部 者 名:		
TF /0, 省 名:	·····································	瞬期)・1111ポナナロ2月11日111日間代生気 使素新なノイモー 放其地 (源等数)
	178761 (4111) 7 - X / 1	MMMが、14.5以び立つにつたり立しいこれない、心臓動がイント、加速酸(明音加

第3章 Q&A

1 適用範囲および制限事項

Q1-1 「国総研資料 第700号」に対応しているか?

A1-1 Ver.10.3.0より対応しています。 具体的な設定方法や考え方等につきましては、製品ヘルプの「計算理論及び照査の方法 | H14道示に準拠した水平耐力-水平変位,許容塑性率の算定」をご覧ください。

Q1-2 「既設・補強計算時に「国総研資料第700号」に準じた方法で計算を行いたい。

A1-2 本資料に準じた計算を行う場合の具体的な設定方法、考え方等につきましては、H14道示に準拠した水平耐力-水平変位,許容塑性率の算定をご覧ください。
また、本資料の計算方法は、Ver.10.3.0より対応しておりますが、Ver.10.4.0より一部の仕様を変更しています。
Ver.10.3.0・タイプIIの許容塑性率を直接適用し、P-δ関係はタイプIとして算定。
・破壊形態が異なる場合の扱いはスイッチで選択。
・FRAME3Dエクスポート時は適用しない。
Ver.10.4.0・コンクリートの応力度-ひずみ曲線,安全係数αにタイプIIの定義を適用(P-δ関係はタイプIと同じ)。
・破壊形態が異なる場合のスイッチは削除(自動判定)。
・FRAME3Dエクスポート時のM-φ特性やM-θ特性,安全係数等はタイプIIの値より生成。
※仕様変更の経緯につきましては、上記ヘルプの「②地震動タイプIIの許容塑性率を地震動タイプIIにも適用する」の項目をご覧ください。

Q1-3 連続基礎ではなく、独立基礎のラーメン橋脚の計算ができるか?

 A1-3 ラーメン橋脚の独立フーチングには対応しておりませんが、「入力ー基本条件」で基礎形式を「なし(梁柱モデル)」とする ことで柱、梁の照査を行うことができます。
 梁、柱モデルでは、柱基部に支点ばねを設定することが可能です。
 フーチングおよび基礎については、本プログラムで計算することができません。

Q1-4 上部構造のないラーメン構造物の設計計算は可能か

A1-4 本製品は上部構造を有するラーメン橋脚を前提としています。 レベル2地震時保有水平耐力法照査では上部構造の慣性力を載荷して照査しますので、対応することができません。 ご了承くださいますようお願い申し上げます。

Q1-5 柱が橋軸方向に並び、橋軸方向に伸びるはりの上面が道路となる構造は対応できるか

A1-5< 申し訳ございませんが、対応しておりません。
 本製品では、上部工が橋脚上に支承を介して配置される構造物としており、必ず定義する必要があります。
 上部工がはりと一体となったり、ラーメン橋脚の面内方向が上部工の軸方向となる構造物は、モデル化することができません。

Q1-6 ラーメン橋脚で梁を無視した構造物の計算を行いたい。

A1-6 本製品はラーメン構造の橋脚として計算しますので、梁を無視した構造物の計算はできません。 弊社製品「二柱式橋脚の設計計算(旧基準)」をご検討ください。

2 入力

Q2-1 はり、柱だけを照査したい。

A 2-1 Ver.9より、はり、柱のみのモデルに対応しました。

柱基部を、バネ支点とすることが可能です。基礎に関する入力が不要となりますので、少ない入力で計算を行うことが可 能です。 また、柱ごとに柱基部のバネ支点の設定が可能となりますので、独立フーチングモデルの柱、はりなど、部分的な照査を行 うことができます。

Q2-2 補強鋼材軸方向有効範囲とは?

- A 2-2 補強鋼材軸方向有効範囲は、レベル2照査時の断面のM-φ関係を算出する際の補強鋼材の有効範囲を指定します。 RC補強の場合は以下のように取り扱われます。
 - ・「補強鋼材軸方向有効下端」より下側
 - 補強鉄筋のうち、定着鉄筋のみを考慮します。非定着鉄筋を考慮しません。
 - ・「補強鋼材軸方向有効下端」~「補強鋼材軸方向有効範囲長」
 - 全ての補強鉄筋を考慮します。
 - ・「補強鋼材軸方向有効範囲長」より上側 補強鉄筋を考慮しません。

Q2-3 斜引張鉄筋/横拘束筋は何に使用するのか?

A 2-3 斜引張鉄筋/横拘束筋データは、Aw、Ah算出に使用します。
 許容応力度法照査では、
 Awをせん断照査に使用します。
 レベル2地震動照査では、
 Awをせん断耐力の算出に使用します。
 AhをM-φ関係の算出に使用します。

Q2-4 「橋脚鉄筋」-「斜引張鉄筋/横拘束筋」で入力する『帯鉄筋』と『スターラップ』の違いは?

- A2-4 帯鉄筋→張出し部、中央部にされる鉄筋で、中央部の許容応力度照査(せん断)、保耐法照査(せん断耐力)に影響します。 中間帯鉄筋→中央部のみ配置される鉄筋で、中央部の許容応力度照査(せん断)、保耐法照査(せん断耐力)に影響しま す。 スターラップ→張出し部の帯鉄筋位置に配置される鉄筋で、張り出し部の許容応力度照査(せん断)に影響します。
- Q2-5 はりのハンチ筋のかぶりはどのように入力したらよいか?
- A2-5 ハンチ筋のかぶりはハンチの勾配を無視した値を入力してください。 計算時には勾配分を考慮して配置されます。

Q2-6 はり側面のns (塑性ヒンジ長を算出するための圧縮側軸方向鉄筋の本数)を入力するようになっているがどの計算で使用 するのか?

A 2-6 Ver.10以降(平成24年道示対応版)の入力画面「橋脚鉄筋」の「はり支間」断面の「斜引張鉄筋/横拘束筋」タブでは、 はり側面のnsも入力します。 この値はUC-win/FRAME(3D)エクスポート(メニュー「ファイル|UC-win/FRAME(3D)データのエクスポート」)実行時の み使用し、これ以外の計算では使用しません。 UC-win/FRAME(3D)のエクスポートモデルの、梁の面外方向のM-φ関係を定義するために使用します。

Q2-7 上部工の位置を基準とした支承位置を入力するが、上部工位置は計算に影響するか?

A 2-7 橋軸直角方向の橋脚躯体のレベル2地震動照査で使用する上部工慣性力に影響します。 上部工慣性力は、「道路橋の耐震設計に関する資料 平成9年3月」P3-21の図-3.3.3に示されるように、 各支承位置に、水平荷重と、偶力となる鉛直荷重として載荷します。 鉛直荷重は、上部工重心位置と支承位置の距離から算出しますので、入力画面「上部工/支承」で指定する上部工位置は、 水平方向の上部工重心位置を指定してください。

Q2-8 梁片持ち部を鋼板補強するにはどうすればよいか?

A 2-8 鋼板補強は、梁片持ち部に指定できない仕様となっています。

本プログラムの補強モデルのレベル2地震動の計算は、「既設道路橋の耐震補強に関する参考資料 平成9年8月」を参考としていますが、この計算条件に従って片持ち部に鋼板補強を考慮する場合は、入力画面「橋脚鉄筋」の「はり張出し」 断面の「斜引張鉄筋/横拘束筋」において、「斜引張鉄筋量Aw」を「直接指定」とし、鋼板を考慮したAwの値を直接指定 してください。

この変更は、「許容応力度法照査」の「せん断照査」、および「レベル2地震動照査」の「はり部材(橋軸)」に影響しま す。

この計算条件に関する詳細を下記に示します。

「既設道路橋の耐震補強に関する参考資料 平成9年8月」のP4-4では、梁の鋼板補強について、

①せん断耐力の向上としてはたらきます。

- ②拘束効果を期待しません。
- ③軸方向鉄筋として期待しません。

と記述されています。また、④既設時の橋脚躯体重量Wpの値(P4-7)と、鋼板補強後のWpの値(P4-37)が同じ値になっています。

これにより、本プログラムの梁の鋼板補強では、

上記①より、せん断耐力Ssに鋼板を考慮します。

上記②、③より、M-φ関係に鋼板を考慮しません。

上記④より、補強鋼板の重量を考慮しません。 詳細は、ヘルプ「結果理論及び照査の方法 | ラーメン橋脚の保有水平耐力法照査(面内方向) | 補強の計算条件(はりの鋼 板巻立て)」をご参照ください。

以上より、梁片持ち部に鋼板補強を考慮する場合は、Awの値を直接指定していただくことになります。

Q2-9 杭基礎モデルで、増し杭の検討を行わないフーチングのみの補強検討は可能か

- A2-9 本製品のフーチング補強は、増し杭工法としての計算を行います。 このため、増し杭は必ず配置する必要があります。 申し訳ございませんが、フーチング補強に増し杭を配置しないケースには対応しておりません。
- Q2-10 入力画面「許容応力度法|計算条件」のタブ「骨組解析条件」で指定する「フーチングの断面2次モーメント」は何を選択す ればよいか?
- A2-10 通常、「剛体とする」を選択してください。 「実剛度」、および「直接指定」は、本プログラムの前身である「UC-win/RC」の機能を継承したもので、剛体とした場合 との結果比較検証用に設けているものです。 詳細は、ヘルプ「入力 | 許容応力度法 - 計算条件」の【骨組解析条件-フーチングの断面2次モーメント】をご参考ください。

Q2-11 フーチング補強モデルで、補強のコンクリート材質を変更したい

A 2-11 申し訳ございませんが、補強のコンクリート材質を指定することはできません。 補強鉄筋材質のみ、指定可能です。

Q2-12 入力画面「橋脚鉄筋」のタブ「鉄筋配置|主鉄筋配置」の「主鉄筋配置参照断面」で、参照したい断面が表示されない

A 2-12
 参照することが可能な断面は、以下の制限があります。
 ・はり、柱、フーチング直角方向、フーチング橋軸方向間をまたがる参照はできません。
 ・はり支間中央断面は、右側、左側の断面を参照できません。
 ・柱段落し後の断面は、基部側の断面を参照できません。
 ・フーチングの増幅部の断面は、増幅部以外の断面を参照できません。

また、自分自身を参照している断面は参照できません。 例えば、「柱2」が「柱1」を参照している場合、「柱1」は「柱2」を参照することができません。 また、「柱3」が「柱2」を参照し、「柱2」が「柱1」を参照している場合、「柱2」・「柱3」とも「柱1」を参照していますので、 「柱1」は「柱2」も「柱3」も参照することができません。

Q2-13 柱上端の定着・非定着鉄筋を指定したい

A 2-13 Ver.12から、柱上端の補強鉄筋の定着/非定着を考慮する計算オプションを追加しました。

入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」で、 「鉄筋コンクリート巻立て、鉄筋コンクリート増厚|柱上端の補強鉄筋の取扱い」の「定着鉄筋のみ考慮する」を選択する ことで、

「補強鋼材軸方向有効範囲」より上側では定着鉄筋のみ考慮します。

※「補強鋼材軸方向有効範囲」は入力画面「橋脚形状」のタブ「柱補強」の「補強鋼材軸方向有効範囲」で指定します。 この範囲が柱上端を含まないように設定してください。

柱基部と上端で定着鉄筋の扱いが異なる場合は入力画面「橋脚鉄筋」のタブ「オプション」で「段落し」を「あり」として、基部と上端の主鉄筋をそれぞれ設定する必要がございます。

