

Operation Guidance 操作ガイダンス

本書のご使用にあたって

操作ガイダンスは、主に初めて本製品を利用する方を対象に操作の流れに沿って、操作、入力、処理方法を 説明したものです。

ご利用にあたって

ご使用製品のバージョンは、製品「ヘルプ」のバージョン情報よりご確認下さい。 本書は、表紙に掲載のバージョンにより、ご説明しています。 最新バージョンでない場合もございます。ご了承下さい。

本製品及び本書のご使用による貴社の金銭上の損害及び逸失利益または、第三者からのいかなる請求についても、弊社は、その責任を一切負いませんので、あらかじめご了承下さい。 製品のご使用については、「使用権許諾契約書」が設けられています。

※掲載されている各社名、各社製品名は一般に各社の登録商標または商標です。

© 2016 FORUM8 Co.,Ltd. All rights reserved.

目次

6	第1章 製品概要
6	1 プログラム概要
14	2 バージョン及び改良点
15	3 フローチャート
16	第2章 操作ガイダンス
16	1 杭基礎
16	1-1 基礎選択
17	1-2 地層
19	1-3 計算条件
21	1-4 杭配置
22	1-5 材料
23	1-6 許容値
24	1-7 予測計算・結果確認
25	1-8 底版形状
26	1-9 作用力
29	1-10 断面計算
30	1-11 杭頭接合計算
33	1-12 底版設計
35	1-13 レベル2地震時照査
39	1-14 計算・結果確認
45	1-15 基準値
46	2 鋼管矢板基礎
46	2-1 地層
48	2-2 鋼管矢板基礎
50	2-3 予備計算・結果確認
50	2-4 作用力
53	2-5 仮締切り
54	2-6 仮締切り 予備計算・結果確認
54	2-7 レベル2地震時基本条件
56	2-8 レベル2地震時 予備計算・結果確認
56	2-9 基礎ばね
57	2-10 部材
63	2-11 計算・結果確認
67	2-12 基準値
68	3 ケーソン基礎
68	3-1 地層
69	3-2 基本条件
70	3-3 形状
72	3-4 予備計算
72	3-5 作用力
75	3-6 鉄筋
78	3-7 作業室天井スラブ
79	3-8 刃口、2次応力

82	3-10 沈下計算
82	3-11 基礎ばね
83	3-12 計算・結果確認
88	3-13 基準値
89	4 地中連続壁基礎
89	4-1 地層
91	4-2 基本条件
91	4-3 形状
93	4-4 予備計算
93	4-5 作用力
96	4-6 鉄筋
98	4-7 レベル2地震時基本条件
100	4-8 基礎ばね
101	4-9 計算・結果確認
104	4-10 基準値
104	5 直接基礎
105	5-1 設計条件
106	52 底版形状
107	5-3 作用力
107	5-4 レベル2地震時基本条件
108	5-5 底版設計
109	5-6 基礎ばね
110	5-7 計算・結果確認
111	5-8 基準値
111	6 液状化の判定
111	6-1 設計条件
112	6-2 検討位置
114	6-3 計算・結果確認
115	7 計算書作成
116	8 図面作成
116	8-1 基本条件
117	8-2 形状
118	8-3 かぶり
118	8-4 鉄筋
120	8-5 図面生成・確認、鉄筋生成
121	8-6 鉄筋情報
122	8-7 鉄筋一覧
123	9 設計調書
124	10 データ保存
125	第3章 Q&A
126	1 杭基礎
137	2 鋼管矢板基礎
139	3 ケーソン基礎
141	4 地中連続壁
141	5 直接基礎
141	6 液状化の判定

第1章 製品概要

1 プログラム概要

「本プログラムは、UC-1 for Windowsシリーズの

- ・杭基礎の設計計算
- ・杭基礎の地震時保有水平耐力
- ・鋼管矢板基礎の設計計算
- ・ケーソン基礎の設計計算
- ・直接基礎の支持力計算
- ・液状化の判定

と地中連続壁基礎を統合した基礎の設計計算を支援するプログラムで、主として「道路橋示方書・同解説(平成24年3月)日 本道路協会」に準拠しています。なお、単位系はSI単位系のみを対象としております。

杭基礎,鋼管矢板基礎,ケーソン基礎,地中連続壁基礎では、次の検討を行います。

- ・常時,暴風時,レベル1地震時およびレベル2地震時照査
- ・流動化の検討
- ・常時、地震時および固有周期算定用の地盤ばね定数算出

さらに、鋼管矢板基礎、ケーソン基礎では施工時の検討をあわせて行います。

基礎形式間で地層データ、作用力データを共有することができます。また、異なる基礎形式の計算結果を同一紙面上に比較 表形式で容易に出力する機能など、比較設計が行い易いように作成しています。