Q2-14 せん断耐力算出、せん断照査時の断面の有効高dの値が正しく算出されていない

A 2-14 入力画面「橋脚鉄筋」で定義する主鉄筋の「配置」の選択が適切であるかをご確認ください。 例えば、はり部材で上側引張り時の有効高を算出する場合は、「配置」が「上側」(または「上側両端」、「上側左端」、「上 側右端」)で定義した鉄筋の重心位置までの距離としますので、断面下側に配置されている主鉄筋を「上側」鉄筋として 定義すると有効高dを正しく算出することができません。

Q2-15 基礎製品(「基礎の設計」)と連動することは可能か

A2-15 申し訳ございませんが、基礎製品と直接連動することはできません。 本製品では、「基礎の設計」で杭基礎およびフーチングの計算を行うことを想定して、基礎連動用XMLファイルのエクス ポート機能を用意しています。 エクスポートは、メニュー「ファイル | 基礎連動用XMLファイルのエクスポート」で行います。 注意点、および操作手順などの詳細につきましては、ヘルプ「操作方法 | 基礎連動用XMLファイルのエクスポート」をご参 照下さい。 なお、基礎製品からのインポート機能は用意しておりません。 ※「RC下部工の設計計算」(ラーメン橋脚以外)では基礎連動用XMLファイルのエクスポートに対応しておりません。

Q2-16 荷重ケースを指定した任意荷重や、水平方向に作用する任意荷重を定義したい

- A 2-16 申し訳ございませんが、任意荷重は死荷重のみに制限されます。 荷重ケースの指定、および作用方向を指定することはできません。 ご了承ください。
- Q2-17 梁柱モデルで柱基部にバネ支点を定義するが、実際のモデルは柱ごとに独立フーチングが存在する。 フーチング下端にばね支点を移動することは可能か。
- A2-17 バネの位置は柱下端に固定しておりこれを変更することはできませんが、基礎下端へのバネの移動を考慮した換算値を 設定することで対応可能です。

バネの移動による換算方法を、ヘルプ「計算理論及び照査の方法 | 柱基部支点バネの移動による換算方法」でご案内して いますのでご参考ください。

Q2-18 丸鋼の鉄筋断面積を変更したい

- A 2-18 申し訳ございませんが、鉄筋断面積を変更することはできません。 本製品の丸鋼断面積は、JIS G3191の値を内部で自動的に適用します。
- Q2-19 弊社製品「震度算出(支承設計)」と連動する時の基礎バネ値を直接指定したい
- A2-19 以下の手順で、基礎バネ値を直接指定することができます。

①入力画面「基本条件」で「基礎形式」を「直接基礎」に設定します。
 ②入力画面「直接基礎」の「基礎バネ (震度連動)」の「算定条件」を「直接指定」に設定します。
 ③ボタン「直接指定」で開く画面で、基礎バネ値を直接指定することができます。

Q2-20 柱基部の高さ位置が異なるラーメン橋脚の計算は可能か?

A2-20 対応しておりません。 柱基部の高さ位置が異なるモデルは作成することができません。 ご了承ください。

Q2-21 はりに段差のある形状を定義したい

A2-21 はり形状は矩形のみ対応しているため、段差付きの形状を定義することができません。 任意荷重により荷重として考慮することは可能ですが、剛度として考慮することはできません。 何卒、ご了承くださいますようお願い申し上げます。

Q2-22 柱ごとに段落しを複数個所に設定したい

A 2-22 申し訳ございませんが、段落しは1箇所に制限されています。 ご了承ください。

Q2-23 フーチングの増厚断面で、鉄筋材質を変更しても降伏曲げモーメントMyが変化しない

A2-23 入力画面「基本条件」は既設鉄筋材質を指定します。 フーチングの増厚部の鉄筋材質は、入力画面「橋脚形状」のタブ「フーチング」の「補強 | 補強鉄筋」で指定して下さい。 既設鉄筋材質を変更した場合、上側引張り時の既設鉄筋は最外縁でないため、降伏曲げモーメントMyに影響しなかった と推察します。

Q2-24 入力画面「橋脚鉄筋」のタブ「斜引張鉄筋/横拘束筋」の「ns」として入力する圧縮側軸方向鉄筋本数nsは、鉄筋径が異なる場合どのように換算すればよいか

A 2-24 H24道示V p176の解説に「nsとして計上される軸方向鉄筋において直径の異なる軸方向鉄筋が含まれる場合には,小さ い方の直径を式 (10.3.9)における軸方向鉄筋の直径φ'とするのがよい。」と記載されています。 これより、鉄筋径の違いに関わらず、鉄筋本数を指定するものと考えます。 φ'は、プログラム側で自動的に小さい鉄筋径を抽出します。 具体的には、側面鉄筋よりも内側の範囲で断面中心から圧縮側にある鉄筋のうち鉄筋径の最も小さい値を採用します。

Q2-25 ラーメン橋脚のはりの入力において、ハンチ幅≧ハンチ高の形状が入力できない理由は何か。

A 2-25 「道路橋示方書・同解説V耐震設計編に関する参考資料 平成27年3月」の図-8.25に示される「ハンチ幅≧ハンチ高 さ」の場合の塑性ヒンジ位置の考え方に対応していないためです。 ご了承ください。

Q2-26 ラーメン橋脚のはりの入力において、ハンチ幅≧ハンチ高の形状が入力できない理由は何か。

A2-26 連続フーチングの柱間照査を行うには柱から伝えられる断面力が必要ですが、レベル2地震時においてこの断面力をどの ように考えて求めるか基準類に明示されていません。 本製品ではヘルプ「計算理論及び照査の方法 | レベル2地震動照査(杭基礎) | フーチング橋軸直角方向レベル2地震動 照査」に示した考え方で照査を行っておりますが、基準等に沿ったものではないため、初期値を「照査しない」としていま す。

Q2-27 杭基礎モデルの入力画面「地層」に入力するyt、ysatの重量は、どのような値を入力すればよいか。

A 2-27 水位より上の単位重量を湿潤重量γtとしてご入力ください。 水位以深は水中重量として(飽和重量-水の単位重量)を用いていますので、飽和重量γsatには水中重量に水の単位重 量を加えた値を入力してください。

Q2-28 主鉄筋の入力箇所が多い。簡単に入力できないか。

A2-28 A2-28 入力画面「橋脚鉄筋」のタブ「主鉄筋配置」に、「主鉄筋配置参照断面」の選択を設けています。 ここで断面を選択すると、その断面で定義した鉄筋配置を参照します。 ただし、参照可能な断面には制限があります。 詳細は、Q2-12の回答、およびヘルプ「入力 | 橋脚鉄筋 | 鉄筋配置」の「主鉄筋配置:(1)主鉄筋配置参照機能」をご覧 ください。

Q2-29 柱の断面サイズが異なるラーメン橋脚をモデル化可能か。

A 2-29 可能です。「橋脚形状」-「柱」にて柱毎に寸法値を入力いただけます。 ただし、柱の断面形状の種類は矩形、円形、小判形、八角形から選択し、これは全柱共通です。 柱ごとに異なる断面形状を設定することができないことをご了承ください。

3 計算(橋脚 常時、レベル1地震時)

Q3-1 許容応力度法照査で、作成した荷重ケースが照査されていない。

A3-1 荷重ケースの取扱いは次のようになっています。

・活荷重衝撃有(L+I)のケースは、はり,柱の設計に用い、安定計算,フーチングの設計は行わない
 ・活荷重衝撃無(L)のケースは、安定計算,フーチングの設計に用い、はり,柱の設計は行わない
 はり、柱の照査を行うためには、基本荷重ケース「活荷重」を、活荷重衝撃有の属性として再定義する必要があります。
 修正方法は、「許容応力度法 | 基本荷重ケース」を表示して、
 ①「追加」ボタンで、荷重属性を「活荷重+衝撃荷重(L+I)」とした活荷重ケースを追加します。
 ②追加した荷重ケースの荷重値を、既存の「活荷重」と同じ値にします。

②追加した何里グースの何里値を、既存の「活何里」と回し値にします。 シート上で範囲を選択し、「Ctrl+C」キーでコピー、「Ctrl+V」キーで貼付けが可能です。 ③既存の「活荷重」ケースを選択し、「削除」ボタンで削除します。

Q3-2 活荷重を含むケースをはり、柱で照査するには?

A3-2 現在定義されている基本荷重「活荷重」を、「活荷重+衝撃荷重(L+I)」の荷重属性を持つ荷重として再定義していただき ますようお願いいたします。 現在の仕様は、以下のようになっています。

・活荷重衝撃有のケースは、はり,柱の設計に用い、安定計算,フーチングの設計は行わない

・活荷重衝撃無のケースは、安定計算,フーチングの設計に用い、はり,柱の設計は行わない

これは、「道示H24 I 共通編」の「2.2.3 衝撃」 「(4)...、ラーメン橋脚若しくはこれに類似の軽量の躯体には活荷重による 衝撃を考慮する。」を考慮したものです。

- Q3-3 許容応力度法の結果確認画面で、「部材長が0.10m以下の剛部材が存在します」というメッセージが表示される。
- A3-3 この警告は、骨組モデルを作成した結果、隅角部の剛部材の長さが0.10m以下となった場合に表示しています。 短い剛部材(0.10m以下の部材)が原因となり解析結果の異常が発生する場合があるため、参考として表示したものです。 断面力の結果に異常が認められた場合は、形状を変更するなどして0.10m以上の剛域長を確保してください。

Q3-4 許容応力度法で使用した躯体の骨組モデルを、画面上で確認できるか?

A3-4 可能です。

結果確認画面「許容応力度法照査|橋脚」のタブ「曲げ照査」または「せん断照査」の、画面上側にある「骨組結果」ボタンで骨組解析結果画面が開きます。 この画面のツールパーで「節点」、「部材」、「基本荷重」などの表示項目を選択して、左側のツリービューで荷重ケースなどを選択すると、その内容が図、リストとして表示されます。 また、この画面は許容応力度法の結果画面と同時に操作することが可能で、許容応力度法の結果リストで選択した断面力をハイライト表示することもできます。

Q3-5 側面鉄筋と判断されるのはどのような場合か?

- A3-5 断面の上下に配置された鉄筋列よりも内側の鉄筋を側面鉄筋と判断しています。
- Q3-6 補強モデルの許容応力度法照査で梁全鉄筋(主鉄筋・側面鉄筋含む)を考慮しているか?

A3-6 補強モデルの許容応力度照査では全鉄筋を考慮しています。理由は以下の通りです。 道示IV(H.8.12)P.202に、「曲げモーメントに対して橋脚を設計する場合,本来は全ての軸方向鉄筋を考慮して設計すべき であるが,許容応力度法においては,計算の簡便性を考慮し,水平荷重作用方向に直交する方向の鉄筋のみ計算上考慮 し,他の鉄筋は無視してもよい」との記述があります。 「既設道路橋の耐震補強に関する資料」に補強時の許容応力度法照査に関する記述はなく、補強工法ごとに保耐法照査

「既設道路橋の耐震補強に関する資料」に補強時の許容応力度法照査に関する記述はなく、補強工法ごとに保耐法照査 時の断面から有効な鋼材と無効な鋼材とを使い分けることが煩雑になること、また、例えばはり増厚工法のときでは補強 部の鉄筋が反映されないことを考え、現行の仕様としております。

Q3-7 柱の補強工法(RC巻立て工法、鋼板巻立て工法)の違いで、はりの許容応力度法の結果が大きく違なる結果になる。柱 基部が変化するのは分かるがどうして梁の照査結果に違いが生じるのか?

A3-7 単柱式橋脚であれば、柱の剛性が梁(張出部)に与える影響はありません。 ラーメン橋脚の場合、柱の剛性(RC巻立て「=補強後の剛性」、鋼板巻立て「=既設時の剛性(鋼板を考慮しない)」)が 梁支間部の断面力に影響し、その結果、梁照査結果に違いがでます。なお、ラーメン橋脚の柱の剛性は単柱式と同様に梁 張出部の断面力には影響しません。

Q3-8 震度連携:L1橋軸直角方向の断面2次モーメントを算出する際に使用した5000(kN)はどこからきた値か?

A3-8 レベル1地震時は線形範囲内で考えますので、水平力Pと水平変位δの関係は正比例となります。 水平力Pの大きさは結果に影響しませんが、本プログラムでは、形状寸法に関係無く水平力P=5000(kN)を載荷して水平 変位δを求めています。

Q3-9 曲げ照査の応力度が非常に大きな値になる

A3-9 単鉄筋で大きな引張力が作用する場合、力の釣り合いをとるために中立軸位置が想定外となり、応力度が非常に大きな 値になる場合がございますのでこの点をご確認ください。 複鉄筋で照査した場合は、この現象は発生いたしません。 単鉄筋/複鉄筋の設定は、入力画面「許容応力度法|計算条件」のタブ「断面照査条件」で行います。

Q3-10 フーチングの剛体照査が行われない

A3-10 杭基礎設計便覧(平成19年1月)P282~P283に「βλによる剛体判定は…柱が3本以上立っている連続フーチングには適用 できない。」と記載されています。 このため、3柱式以上のラーメン橋脚の場合において、βλによるフーチングの剛体判定は行っておりません。 なお、2柱式ラーメン橋脚の場合であれば、フーチングの剛体判定を行っています。

> 上記のように、βλによるフーチングの剛体照査が計算可能か否かは、柱の本数に関係しています。 ご了承ください。

Q3-11 梁に大きな引張軸力が発生する原因は?

A3-11 主な原因として、下記が考えられます。

・梁の断面サイズが大きい場合、温度荷重・乾燥収縮により大きな軸力が発生します。

・さらに柱の剛度が大きい場合や柱高が低い場合は、柱が変形しにくくなるため梁に大きな軸力が発生しやすくなります。

・梁の張出部に大きな鉛直荷重が載荷された場合、柱が外側に変形することで梁に大きな軸力が発生する場合がありま す。

- Q3-12 入力画面「許容応力度法 | 基本荷重ケース」で、無効 (グレー表示) の荷重ケースがあるのはなぜか
- A3-12 入力画面「基本条件」の「基礎形式」を「なし(梁柱モデル)」とした場合、活荷重衝撃無のケースは使用しないため無効 となります。 活荷重衝撃無のケースは、安定計算、フーチングの設計に用い、梁柱の設計は行いません。

Q3-13 許容応力度法で行われる隅角部の照査は、何を行っているのか

A3-13 H24道示IIIコンクリート橋編(16.3節点部の設計)(P294~)の解説に準じて、外側引張りの曲げモーメント(M<0.0)が作用 した場合の補強鉄筋量(必要鉄筋量)を算出しています。 隅角部の補強鉄筋配置を行うときに、補助的にこの結果を参照していただく事を想定しています。 内側引張の照査は行なっておりません。 何卒、ご了承くださいますようお願い申し上げます。

03-14 群杭の照査に対応しているか

 A_{3-14}

A3-14. ・群杭としての負の周面摩擦力の下記の計算式に対応しています。 H24道示IV(解12.4.4)(P401) 指定は、入力画面「杭形状」のタブ「新設・既設杭、または増し杭|負の周面摩擦力|群杭としての負の周面摩擦力」で 指定します。

・群杭による水平方向地盤反力の低減を考慮することができます。

レベル1:入力画面「杭形状」のタブ「杭条件②」の「水平地盤反力係数kHの低減係数」を直接指定してください。 レベル2:入力画面「レベル2地震動|基礎条件」のタブ「条件②」で「杭間隔÷杭径」を指定することで、群杭効果を考 慮した水平地盤反力度の上限値の補正係数が考慮されます。(H14道示P435)

これ以外の項目(「12.4.4 群杭の考慮」の押込み力に対する群杭の支持力計算など(P403~))は、対応しておりませ h_{\circ}

ご了承くださいますようお願い申し上げます。

乾燥収縮は、計算上どのように考慮されているか? Q3-15

- A3-15 本製品は骨組解析により断面力を算出しますが、このとき乾燥収縮による温度荷重をはり,柱に載荷しています。 この温度荷重は入力画面「許容応力度法」計算条件」のタブ「乾燥収縮」で指定します。 コンクリートの線膨張係数を1.0E-5としていますので、「-15.0(度)」と入力した場合、乾燥収縮度15.0E-5を考慮すること になります。
- 03 16乾燥収縮、温度荷重を柱・はり部材のみに載荷しているが、フーチング部材に載荷しないのはなぜか
- $A_{3} 16$ フーチングは剛体であることを前提としているため、乾燥収縮、温度荷重の影響は考慮しておりません。
- 03-17 「基礎反力の取扱い」を「鉛直反力Vのみ考慮する」とした場合は、フーチング部材または杭頭には鉛直反力のみ載荷 し、水平、回転成分は隅角部の格点に集中荷重として載荷するのはなぜか
- 鉛直反力のみ考慮した場合、ラーメン橋脚全体の釣合いがとれなくなります。 A_{3-17} 反力の釣合いをとるため、水平成分、回転成分の集計値を柱の交点位置に載荷しています。
- 入力画面 「許容応力度法 | 計算条件」のタブ 「断面照査条件」 で「はりの断面照査 | 橋軸方向照査に上下主鉄筋を考慮す 03 - 18る」にチェックを入れたが、計算結果を確認すると考慮されていない
- A3-18 「橋軸方向照査に上下主鉄筋を考慮する」スイッチは、「上側両端」、「下側両端」、「ハンチ両端」で配置された鉄筋の み有効です。

入力画面「橋脚鉄筋」のタブ「鉄筋配置 | 主鉄筋配置」 の主鉄筋入力シートの列 「配置」 で、橋軸方向で考慮する上下主 鉄筋を「上側両端」、「下側両端」または「ハンチ両端」として定義してください。

- 常時・レベル1地震動照査時の骨組解析モデルの支点位置がフーチング端部になっているのはなぜか 03 - 19
- A3 19作用力計算後、杭位置に基礎反力を載荷しますので荷重は釣合う状態になります。 これにより支点反力の面内成分は0.0kNになりますが、骨組構造が不安定となるエラーを回避するため底版端部に支点を 設けています。
- Q3-20 入力画面「許容応力度法 | 基本荷重ケース」 で定義する 「温度変化の影響(T)」の荷重ケースと、入力画面 「許容応力度法 | 計算条件」のタブ「荷重条件」で設定する「温度荷重」の関係は?
- A3-20 基本荷重ケースの温度荷重は、上部工の温度荷重です。 設計条件の温度荷重は躯体の温度荷重です。

上部工の温度荷重は支承位置の荷重として入力しますが、躯体の温度荷重は躯体部材に温度荷重を与えます。

03 - 21フーチング増厚補強時モデルの断面照査で、既設の上面主鉄筋が考慮されない

入力画面「許容応力度法|計算条件」のタブ「断面照査条件」のチェックボックス「フーチングの断面照査|増厚時の既設 A3-21 上面鉄筋を考慮する」にチェックを入れてください。

Q3-22 許容応力度法の面外方向の断面力はどのように算出しているか

A3-22 ラーメン構造の骨組モデルに面内荷重を与えて算出した軸力と、面外荷重を与えて算出した面外せん断力、面外曲げモー メントを使って面外方向の断面力とし、応力度照査を行っています。

Q3-23 梁、柱の補強断面の許容応力度照査において、単鉄筋/複鉄筋ではなく全鉄筋を考慮しているのはなぜか

- A 3-23 道示IV(H.8.12)P.202に、「曲げモーメントに対して橋脚を設計する場合,本来は全ての軸方向鉄筋を考慮して設計すべき であるが,許容応力度法においては,計算の簡便性を考慮し,水平荷重作用方向に直交する方向の鉄筋のみ計算上考慮 し,他の鉄筋は無視してもよい」との記述があります。 「既設道路橋の耐震補強に関する資料」に補強時の許容応力度法照査に関する記述はなく、補強工法ごとに保耐法照査 時の断面から有効な鋼材と無効な鋼材とを使い分けることが煩雑になること、また、例えばはり増厚工法のときでは補強 部の鉄筋が反映されないことを考え、現行の仕様としております。
- Q3-24 上部工荷重が橋軸方向に偏心しているため橋軸方向に変位が生じるが、はりの面外方向の曲げモーメントが0kN.mになる
- A 3-24 ラーメン橋脚躯体形状が左右対称で、荷重条件も左右対称の場合、左柱と右柱の橋軸方向の変位量は同じになります。 この場合、はりは橋軸方向に変形せず、曲げモーメントは0.0kN.mになります。

Q3-25 柱のレベル2地震時のせん断照査において、せん断耐力を求めるときのせん断スパンの考え方を変更できるか。

A3-25 既設コンクリートのヤング係数に換算した断面積、断面二次モーメントを与えて計算しています。

Q3-26 3柱式ラーメン橋脚の死荷重時の軸力が、中柱に集中する。

A3-26 乾燥収縮の影響が考えられます。 乾燥収縮は、はりと柱の全部材に設定します。 これにより、3柱式ラーメン橋脚の場合は、左右の柱に引張力、中央の柱に圧縮力が生じる傾向になります。 本製品のヘルプ「計算理論及び照査の方法 | 2柱式と3柱式ラーメン橋脚の乾燥収縮による影響」もご参考ください。

Q3-27 計算結果の荷重ケース数が、入力画面「組合せ荷重ケース」で定義した荷重ケース数より大きくなる。

- A3-27 地震時ケースを、液状化有、無ごとに計算していることが原因です。 入力画面「地層」のタブ「液状化」で「液状化の判定」を「しない」として、液状化の低減係数「DE」の入力値を全て 「1.000」とすることで、液状化による分割はなくなります。
- Q3-28 許容応力度法照査の橋軸方向の骨組解析モデルの支点が柱基部に設定されているのはなぜか。
- A3-28 橋軸方向の梁、柱の断面力を算出するために、面外方向の骨組解析を行っています。 フーチングの影響を剛とした断面力を計算する必要がありますが、面外方向の解析では剛部材を定義することができな いため、柱基部を完全拘束することで、梁、柱の断面力を計算しています。
- Q3-29 増し杭フーチングの許容応力度法照査で、以下の計算エラーが発生する。 ・曲げ照査:既設鉄筋が存在しません。 ・せん断照査:b,dを算出できません。
- A3-29 フーチング補強時は、既設上面鉄筋を考慮するかしないかを、指定する必要があります。
 既設上面鉄筋を考慮しない設定でフーチング上面に補強鉄筋がない場合は、このエラーが表示される可能性があります。
 このエラーを回避するためには、入力画面「許容応力度法|計算条件」のタブ「断面照査条件」の画面左下にあるチェックボックス「増厚時の既設上面鉄筋を考慮する」にチェックを入れてください。

4 計算(橋脚 レベル2)

Q4-1 段落し照査を行なうのは、橋軸方向のみか?