また、直接基礎では、支持力計算の他に、底版の許容応力度法およびレベル2地震時照査を行います。

本プログラムでは、3種類のライセンスがあり、ライセンス(ハードウェアキーの設定/Web認証)により使用可能な機能に相違があります。

項目		Lite	Standard	Advanced
	杭基礎	0	0	0
	直接基礎	0	0	0
計質	液状化判定	0	0	0
可开	ケーソン基礎	_	0	0
	鋼管矢板基礎	_	0	0
	地中連続壁基礎	-	0	0
CAD	杭基礎	0	0	0
CAD	直接基礎	_	-	0
その 他	ESエクスボート (杭基礎)	_	_	0

なお、「基礎の設計」及び「基礎の設計計算」のライセンスは、以下のようになります。 (1)「杭基礎の設計」のライセンスは、基礎の設計・3D配筋 Lite版となります。 (2)「基礎の設計計算」のライセンスは、基礎の設計・3D配筋 Standard版となります。 使用するライセンスは、、メニューの「ヘルプ」-「バージョン情報」から開く画面で指定します。

機能及び特長

(1)機能表

項目		Lite	Standard	Advanced
計算	杭基礎	0	0	0
	直接基礎	0	0	0
	液状化判定	0	0	0
	ケーソン基礎	-	0	0
	鋼管矢板基礎	-	0	0
	地中連続壁基礎	_	0	0
CAD	杭基礎	0	0	0
CAD	直接基礎	-	-	0
その 他	ESエクスポート (杭基礎)	_	_	0

(2)操作性

設計手順に沿った処理モードボタンを左から右に並べ (入力→計算書作成→設計調書) 、データ入力、計算および結果確認 を行うモードでは、原則として上から下へ順に処理を進めるようにしています。

また、各項目左にマークを示して、処理状況が一目で分かるようにしています。

- ◎:選択できないことを示しています。
- ●:選択できることを示しています。入力項目では未入力、計算項目では未計算を示しています。
- :選択可です。入力項目では入力済み、計算項目では計算済みを示しています。 データ変更に伴い、影響項目は未入力、未計算に状態を変更しています。

NO: : 選択可です。計算済みで計算結果がOUTであることを示しています。

4面図表示によるデータの視覚的な確認、図をまじえたわかりやすい結果表示、既製杭の断面諸数値などを予め設定した [基準値]など、わかりやすく容易な操作方法となっています。

(3)計算機能及び特長

杭基礎

「道路橋示方書・同解説 IV下部構造編、V耐震設計編(平成24年3月)(社)日本道路協会」に規定されている事項に準拠 した杭基礎の設計計算を支援します。サポートしている計算範囲は以下のとおりです。

1) 安定計算において、従来の2次元構造物として三元連立方程式を解く方法の他に2.5次元解析機能を有しています。 「2.5次元解析」とは

橋軸方向をY軸方向、橋軸直角方向をX軸方向、鉛直方向をZ軸方向とすると3次元の場合は一般に各軸方向の変位と力 および各軸回りの回転変位と回転力が定義されます。この場合、変位と力はそれぞれ6つ定義されることになりますが、本プ ログラムではZ軸回りの回転変位と回転力(底版を上から見てねじ込むような変位と力)を考えていません。したがって、考え ている変位と力はそれぞれ5つになります。自由度が5つあるので便宜上「2.5次元解析」と称しています。

3次元ではありませんので、X軸方向、Y軸方向ごとに杭頭の水平、回転変位は全杭同一となります。

2次元解析の場合、X軸方向とZ軸方向(またはY軸方向とZ軸方向)の変位と力およびY軸(またはX軸)回りの回転変位 と回転力に着目して自由度が3つあるとして計算しています。

2) 鋼管杭、RC杭、PC杭、PHC杭、SC杭、場所打ち杭、任意杭、鋼管ソイルセメント杭、SC杭+PHC杭、マイクロパイ ル、H形鋼杭、回転杭、内面リブ付鋼管巻き場所打ち杭を用意しています。ただし、任意杭、H形鋼杭は杭頭接合計算、杭突 出部の慣性力計算およびレベル2地震時照査を行えません。また、任意杭は杭体の断面照査も行えません。 3) 地層数は最大50層まで設定することが可能です。また、地層の傾斜を考慮することができます。ただし、傾斜方向はX方向(橋軸直角方向)、またはY方向(橋軸方向)のうち1方向とします。