A4-1 段落しの照査は保耐法面外照査(橋軸方向)のみとなっています。

Q4-2 橋軸方向の柱の照査で、各柱の軸方向分担重量はどのように算出されているか?

A4-2 「平成24年道示V10.6解説(P194)、または平成14年道示V10.8解説(P.181)」の記述に従って、各柱部材の降伏剛性の比 (柱高を考慮した値)によって分担率を算出しています。 具体的には、分担率は、各柱の「死荷重時の軸力で求めた降伏剛性Elyの上下端の平均値 ÷ 柱高h」の比率としていま

この計算の内容は、以下の画面で確認することができます。

「結果確認|レベル2地震動照査|橋脚」フォームのタブ「橋軸方向|詳細」 画面の上側にあるメニュー「表示項目」 で「分担 重量」を選択してください。

Q4-3 橋軸直角方向の段落し照査を行わないのはなぜか?

す

A4-3 保耐法面内(橋軸直角方向)照査は、「既設道路橋の耐震補強に関する参考資料(H.9.8) 社団法人日本道路協会」P4-13の 記述「柱の上端部と下端部では軸力および配筋が異なるので、降伏時の曲げ剛性はわずかに異なる。したがって柱の線 形部材の曲げ剛性EIとしては上端部と下端部を平均化した値を用いた」を参照し、平均化した降伏時の曲げ剛性を柱に 用いる事により、その影響を考慮しています。また「既設道路橋の耐震補強に関する参考資料」に記述されている設計計 算例を参照して、面外方向(橋軸方向)のみ損傷位置の照査を行っております。

Q4-4 終局ステップはどのように算出したのか?

A 4 - 4 「構造力学公式集 土木学会 | 3.骨組構造解析 | 3.1.3 安定・不安定と静定・不静定」に記載されている判別式の公式 (P74の3.3式)により求めています。

この式で不安定と判断される状態に達した状態を終局ステップとし、2柱ラーメン橋脚では4ステップ、3柱ラーメン橋脚では7ステップ、4柱ラーメン橋脚では10ステップを終局ステップとしています。

 $n = r+m+\Sigma(si-1)-2p=6+11+10-2\times 12=3$

塑性ヒンジが1つ発生するごとに、塑性ヒンジ点のsiが2から1へ変化するため、nが1ずつ減少します。 2柱式モデルの場合は4つ目の塑性ヒンジで(n=-1)<0となり、不安定となります。 このことから2柱式モデルの終局ステップは、4つ目の塑性ヒンジが発生した状態としています。 同様の考え方で、3柱、4柱式モデルは下記のようになります。

【3柱式モデル】

 $n = r + m + \Sigma(si - 1) - 2p = 9 + 17 + 16 - 2 \times 18 = 6$

3柱式モデルの場合は7つ目の塑性ヒンジで(n=-1)<0となるため、終局ステップは7つ目の塑性ヒンジが発生した状態としています。

4柱式モデルの場合は10番目の塑性ヒンジで(n=-1)<0となるため、終局ステップは10番目の塑性ヒンジが発生した状態としています。

Q4-5 保耐法面内照査の破壊形態が「せん断破壊」となったときのPaの算出方法は?

A4-5 せん断破壊型となる場合のPaは、次のように算出しています。

- ・1つ目の塑性ヒンジが発生するときの水平力:P1=3574(kN)
 ・死荷重時(P=0.0時)の柱基部のせん断力:So=987(kN)
 ・柱基部のせん断耐力:Pso=1103(kN)
 - •S1=1829(kN)

以上により

Pa=P1×(Pso-So)/(S1-So)

=3574×(1103-987)/(1829-987)=492(kN)

また、別の塑性ヒンジ箇所でもSi>Psoの関係になる場合には上記のように算出して、最小値を採用するため、Pa=492(kN)となります。

上記の結果は、下の画面でご確認できます。

A REAL PROPERTY OF A REAL PROPER	1975	【硫棉形制	の利定】											
親形態	せん新破壊型													
w平耐力照查	NG	3 Par(Si よし せん新敏想型												
N 741照置	NG	福祉のつき	機構の地震時候有水平耐力 P_#4926 kNJ											
認定位の期間	NG													
穿壁性率	μa=1.000	型性化	型性ヒンジ	> せん断耐力 (kN)				せ	ん断力	Si (kN)				Si=P_aiとなる
+水平震度	khc=1.08	ステップ	候補点	P.,	P	医前后脑	Sten1	Sten2	Sten3	Sten4	Sten5	Stenfi	Sten7	水平力 & NJ
画変量	W=7292.6kN								0.000		otopo	oropo	0.000	
E目科理の無置	OK	1	左支閣左閉	1003.3	1117.0	111.0	502.3	684.9	/48.4	8524	885.9	859.1	824.8	
りせん明照査	照査ケースなし	2	左柱基督	988.6	1103.4	987.3	1829.6	1983.8	1970.7	1943.3	1942.7	1893.4	1864.2	492.0
5 	8 y0=5.5mm,Py0=3574.5kN,Pu=92.	-	shude the berge	000.0			1 200 4	00000	0100.7	OCTT 4	0300.0	0.000.0	0700.0	0010
nani ou	17-	3	中央社都部	908.0	1103.4	0.0	1200.4	2000.0	3199.7	3000.4	3720.8	3720.8	3720.0	23190
生力/位置実行立		4	右支間左側	1349.3	1463.0	1005.6	503.7	89.5	63.4	436.1	480.9	761.5	1017.0	
王刀作用の	h#2900m	E	rtuth#t LW	000.6	11024	0.0	1200 4	2000.6	9100 7	2000 4	9720.0	2720.0	2720.0	2210
王刀何重		0	TOOLETIN	800.0	1100.4	0.0	1700.4	2000.0	0100.7	3033.4	3720.0	3720.0	3720.0	20180
(MI)E		6	右柱基部	998.6	1103.4	987.3	44.5	876.4	1183.5	2020.7	2179.2	3168.2	3637.0	6173.0
		7	去去想去他	1186.0	1340.4	111.0	731.6	12151	1391.0	1805 7	1858.0	2159.8	2430.0	61893
			denter Wildow (B)	4504.7	1007.4	1000.0	10000			1745.0	17110	1000.0	10010	00000
			左支間右側	1521.7	1682.1	1005.6	1500.0	1613.3	1653.8	1715.8	1741.9	1683.9	1634.9	69923
			左柱上端	988.6	1103.4	987.3	1829.6	1983.8	1970.7	1943.3	1942.7	1893.4	1864.2	492.6
			PHE LAW	000.6	15024	007.2	446	0764	1109 6	2020.7	9170.9	9169.9	2627.0	61791
			CITTME	900.0	1103.4	607.0	44.0	07004	1103.0	2020.7	2170.2	3100.2	3037.0	0174.0
		一最小値												492.0
19 de 31 (D.8++-8	TAN THREE	_				6 m								
保有水平耐力量 這示V7.41服書	でんmmanaster R査 NG NG	2	マップ 型性に	ンジ <u>水平</u> ま さ (m	位 水雪 n) P 0	ドカ kND 値の	ŧ							
保有水平耐力度 道示V741版達 残留支位の紙書 許容慧性率	セルInforce主 構造 NG E NG E NG E NG E NG E NG	ス: 死3	トップ 型性と 1111	ンジ <u>水平</u> ま き (m	位 水 1 1) P 0 0.0	ドカ (編年 kND (編年 0.0	5							
保有水平耐力质 透示V74.1版透 持留支位の展望 許容證性率 設計水平震度	で人和1000年史 製造 NG を NG 単 AG メム=1.000 khc=1.08	ス: 死3	ドップ 型性に 計重	ンジ <mark>水平</mark> ま 。 (m - 佐川	1位本刊 n) P 0 0.0 5.5 35	600 745 Pat 6	5 3 va							
保有水平射力质 這示V7.41限速 残留支位の原理 許容證性率 設計水平觀度 等值重量	ВШ N3 к N3 к N3 дан1000 khc=1.08 We7292.6kN	ス 死 Ste	ドップ 型性に 作 <u>重</u> p1 左支階 o2 左打湯	ンジ 水平 3 (m - 注用	10 水平 m) P 0 00 55 35	R71 (64)	€ 3.√0							
保有水平計力規 道示V741保護 時留支位の展望 許容證性率 助計水平震度 等価重量 線形部材稿の規	E Λ.8110670822 NG E NG μα=1000 khc=108 W=7292.6kN RΦ OK	X Ste Ste	ドップ 型性 に 向 <u>重</u> p1 左支階 p2 左柱基	ンジ <u>本平</u> 男 8(m 店用 部	10 水平 m) P 0 5.5 35 0.0 56	0.0 74.5 60.8	5							
(保有水平)計力度 遠示1V741間違 特留支位の部注 許容疑性率 設計水平震度 等価重量 線形部材稿の度 違のせん影響者	 E へんれいのなど でんれいのなど N3 N3 A3 N3 A3 N3 A3 N3 A3 N3 A3 N3 A3 N3 A4 A4	X 903 Ste Ste	キップ 塑性 に 特重 p1 左支階 p2 左柱基 p3 中央柱	ンジ <mark>水平3</mark> さ (m 応用 参 基部	10 x 4 n) P 0 5.5 35 0.0 56 1.5 63	0.0 74.5 53.9	5 3 ,0							
(保有水平)計力則 遠示V741限速 時留支位の部注 許容證性率 設計水平環境 等価量量 線形部材稿の測 違のせん影明注 P-3	8支 でんか11000年2 N3 N3 メンター1000 khc=108 WT75208N WT75208N WT7550mP/01357458NPusk 全気が555mmP/01357458NPusk	X WEI Site Site Site Site Site	キップ 塑性 に 考重 p1 左支階 p2 左柱基 p3 中央柱 p4 右支間	ンジ 水平 3 (m に 語 基部 広側	10 水 引 n) P 0 5.5 35 0.0 56 1.5 63 5.9 76	P71 (8-4 0.0 745 Pyt. 6 60.8 53.9 195	₿ 3.00							
保有水平計力構 通示V7.41% 通示V7.41% 持定支位の提 特価重量 線形部材稿の構 変の世代思報 アーク 終局支位の い	 E ARTHRORE E N3 X3 A3 A4=1,000 khc=1,08 Wc=7222.6k.N WG OK E 図査ゲースなし グッロ55mm.PyO+35745kN.Pus9 エンラ・ 	Z. Ste	Pyブ 型性 に 考重 p1 左支階 p2 左柱基 p3 中央柱 p4 右支間	ンジ 水平 3 (m 店用 惑 注用 注用	10 水 1 n) P 0 55 35 00 56 1.5 63 59 76 60 78	P71 (6-4 0.0 745 Pva. 6 60.8 53.9 195	9							
保有水平計力度 通示V741間道 特容整性中 設計水平要度 等価重量 線形部材価の用 違のせん思想す P-3 約局支位30 情性力位置更信	2015年、大川市679年2 N3 1 N3 2 N3 2 N3 2 N3 4 Hor 1000 Hor 1000 Hor 1000 Hor 202 Dis.N 3 Str スカム 3 Str.	Z. Ste Ste	Pyブ 塑性 に 作 <u>重</u> p1 左支潜 p2 左柱基 p3 中央柱 p5 中央柱	ンジ 水平 3 (m 応用 怒 法部 上端	10 A P 0 00 55 35 00 56 115 63 59 76 69 78	0.0 745 Pya.6 608 539 195 42.7	5 3 40							
保有水平計力度 通示V741%回差 特留支位の部署 計容器性率 設計水平需成 等価量量 線形器材線の規 塗のせん影照着 P-δ 約局支位の 情性力位置更低 情性力位置更低 情性力作用等	 TOLATIGNE2 NA NA	Z. Ste Ste Ste	評サゴ 評価 市重 p1 左支階 p2 左柱梁間 p3 中央相 p4 右支間 p5 中央相 p6 右柱墨	ンジ ** ^{平3} 左刑 惑 左刑 二端 二端 二端	10 A P 0 00 55 35 00 56 15 63 59 76 69 78 30 87	0.0 745 Pys. 6 608 539 195 42.7 82.4	5							
(後有水平利力) 通示V741版語 調信室位の展望 許容智性年 設計水平震度 等価重量 線形部材幅の過 違のサムル振動 P-0 終周麦位30 情性力位置変化 情性力位置変化 情性力作用電 情性力作用電 情性力作用電	Star E (20,4716)(20,422) Control (20,4716)(20,472) Control (20,4716)(Z. Ste Ste	評価 22位 市重 p1 左支潜型 p2 左柱基 p3 中央柱 p5 中央柱 p6 右支盾 p7 右支盾	ンジ ** ^{件ま} 広用 部 基部 注唱 三 正明 三 二 二 二 二 二 二 二 二 二 二 二 二 二	H0 # A	745 Pva. 6 608 53.9 195 42.7 82.4 22.0 Pu	\$ 3.01							
(译有水平軒7) 遠示V74(開張) 詳留堂位の第 許容望性率 第価章量 線形部材織の第 正常材織の 第一章量 線形部材織の 第一章量 線形部材織の 第一章 一章 一章 一章 一章 一章 一章 一章 一章 一章	12番 ビス/mire株型 (NG NG NG NG NG NG NG NG	2. Ste Ste Ste Ste Ste Ste Ste	切工 型性に 前重	ンジ 水平 3 (m - 佐州 部 法部 二 二 二 二 二 二 二 二 二 二 二 二 二	10 #7 n) P 0 55 35 00 56 15 63 59 76 69 78 30 87 15 92	P.7. Cold 0.0 0.0 74.5 P.V.L.6 60.8 53.9 19.5 42.7 82.4 22.0	5							
(半有水平料力) 道示い74(間密 道示い74(間密) 注音文化74(間密) 注音文化子表現 等信室量 線形型化率表現 等信室量 線形型化構成 算 に音量性 非音量性 非音量性 非音量性 等 に 等 の に 考 に り に 、 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	28 C/Amterike22 100 Na 100 Na+100 Na+100 Na+100 Na+100 Na+100 Na+100 Na+100 Na+100 Na+100 V O 0 O 0 S 0 S 1 S 2 S 2 H=2500 m	2. Ste Ste Ste Ste Ste Ste Ste Ste Ste Ste	中ノ 型性に 角重 p1 左支潜 p2 左柱基 p3 中央柱 p5 中央柱 p6 右支潜 p7 右支潜 p8	ンジ * * * * * 佐州 部 ※ 本 部 二 二 二 二 二 二 二 二 二 二 二 二 二	10 x 1 n) P 0 55 35 00 56 15 63 59 76 69 78 30 97 15 92	00 745 745 808 539 195 427 824 220 Pu	5							
保有水平利利 道示シアス1間 道行などであり、 特徴などは本 等価値での施設 はないたました。 等価値の施設 したのが またのが になった。 の施設 になった。 の作の でのた。 の作の でのた。 の たった。 の たった。 の たった。 の たった。 の にのた。 の たった。 の たった。 の たった。 の たった。 の にのか にのか にのか にのか にのか にのか にのか		2. See See See See See See See See See See	中ノ 翌世に 角重	ンジ * 千3 左側 二 左側 二 二 二 二 二 二 二 二 二 二 二 二 二	10 x 1 n) P 0 55 35 50 56 15 63 59 76 69 78 30 97 15 92	745 Pva. 6 608 5 539 1 195 2 220 Pu	5 >ya							
保有水平時行調 還示V74個週間 接容型性率 助計重量 線形型中化局面 電力性水平觀度 等低型量 線形型中化局面 電力作用碼 降性力值用碼 降性力作用碼 降性力作用碼 降性力作用碼	288 CARE 000 201 1 No 1 No	2. 500 500 500 500 500 500 500 500 500 50	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ンジ オ 本平子 古 左 備 二 二 二 二 二 二 二 二 二 二 二 二 二	10 *** 00 00 55 35 00 56 15 63 59 76 69 78 30 97 15 92	677) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5							
保有水平利行調 還示V741間遭 時容数性率 時容数性率 設計が不需要 線形量数構築の行動 違のサイム開幕 構造力位置支付 構造力位置 構造力可重 路 体の可重 路		2	テップ 型性に 計量	ンジ 大平子 左側 三 左側 二 左側 二 左側 二 上端 三 二 二 二 二 二 二 二 二 二 二 二 二 二	10 *** 00 00 55 35 00 56 15 63 59 76 69 78 30 87 15 92	745 Pvt. 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5 ≥ ₃₀							
保有水平時行調 還示V74個週間 接容型性学 時容型性学 等値影響生態度 意応部本人態構成 算のなん態構成 計画 計画 意位の 意 に 情性力力作用 編 路代単性	25 (Na1100062) 1 Na 1 Na	2. Site Site Site Site Site Site Site C	キップ 翌世に 背重 p1 左支階 p2 左枝巻 p3 中央柱 p4 右支幣 p5 中央柱 p6 右支幣 p7 石支幣 p6 右支幣 p6 右支幣 p7 石支幣 p8 小中科力 = 902210 % 小 = 50×902 - = 50×922 -	ンジ 大平 大 左 市 二 左 間 二 二 二 二 二 二 二 二 二 二 二 二 二	10 *** 00 00 55 35 00 56 15 63 59 76 69 78 30 87 15 92	745 00 745 839 195 427 824 220 Pu	5							
保有水平利行調査 道示V741調査 特容数性学 時容数性学 時容数性学 時容数性学 時容数性学 時容数性学 のサイム部署 第の世人的意思 情性力力可重 路(大単性	2度 10 - 1	2. 500 500 500 500 500 500 500 500 500 50	サップ 2011 新生	ンジ 大平子 広用 二 広用 二 正 二 二 二 二 二 二 二 二 二 二 二 二 二	10 ************************************	F71 0.0 745 60.8 538 195 427 824 220 Pu	\$ 3.01							
译有水平時7月 道示V741間遭 道示V741間遭 時音量 線形量量 線形量量 線形量素量 線形量和個別 調合量量 線形量和個別 電力位置置 情 情性力行荷量 降性力荷量 開 構	28 0.41188822 102 103 104 105 105 105 105 105 105 105 105	2. See See See See See See See See See See	キャナ 課任に 背重 p1 左支援 p2 左右支援 p3 中央柱 p4 右支援 p5 中央柱 p6 右支援 p7 右支援 p8 p8 p9 p1 p1 p2 左右支援 p9 p1 p1 p2 p1 p2 p3 p4 p4 p4 p4 p5 p4 p5 p5 p5 p6 p6 p7	ンジ 大平子 左側 	10 *** 00 00 55 35 00 56 15 63 59 76 69 78 30 97 15 92 55 35 15 92		5 3.00	: 55	iam)					

Q4-6 耐法面内照査に乾燥収縮を考慮するにはどうすればよいか?

- A4-6 乾燥収縮による影響は、「許容応力度法|計算条件|荷重条件」画面の『乾燥収縮』で設定してください。 死荷重時の断面力算出の際にその影響を考慮します。
- Q4-7 保耐法面内照査のハンチ端照査が既設時にNGとなったため、梁を鉄筋コンクリート増厚補強したがそれでもNGになる。 ハンチ端照査をOKとする方法は?
- A4-7 保耐法面内照査のハンチ端照査は、線形部材と仮定した部材が塑性域に入っていないことを確認するために、ハンチ端 断面において、終局水平耐力が作用したときに生じる曲げモーメントが終局モーメントを下回っていること(M≦MIs)を 照査しています。

M:終局水平耐力が作用したときにハンチ端に生じる曲げモーメント

MIs:ハンチ端断面の限界状態曲げモーメントで、終局水平耐力が作用したときにハンチ端に生じる軸力を用います。 鉄筋量を増やすことにより、MIsが大きくなりますが、同時に塑性ヒンジ点のMIs,慣性力作用位置の水平力が多く載荷さ れることになるため終局水平耐力も大きくなり、その結果Mも大きくなります。したがって、ハンチ端照査においては、鉄 筋量を大きくすることが常に有利に働くとは限らず、確実にOK(M≦MIs)とする方法をご提示することができません。 ・補強設計であれば、はり,柱の補強工法

・新設設計であれば、はり、柱の形状や鉄筋量(配置)

を変更しながら色々と試行するのも一つの手段だと考えます。

- Q4-8 レベル2直角方向の計算において、「柱の変形が慣性力方向と一致しないため、慣性力作用位置の水平変位算出方法を変 更しました」とはどういうことか?
- A4-8 上部工慣性力作用位置の水平変位は、通常、柱とはりの結合部の格点の水平変位と回転角の平均値から算出しますが、 この算出方法で回転角のステップ増分が負となる場合は算出方法を変更します。 算出方法を変更したとき、このメッセージが表示されます。

Q4-9 結果確認画面の解析状態に「構造が不安定となる直前の第Xステップを終局ステップとしました。」と表示される。この結果を採用してもよいか?

商軸方向 茝	[角方向						
概要 詳細							
方向「両方向」							
【解析状態	9						
慣性力 方向	地震動 タイブ	メッセージ					
左から右	I	情報:構造が不安定となる直前の第6ステップを終局ステップとしました。					
右から左	I	情報:構造が不安定となる直前の第6ステップを終局ステップとしました。					
左から右	Π	情報:構造が不安定となる直前の第6ステップを終局ステップとしました。					
右から左	I	情報:構造が不安定となる直前の第6ステップを終局ステップとしました。					

A4-9 2柱ラーメン橋脚では4ステップ、3柱ラーメン橋脚では7ステップ、4柱ラーメン橋脚では10ステップを終局ステップとして います。

> 正常終了 (エラーなし) した場合でも構造系が不安定となるステップを上記のように設定して終局としています。 特に3柱、4柱ラーメン橋脚モデルは、この最終ステップに達する前に構造系が不安定となる場合があります。 そのとき、その不安定となる直前を終局ステップとして終了するようにしています。 構造系が不安定となる直前の結果を採用していることには相違ありませんので、この結果を採用しても問題ないと思いま す。 なお、この結果の最終的な適用につきましては設計者のご判断により決定していただきますようよろしくお願いいたしま す。

Q4-10 結果確認画面の解析状態に「エラー:ステップ解析異常終了、支承の鉛直荷重算出に失敗しました」と表示される。

A4-10 支承数が1個のため発生するエラーです。支承は、上部工位置の左右に1つ以上ある必要があります。 入力「上部工/支承」画面で、「支承数」を2個以上として、それぞれの支承の「直角方向位置」を設定してください。 上部工荷重は「道路橋の耐震設計に関する資料 平成9年3月」P3-21の図-3.3.3に従って各支承位置の集中荷重に換算 されます。

支承数が1個のとき、偶力となる鉛直荷重(Ri)を換算できないため計算エラーとして処理しています。

Q4-11 ラーメン橋脚の橋軸直角方向照査で「終局変位δuを算出できません」のエラーメッセージが表示される場合の対応方法 は?

 A4-11
 Ver.9の場合: Ver.9より、入力画面「レベル2地震動|橋脚条件」に「最終Stepのtanθ=0によるδu算出エラー」の対処方 法として「θpu到達時δuを無限大として計算続行」の選択を追加しました。

終局変位δuは、平成14年道示V 10.8 P187 viii)より、「全ての塑性ヒンジ点が全てθpuに達したとき、もしくは4つの塑性 ヒンジのいずれかの断面に生じる曲率がそれぞれの断面の終局変位の2倍に達したときのいずれか早い方」とされていま す。

しかし、最終ステップ以降の塑性回転角の増分が0度となった場合、「全ての塑性ヒンジ点が全てθpuに達したとき」を求めることができずに「終局変位δuを算出できません」のエラーメッセージが表示されます。

新しく追加したオプション「θpu到達時δuを無限大として計算続行」は、「全ての塑性ヒンジ点が全てθpuに達したとき」 の終局変位を無限大と判断して、終局変位は「塑性ヒンジのいずれかの断面に生じる曲率がそれぞれの断面の終局曲率 の2倍に達したとき」の値を採用します。

※平成24年道示では「塑性ヒンジのいずれかの断面に生じる曲率がそれぞれの断面の終局曲率の2倍に達したとき」に相当する規定が削除されました。このため、平成24年道示準拠時は「θpu到達時δuを無限大として計算続行」の選択肢は 使用できません。

Q4-12 レベル2直角方向の計算において、「Mu (またはMIs) 算出で軸力が範囲外となりました」とは?

A4-12 レベル2直角方向照査では、各塑性ヒンジ候補点について、死荷重時、または終局時の軸力における終局曲げモーメント Mu(または限界状態曲げモーメントMIs)を算出します。

H24道示に準拠する場合(MIs算出の場合)、入力画面「レベル2地震動|橋脚条件」のタブ「計算条件」の「橋軸方向、直角方向共通項目|MIs算出時, 圧縮限界地が算出できない場合に引張限界だけを求める」にチェックを入れることで、このエラーを回避できる可能性があります。

チェックを入れた場合、引張軸力または小さい圧縮軸力と釣合う「コンクリートの圧縮ひずみが限界圧縮ひずみに達する とき」の状態を求められない場合に、「軸方向鉄筋の引張ひずみが許容引張ひずみに達するとき」を限界状態としてMIs を算出します。

(この計算オプションに関する詳細は製品ヘルプ「入力|レベル2地震動ー橋脚条件」の【MIs算出時、圧縮限界値が算出 できない場合に引張限界だけを求める】をご参照ください。)

H14道示に準拠する場合、軸力とMuの関係は、H14道示V図-解10.8.4の「軸力-終局曲げモーメントの相関関係図」 (P185)のようなタマネギ形になりますので、軸力(縦軸)がこの形の範囲外になる場合はMuを算出することができず、 このエラーが発生します。 このエラーは、ほとんどの場合、引張軸力(軸力が負)の条件で発生します。

対策の1案として、鉄筋配置を変更して、発生軸力においてもMuを算出できるように「軸カー終局曲げモーメントの相関 関係」を変更することが考えられます。

具体的には、最圧縮縁以外の鉄筋量を大きくすることで、Muを算出できる最小軸力を小さくすることができます。

【Muが求まる最小軸力の算出方法】 断面のMuが求まる最小軸力Nminは、最圧縮側鉄筋は鉄筋の圧縮降伏ひずみに達し、これ以外の鉄筋が全て引張降伏ひ ずみに達したときの軸力です。 算出式は下記のようになります。 Nmin=-(全鉄筋量-2×最圧縮側鉄筋量)×σy σy:鉄筋の降伏点 両方向の慣性力に対応する(正負両方の曲げモーメントに対応する)ためには、最外縁鉄筋にならない鉄筋量(側面鉄筋 など)を増やすことが有効です。

Q4-13 RC巻立て補強モデルの橋軸直角方向L2照査において、柱上端でMy0≦Muの関係が成立せず計算ができない。対処方 法は?

A4-13 下記3つの方法が考えられます。(必ずしも解決できるとは限りません。ご了承下さい。)

方法1. 柱上端で終局ひずみ発生位置を「補強軸方向鉄筋位置」とする方法 補強主鉄筋が無効であっても、横拘束効果が見込める場合は、 入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」画面で、 「柱補強軸方向鉄筋を無効とする区間の取扱い」の、 「終局ひずみ発生位置」を「補強軸方向鉄筋位置」とすることで、My0≦Muとなる可能性があります。

方法2. 柱上端で、補強コンクリートを考慮しない方法 入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」画面で、 「柱補強軸方向鉄筋を無効とする区間の取扱い」の、

「補強コンクリートを無効とする」にチェックを入れると、

柱上端では、補強コンクリートを考慮せず既設断面のM-φ関係で計算します。 補強コンクリートが考慮されないと、鉄筋のかぶりが小さくなり、My0≦Muの関係になりやすくなります。

方法3. 柱上端でも補強主鉄筋を考慮する方法

補強主鉄筋がはりに定着しており、柱上端でも軸方向主鉄筋として考慮できる場合は、 入力画面「橋脚形状」のタブ「柱補強」の「補強鋼材軸方向有効範囲長」が、柱上端を含むように設定してください。 これにより、柱上端のM-φ関係に補強主鉄筋を考慮するようになるため、My0≦Muとなる可能性があります。

Q4-14 結果確認画面の解析状態に「エラー:限界状態変位δlsを算出できません。」と表示される。

A4-14

計算オプション画面 「レベル2地震動|橋脚条件」のタブ 「計算条件」の 「最終Stepのtanθ=0によるδIs算出エラー」 をご 検討下さい。 このエラーでは、図 4-14-1 のように、 「詳細」 タブの 「照査結果」 項目の 「限界状態変位δIs」 に表示される表の一部

が"エラー"となります。 これは、終局ステップ後の強制変位解析において、塑性ヒンジ点の折れ角に変化量が発生しないことが原因しています。 (図4-14-2)

これにより、終局塑性回転角θpuのときの上部工変位δlsが求められず(図4-14-3)、エラーを表示しています

 Q4-15
 結果確認画面の解析状態に「エラー:死荷重時の(M, N)と(N-MIs)チェックエラー、死荷重の結果がMN

 曲線外に存在します。」と表示される。
 回避方法は?

橋	軸方向(直角方向						
梮	腰 詳	H						
7	方向一下方向							
	【解析状》	熊 】						
	慣性力 方向	地震動 タイブ	メッセージ					
	左→右	Ī	エラー:死荷重時の(M,N)と(N-MIs)チェックエラー 死荷重の結果がMN曲線外に存在します					
	右→左	Ī	エラー:死荷重時の(M,N)と(N-Mls)チェックエラー 死荷重の結果がMN曲線外に存在します					
	左→右	Π	エラー:死荷重時の(M,N)と(N-Mls)チェックエラー 死荷重の結果がMN曲線外に存在します					
	右→左	Ī	エラー:死荷重時の(M,N)と(N-Mls)チェックエラー 死荷重の結果がMN曲線外に存在します					

A4-15 死荷重時の軸力が、断面の限界状態曲げモーメントMIsを算出できる軸力の最小値を下回っているためにこのエラーが表示されます。

【原因】

・はりの側面鉄筋が定義されていない場合や側面鉄筋量が少ない(最小軸力の値に大きく影響します)

・はりに引張軸力が発生している

【MIsが求まる最小軸力の算出方法】

断面のMIsが求まる最小軸力の算出方法は以下のように求められます。

最圧縮側鉄筋は鉄筋の圧縮降伏ひずみに達し、これ以外の鉄筋が全て引張降伏ひずみに達したとき軸力が最も小さくなるため、次式のようになります。

Nmin=-(全鉄筋量-2×最圧縮側鉄筋量)× σ y

 σy :鉄筋の降伏点

【対策】

ー概に全てのケースに言える事ではありませんが、はり断面の側面鉄筋量を増やす事が有効だと思われます。 また、新設設計や補強設計であれば、はり、柱の断面や鉄筋を見直す事も検討してください。

Q4-16 結果確認画面の解析状態に「エラー:降伏剛性算出エラー、断面にMc<Myo<MIsの関係が成立しないため計算を中断しました」と表示される。回避方法は?

1	商軸方向	ŋ i	直角方向	
	概要	詳	⊞)	
	方向	両フ	ත්	•
	【解析	状	熊】	
	慣性	力	地震動 タイブ	メッセージ
	左→	右	Ī	エラー:降伏剛性算出エラー 断面にMc≦My0≦MIsの関係が成立しません
	右→	左	Ī	エラー:降伏剛性算出エラー 断面にMc≦My0≦MIsの関係が成立しません
	左→	右	Π	エラー:降伏剛性算出エラー 断面にMc≦My0≦MIsの関係が成立しません
	右→	左	Ī	エラー:降伏剛性算出エラー 断面にMc≦My0≦MIsの関係が成立しません

A4-16

結果画面の直角方向-詳細で確認すると、下図のようになっています。

【原因】

ハンチ筋が未定義(入力されていない)など、かぶりが大きいとMyo>MIsになりやすくなります。 【対策】

エラーとなっている箇所の鉄筋(もしくは断面)を見直す必要があります。このようなケースでは、入力「橋脚鉄筋-鉄筋 配置」 画面のはり支間(左端部、右端部)を再度ご確認ください。

Q4-17 橋軸直角方向L2照査の「線形部材端照査」は、何の照査か?

A4-17 線形部材端照査は、L2直角方向照査時の骨組モデルで仮定した塑性ヒンジ点の位置が妥当であるかを照査しています。

NGの場合は、仮定した塑性ヒンジ以外の箇所でM>MIs (またはMu)になっている状態なので、塑性ヒンジ候補点の位置が妥当ではありません。

- Q4-18 結果確認画面の解析状態に「エラー:死荷重時のS≦Psチェックエラー。死荷重時のせん断力がPsを超えました」と表示 される。
- A4-18 塑性ヒンジ候補点において、死荷重時のせん断力がせん断耐力を超えている場合にこのエラーが表示されます。
 橋軸直角方向のL2照査では、終局水平耐力に相当する慣性力を作用させた時のせん断力とせん断耐力の関係から破壊 形態を判定しますが、
 死荷重時の状態でせん断力がこれを超えている場合は計算を中断しています。
 この現象を回避する例として、帯鉄筋量Awを大きくして梁のせん断耐力大きくすることが考えられます。

Q4-19 本製品を使って、水門の保有水平耐力照査は可能か

A4-19 水門の保有水平耐力照査については、土木研究所より「地震時保有水平耐力法に基づく水門・堰の耐震性能照査に関する計算例 平成20年3月」が示されています。 この照査方法は、道路橋示方書で示されているラーメン橋脚の設計計算とは慣性力の載荷方法などに違いがあるため対応できません。 この計算例に沿った照査は、「水門の設計計算」、または「柔構造樋門の設計」の門柱L2照査で対応しています。

Q4-20 終局変位算出でエラーとなっているが、照査結果はエラーなしで表示されている。この照査結果に問題はないか。

A 4 - 2 0 破壊形態が曲げ破壊型以外であれば、照査結果に問題はございません。 破壊形態が曲げ破壊型以外の場合は許容塑性率μaは固定値1.0となりますので、終局変位δuを使用しません。 この場合、終局変位算出が算出できない状態でも照査を行うことが可能です。

Q4-21 **柱の連続繊維巻立て補強でM-**φ関係が算出できずエラーが発生する

 A 4 − 2 1 原因の可能性の1つとして、連続繊維巻立て補強を考慮したコンクリートー応力度ひずみ曲線を算出する際の下降勾配 Edes算出(Edes=(σcc−0.8・σcc') / (εcu−εcc))において、σcc−0.8・σcc'<0となりEdesが負になっていることが 考えられます。
 計算書の「柱の保有耐力法照査(面外方向)」または「ラーメン橋脚の保有耐力法照査(面内方向)」内の「コンクリート 応力度−ひずみ曲線」で、補強した各断面のσcc、σcc'をご確認くださいますようお願いいたします。

Q4-22 柱の鉄筋コンクリート巻立て補強時に、入力画面「橋脚形状」のタブ「柱補強」で入力する「補強鋼材軸方向有効下端」 はどのような数値を入力すればよいか?

A 4-22 補強鉄筋を軸方向鉄筋として考慮する範囲および考え方につきましては、特に基準書類に明記されておりません。

考え方の1つとしてH24道示IV P189「鉄筋の定着」が参考になるかと存じますが、最終的には設計者のご判断となりますことをご了承いただきますようお願い申し上げます。

Q4-23 UC-win/FRAME(3D)でエクスポートしたモデルでプッシュオーバー解析を行ったが、P-δ曲線が一致しない。原因は?

A 4 - 2 3 本製品でエクスポートしたUC-win/FRAME(3D)モデルは動的解析用のもので、保有水平耐力法の結果を再現させること は目的としていないことをご了承ください。

> 【橋軸直角方向について】 P-δ曲線が一致しない主な原因として、下記①~③が考えられます。

①非線形特性の違い

保有水平耐力法のモデルははりと柱の両端のみ、塑性ヒンジ候補点を設けます。 塑性ヒンジ候補点ごとにH14道示Vの図ー解10.8.4 (P185)のような軸力ー曲げモーメントの相関関係を作成して塑性化 を判断しますので、軸力変動を考慮した完全弾塑性バイリニアモデルとして解析しています。一方、UC-win/FRAME(3D) のM-Φモデルは、死荷重時の軸力から断面から算出しており軸力変動を考慮しておりません。

②荷重条件の違い 保有水平耐力法では、「道路橋の耐震設計に関する資料 平成9年3月」の図-3.3.3 (P3-21) のように上部工荷重のみ 慣性力として考慮します。これに対してエクスポートモデルは、ラーメン橋脚の自重も慣性力として有効となっています。こ のため、変形形状が異なることが考えられます。

③上部工作用位置の水平変位δ 保有水平耐力法で使用する橋軸直角方向の水平変位は、「ラーメン橋脚の設計」のヘルプ「結果確認|レベル2地震動照 査ー橋脚」の「(2)直角方向-2)詳細-・照査結果-慣性力位置変位」で示した方法で算出しています。

【橋軸方向について】

ラーメン橋脚の橋軸方向の保耐照査は、柱ごとに単柱式橋脚と同じ方法で照査します。 このときのP-δ曲線は、H24道示Vの式 (10.3.1~7)(P167~9)のように柱基部のM-Φ関係から作成し、慣性力はh (上 部工慣性力作用位置)に載荷した条件で求めます。一方、エクスポートモデルの橋軸方向柱基部のM-Φ関係は、式(解 7.3.1)(P122)を降伏点とするバイリニアモデルとしています。

結果が異なる主な原因として、下記が考えられます。 ①慣性力の載荷条件が異なります。 ②ラーメン橋脚の橋軸方向保有水平耐力照査は柱ごとに照査しますので、P-δ曲線は他の柱の影響を受けません。

しかしエクスポートモデルのプッシュオーバー解析ではラーメン橋脚を一体として照査しますので、他の柱(または梁)が 降伏した時、残りの柱に断面力が集中する現象が発生して結果に相違が生じることが考えられます。

Q4-24 入力画面「レベル2地震動|共通条件」の「死荷重時の荷重ケース」で橋軸方向と橋軸直角方向のケースが選択可能になっているが、どちらを選べばよいか

 A 4 - 24
 橋軸方向の偏心を考慮する場合は入力画面「レベル2地震動|共通条件」の「死荷重時の荷重ケース」で橋軸方向ケース を選択してくださいますようお願い申し上げます。
 橋軸方向ケースを選択した場合は、橋軸方向、直角方向とも偏心を考慮することができます。
 直角方向ケースを選択した場合は、橋軸方向の偏心を考慮することができません。

「死荷重時の荷重ケース」についての詳細は、入力画面「レベル2地震動|共通条件」の「ヘルプ」ボタンで表示されるページの「【橋軸ケース及び直角ケースが表示される理由】」をご覧ください。

Q4-25 レベル2地震動橋軸方向の照査で初降伏変位δy0の算出エラーにより照査結果がエラーになるが原因がわからない

A 4 - 2 5 1つの可能性として、柱基部以外の断面で初降伏水平耐力到達時のM>限界状態曲げモーメントMIs(または終局曲げ モーメントMu)になっている可能性があります。

> 橋軸方向計算は単柱式橋脚と同様にH24道示Vの式 (解10.3.6) (P174)を使って、柱の各高さ位置のφiにより初降伏変 位δy0を計算します。

この曲げモーメントMがMIs (またはMu)を超えた場合、φiを求めることができないためエラーになります。

このエラーを回避できる可能性のある計算条件として下記が挙げられます。 ①入力画面「橋脚形状」のタブ「柱補強」でエラーが発生する柱の「補強鋼材軸方向有効範囲長」を長くする。

柱のRC補強モデルの場合は、

②入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」で、「柱補強軸方向鉄筋を無効とする区間の取扱い| 補強コンクリートを無効とする」のチェックを外す。

③入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」で、「柱補強軸方向鉄筋を無効とする区間の取扱い| 柱上端の補強鉄筋の取扱い」を「定着鉄筋のみ考慮する」に変更する。

④入力画面「レベル2地震動|橋脚条件」のタブ「補強オプション」で、「柱補強軸方向鉄筋を無効とする区間の取扱い| 柱既設軸方向鉄筋の取扱い」の「段落しが行われていないものとみなす」にチェックを入れる。

Q4-26 橋脚躯体のレベル2地震動照査において、横拘束筋を考慮するべきかをどのように判断するか

A 4 – 2 6 既設橋脚の場合、H14道示V 10.6の条件を満たしていれば、横拘束効果を考慮します。 満たしていなければ、考慮しません。 この計算条件は、入力画面「レベル2地震動照査 | 橋脚条件」のタブ「計算条件」の「帯鉄筋とフックの定着状態」で指定 します。 横拘束効果を考慮しない場合は、「定着されていない」を選択してください。

Q4-27 ラーメン橋脚橋軸直角方向のレベル2地震動照査における骨組モデルの初期剛性は固定値か

A 4 - 2 7 固定値です。

「道路橋示方書・同解説 V耐震設計編に関する参考資料 平成27年3月」P2192)の解説では、降伏限界の曲げ剛 性Elyについて「曲げ剛性を算出する際の軸力としては,死荷重作用時に各部材に生じる軸力とする。」と記述されていま す。

これに従って、死荷重時の軸力における降伏剛性を固定値として与えています。

Q4-28 はりのレベル2地震動照査で、はり部材の橋軸直角方向の支間部は行わないのか

A 4 - 2 8 橋軸直角方向のレベル2地震動照査は、はり、柱を含めたラーメン構造として照査しています。 はり部材の支間部はこれに含まれますので、照査を行っておりません。

- Q4-29 形状、荷重条件とも左右対称で、配筋も右側部材の配筋を左側部材から参照して定義したラーメン橋脚モデルだが、レベ ル2地震動照査の面内解析では右→左方向と左→右方向の結果が異なっている
- A 4 2 9
 入力画面「橋脚鉄筋」のタブ「鉄筋配置|主鉄筋配置」で、柱の配筋を参照している場合、参照先の鉄筋配置が反転されないことにご注意ください。
 例えば、左柱の配筋が左側12本、右側10本で左右対称でない場合、これを右柱で参照すると、右柱も左側12本、右側10本の配筋になります。
 左右対称となるためには、右柱は左側10本、右側12本とする必要がありますが、参照機能ではそのようになりません。この場合は、参照機能を使用せず、それぞれの配筋を定義する必要があります。
- Q4-30 既設橋脚でMy0>Muとなりレベル2地震動照査がエラーになるが、回避策はあるか

My0>Muとなる場合は、H14道示Vの図一解10.8.2 (P183)から求まる降伏剛性を適切に処理することができないため、 エラーとして計算を中断しています。 断面高に比較して、鉄筋のかぶりが大きい場合に、My0>Muの関係になりやすくなります。

- Q4-31
 入力画面「レベル2地震動照査 | 橋脚条件」のタブ「荷重条件」でWuを全て0.1倍にして結果を比較したところ、水平耐力 Pa(kN)は変化しなかった。なぜか。
- A 4 3 1 慣性力は「道路橋の耐震設計に関する資料 平成9年3月」の図-3.3.3 (P3-21)のように、上部工重量Wuのみ考慮しま す。 この慣性力を徐々に大きくして、2柱式橋脚の場合は4つ目の塑性ヒンジ点が発生したときの水平変位、水平力、断面力が 終局状態です。 支承位置や上部工慣性力作用位置等の条件が同じであれば、4つ目の塑性ヒンジ点が発生したときの水平変位、水平力、 断面力は同じになります。
- Q4-32 レベル2地震動照査で任意の死荷重を考慮したい。
- A 4 3 2 入力画面「許容応力度法 | 基本荷重ケース」のタブ「任意荷重ケース」で定義した任意死荷重は、レベル2地震動照査時の 死荷重として考慮されます。
- Q4-33 結果画面「レベル2地震動照査|橋脚」のタブ「直角方向|詳細|照査結果」の「破壊形態」でせん断力が赤色で表示されるが問題ないか。
- A 4 3 3 せん断力Sがせん断耐力Ps、Ps0を超えた場合に青、赤文字で表示しています。 この文字色は、照査結果のOK、NGを表すものではありません。

赤文字のせん断力が1つ以上あれば、せん断破壊型です。 赤文字がなく青文字のせん断力が1つ以上あれば、曲げ損傷からせん断破壊型です。 赤文字も青文字もない場合は、曲げ破壊型です。

詳細は、ヘルプ「結果確認|レベル2地震動照査-橋脚」の「(2)直角方向|2)詳細|・照査結果|-破壊形態」をご覧ください。

Q4-34 Mc>My0となりレベル2地震動照査がエラーになるが、回避策はあるか。

A 4 - 3 4
 入力画面「レベル2地震動照査 | 橋脚条件」のタブ「計算条件」の設定で回避することができます。
 橋軸方向の場合は、「橋軸方向解析設定 | Mc≦My0≦MIsの関係逆転時」の「最も小さいφを用いる」にチェックを入れることでエラーは回避されます。
 橋軸直角方向の場合は、「直角方向解析設定 | ひび割れ (Mc、φc)を計算する」にチェックを入れることでエラーは回避されます。
 この機能の詳細は、ヘルプ「入力 | レベル2地震動-橋脚条件」をご覧ください。

Q4-35 **残留変位が0.0mmになる**。

A 4 - 3 5 残留変位δRは、H24道示Vの式(6.4.9)(P.100)により算出します。 この式で使用する最大応答塑性率μrが1以下の場合、橋脚は塑性化しませんので、残留変位は0.0mmになります。

5 計算(基礎)

Q5-1 水平変位を緩和する杭基礎の設計で〔杭基礎設計便覧(H19.1モデル)〕と[杭基礎設計便覧(平成19年)]はどのように使い分けたらよいか?

A 5-1 Ver.9の場合:

Ver.9で「杭基礎設計便覧(平成19年)」に準拠した杭基礎の設計を行う場合は、このチェックを付けていただくようにしています。

また、このチェックを付けない場合は道示IVに準拠した設計になります。

この設定と『水平変位を緩和する杭基礎の設計[杭基礎設計便覧(H19.1)モデル]』の設定は直接関係していません。

本プログラムでは、水平変位を緩和する杭基礎の設計を区別するため、下記のような表記にしています。

・水平変位を緩和する杭基礎の設計[道示Ⅳ(H14.3)モデル] ⇒道示Ⅳ12.8(5), 12.1の解説(1)-2)に記述されている理論 により計算を行います。

・水平変位を緩和する杭基礎の設計[杭基礎設計便覧(H19.1)モデル] ⇒杭基礎設計便覧(平成19年1月) P263に記述 されている理論により計算を行います。

例えば、

「杭基礎設計便覧(平成19年)」=チェックをOff状態水平変位を緩和する杭基礎の設計[杭基礎設計便覧(H19.1)モデル]を選択した場合だと、道示IVに準拠した設計を行いますが、水平変位を緩和する杭基礎の設計の計算理論のみを杭基礎 設計便覧(P263)に記述された方法を適用し計算する事になります。 Ver.10以降の場合:

Ver.10から「杭基礎設計便覧(平成19年)」の選択(チェックボックス)を削除しました。Ver.10以降は平成24年道示IVに 準拠した設計を行います。

また、水平変位を緩和する杭基礎の設計は、道示IV(H14.3)モデルの選択肢を削除しました。

Q5-2 水平変位を緩和する杭基礎の設計において概略結果を出力するにはどうすればよいか?

A 5-2 計算書「杭基礎の設計-安定・断面計算結果一覧表」を出力してください。

Q5-3 柱補強(RC巻立て)厚を考慮したフーチング照査を行う方法は?

A5-3 入力画面「許容応力度法|計算条件」のタブ「断面照査条件」の

「フーチングの断面照査|フーチング照査位置と補強時の有効幅」内のチェックボックス 「直角方向照査時の柱前面位置|柱補強幅を考慮する」、 「橋軸方向照査時の柱前面位置|柱補強幅を考慮する」 にチェックを入れて計算してください。

Q5-4 「レベル2地震動」-「共通条件」で「死荷重時の荷重ケース」で水位ありのケースを設定しても基礎の計算に反映されない(浮力ありとなしで結果が同じとなる)。

- A5-4 杭基礎のレベル2地震時照査では「レベル2地震動|共通条件|死荷重時の荷重ケース」で設定する水位を用いています が、上載荷重Qを算出するときは以下の設定から算出しています。
 - ・地層データ「入力|地層」
 - ・地表面からフーチング底面までの距離 (D1)「入力 | 杭配置 | 基礎天端」
 - ・水の単位重量 (γw)「入力 | 基本条件」
 - ・地表面から水面までの距離 (H1)「入力 | 地層 | 液状化」 浮力無視/考慮時の計算を行うときは、以下の2箇所をご確認下 さい。
 - ・「レベル2地震動|共通条件|死荷重時の荷重ケース」で設定する水位
 - ・「入力|地層|液状化」で設定する地表面から水面までの距離(H1)

Q5-5 直接基礎のレベル2地震動照査(柱間照査)において、柱基部断面力を算出している水平震度はどのように算出されている か?

Q5-6 杭基礎のレベル2地震動照査のフーチング照査(曲げ照査)で張り出し部に配置された杭位置の断面照査を省く方法は?

A5-6 レベル2地震動-基礎条件-フーチングで杭中心位置の曲げ照査を「照査しない」としてください。

Q5-7 レベル2地震時照査(杭基礎)を作用力直接指定で計算するにはどうすればよいか?

A5-7 レベル2地震動-基礎条件-条件①画面で「作用力直接指定による杭基礎L2照査=照査する」に変更し、作用力直接指 定時の画面で必要な入力を行ってください。 この照査は、初期作用力載荷~全作用力載荷までを荷重増分法により計算し、全作用力載荷時に基礎が降伏に達しない ことを照査しますが、応答塑性率照査までは計算を行いません。

Q5-8 杭基礎のレベル2地震時照査の計算について増し杭工法時の既設のみが負担する既設死荷重を低水位、高水位で分けて いない理由は?

A5-8 増し杭工法時の設計方法は、「既設道路橋基礎の補強に関する参考資料(平成12年2月)社団法人日本道路協会」の記述 を参照していますが、 ここでは、補強前の死荷重に対しては既に既設杭が負担し、その反力が残留していると考え、補強後の荷重増分や地震力 に対しては既設杭と増し杭とで分担すると考えています。 既設杭の残留反力は、補強後の水位変動により変わるものではないと考え、1ケース(組み合わせ荷重ケース画面-増し杭 工法時の既設のみが負担する既設死荷重)を指定していただくようにしています。

Q5-9 レベル2地震時照査(杭基礎)を作用力直接指定で慣性力の方向を指定する方法は?

A 5 - 9 慣性力の方向は、入力した作用力(柱基部断面力)のHpの符号で判断しています。 ※khgは正の値を指定してください。

Q5-10 杭基礎の入力画面「レベル2地震動|基礎条件」のタブ「条件①」で「作用力直接指定による杭基礎L2照査」を「照査する」とした場合、躯体の形状等の入力は必要か

A5-10 必要です。 初期作用力計算時に躯体形状や死荷重時の支承反力による偏心モーメント、水平力を参照します。 ただし、鉛直作用力Vi、Vaのみ柱基部のVpから算出した値を使用します。 (鉛直作用力は、初期作用力、全作用力とも同じ値です。)

Q5-11 梁柱モデルで計算した柱基部の断面力を基礎製品用にエクスポートできる機能はないか

- A5-11 申し訳ございませんが、用意しておりません。 また、レベル2の橋軸直角方向の照査では、ラーメン橋脚の基部の鉛直力が慣性力に応じて変化します。 独立フーチングの場合はレベル2照査で鉛直力の変化を考慮する必要が生じますが、基礎製品ではこれに対応しておりま せん。 ご了承ください。
- Q5-12 杭基礎モデルの入力画面「レベル2地震動照査 | 基礎条件」のタブ「条件①」の「着目点ピッチ」で指定したピッチに分割されない。
- A 5 1 2 分割ピッチは、地層ごとに設定しています。 層下端が、杭頭~1/ β の範囲内の場合、「上」の設定値が適用されます。 層下端が、1/ β ~(1/ β と杭先端の中点)の範囲内の場合、「中間」の設定値が適用されます。 層下端が、(1/ β と杭先端の中点)~杭先端の範囲内の場合、「下」の設定値が適用されます。

Q5-13 フーチングのレベル2地震動照査で、版としてのせん断照査が行われないのはどうしてでしょうか?

A 5-13 H24道示IVの図-解8.7.11 (P252)に示される「版としてのせん断照査が不要となるフーチングの例」に該当していないか、 ご確認ください。

6 ファイル

- Q6-1 鉄筋情報や断面情報を含めた「UC-win/FRAME(3D)」との連動に対応しているか?
- A6-1 Ver.8から「UC-win/FRAME(3D)」へのエクスポート機能に対応しました。 メニュー「ファイル|UC-win/FRAME(3D)データのエクスポート」によりUC-win/FRAME(3D)ファイルへエクスポートする ことが可能です。

Q6-2 RhSplash.dll、RCSplash.dllからウィルスが検知された。

- A6-2 ー部のウィルスチェックソフトで、RhSplash.dll、RCSplash.dllからウィルスが検知されたと報告されるケースが発生しま した。 本件につきましては、開発元に確認をお願いして、2012年10月9日に誤検知に対する修正を行っていただいております。
- Q6-3 UC-win/FRAME(3D)エクスポート時にメッセージ「UC-win/FRAME(3D)エクスポートは、支承位置(橋軸方向位置≠0)を 含むケースには対応していません。」が表示され保存することができない
- A6-3 「UC-win/FRAME(3D)データのエクスポート」 画面で「支承とWu及びRd」を「設定する」としている場合にこのメッ セージが表示されます。 このメッセージを回避するためには、入力画面「上部工/支承」で支承の「橋軸方向位置」を全て「0.000」(m)にする必要 があります。 ご了承ください。
- Q6-4 「ラーメン橋脚の設計計算」で作成した「震度算出(支承設計)」モデルを「Engineer's Studio」、「UC-win/FRAME(3D)」 にエクスポートすると、ラーメン橋脚が降伏剛性の骨組モデルになり、断面形状などの情報がエクスポートされない
- A6-4 「ラーメン橋脚の設計計算」のメニュー「オプション | 動作環境の設定」の「非線形動的解析用データを付加する」に チェックを入れた後、「震度算出 (支承設計)」ファイルへ保存してください。
- Q6-5 Engineer's Studioへのエクスポートモデルで出力した $M-\phi$ 関係を確認することは可能か
- A6-5 可能です。

メニュー「ファイル | Engineer's Studioデータのエクスポート」で開く画面の「モデル選択」で選択したモデルの $M - \varphi$ 関係を、画面右下の「 $M - \varphi$ 、 $M - \theta$ 関係確認」のボタン「プレビュー」で出力する計算書で確認することができます。

- Q6-6 「ラーメン橋脚の設計計算(部分係数法・H29道示対応)」、「ラーメン橋脚の設計・3D配筋(部分係数法・H29道示対応)」のファイルを読み込むことは可能か
- A6-6 H29道示対応版製品のファイルを読み込むことはできません。 H29道示対応版製品から本製品のファイルを読み込むことは可能ですが、計算手法が大幅に変更されているため、形状及 び配筋以外の項目については再確認が必要となりますことをご了承ください。
- Q6-7 「震度算出 (支承設計)(旧基準)」がインストールされていないPCで、震度連携ファイル (*.F3W) での保存、読み込みは 可能か
- A6-7 可能です。
- Q6-8 旧基準の「RC下部工の設計・3D配筋」、「RC下部工の設計計算」、およびSuiet版のラーメン橋脚ファイルの各製品のファ イル拡張子は同じだが、製品間で読込可能なバージョンはどのように判断すればよいか。
- A6-8 ファイルバージョンが同じか、それ以前のバージョンで作成されたものであれば読込可能です。 使用中の製品のファイルバージョンは、メニュー「ヘルプ | バージョン情報」のタブ「主要モジュールのバージョン一覧」の 実行exeファイル名の「バージョン」列に表示されます。

Q&Aはホームページ(RC下部工の設計・3D配筋(旧基準)/ラーメン橋脚の設計・3D配筋(旧基準) https://www.forum8.co.jp/faq/ucwin/ucwinrcqa-2.htm)にも掲載しております。

RC下部工の設計・3D配筋(旧基準)Ver.3/ラーメン 橋脚の設計・3D配筋(旧基準)Ver.3 操作ガイダンス

2022年9月 第12版

禁複製

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

お問い合わせについて 本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へ お問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

RC下部工の設計・3D配筋(旧基準)Ver.3/ラーメン橋脚の設計・3D配筋(旧基準)Ver.3 操作ガイダンス