4) 杭軸方向の断面変化を取扱うことができます。鋼管杭のとき、各断面の杭径を変えることができます。

5) 杭径・杭長が異なる杭が混在した計算が可能です。

6) レベル2地震時照査は、橋脚、橋台(逆T式橋台/重力式橋台)、水門(中央堰柱/端堰柱)の検討に対応しており、液状 化が生じないケース、液状化が生じるケース、流動化が生じるケースいずれにも対応しています。また、橋脚基部に生じる作 用力(単柱橋脚時)、または底版下面中心の作用力(橋脚、水門時)を直接指定して照査することができます。

7) 増し杭工法による補強設計を行うことができます。ただし、次の条件をすべて満足する場合に限ります。

・地層傾斜なし

・既設杭、増し杭ごとに杭径・杭長変化なし(全既設杭は同径、同長、全増し杭は同径、同長)

・既設杭+増し杭≦100列

8) 橋脚および逆T式橋台の底版許容応力度照査、およびレベル2地震時照査に対応しています。

9) 負の周面摩擦力に対する検討を行うことができます。

10) 杭頭と底版の結合部の計算を行うことができます。

11) 常時、地震時および固有周期算定用の地盤ばね定数を算出することができます。

12) 底版根入れ部の水平抵抗を考慮した杭基礎の計算が可能です。

13) 水平変位の制限を緩和する杭基礎の設計(道示モデル、杭基礎設計便覧モデル)に対応しています。

14) 橋台特殊設計として、側方移動/盛りこぼし橋台に対応しています。(適用基準:「設計要領第二集4章基礎構造 (NEXCO)」)。

15) 斜杭を考慮することができます。また圧密沈下時の斜杭の検討を行うことができます。

16) 杭突出部に流水圧、動水圧、慣性力の水平荷重を考慮することができます(常時、レベル1地震時)。また、杭体に作用する任意荷重(水平方向の分布荷重、集中荷重)を考慮することができます(レベル2地震時含む。)

17) 底版上の任意荷重を考慮することができます。

18) 軸力変動によるレベル2地震時の照査に対応しています。

19) 杭配置の自動決定を行うことができます。

20) 場所打ち杭の自動配筋 (主鉄筋径,本数,段落し位置の自動決定)を行うことができます。

21)内面リブ付鋼管巻き場所打ち杭及び既製杭 (鋼管杭、鋼管ソイルセメント杭、PHC杭、PC杭、RC杭、SC杭、SC杭+ PHC杭)の断面変化位置の自動決定を行うことができます。

22) 底版形状、柱下端作用力から底版下面中心作用力を計算することができます(常時、レベル1地震時)

23) 杭列数は、最大100列まで設定することができます。ただし、地層の傾斜または杭径・杭長の変化がある場合は杭本数 最大1000本(行数×列数≦1000)となります。 24) 弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(形状、材料、作用力等)を読み込むことができます。

2.5 次元のとき ∂× αx αv δy αy х $\longrightarrow \delta \times$ δz (αzは考慮しません) ; a z * 2 次元のとき δx δz Ζ αy δz

25)弊社「フーチングの設計計算」との連動用XMLファイルのエクスポートに対応。

鋼管矢板基礎

「道路橋示方書・同解説 IV下部構造編、V耐震設計編(平成24年3月)(社)日本道路協会」に規定されている道路橋の井 筒型鋼管矢板基礎の設計計算を支援します。サポートしている計算範囲は以下のとおりです。

構造形式	井筒型鋼菅矢板	基礎	
	仮締切り兼用方式		
施工方法	立上り方式		
	締切り方式		
	円形		
	小判形		
平面形状	矩形		
	矩形面取り		
	打込み工法		
御井左右の佐子ナン		最終打撃方式	
輌官大阪の他上方法	中堀り工法	セメントミルク噴出攪拌方式	
		コンクリート打設方式	
	プレートブラケット方式		
万年に御茶ケセルの社へ	差し筋方式		
」貝	鉄筋スタッド方	式	
	頭部埋込み		

施工方法で最も多く採用されている仮締切り兼用方式では、完成時の荷重に対する応力度と仮締切り時の残留応力度の合成応力度の照査に対応しており、基礎本体、頂版及び頂版と鋼管矢板との結合部のレベル2地震時照査も行います。また、 仮締切りの計算では、支保工の検討、根入れ長の検討も併せて行うことが可能です。

	項目	備考		
	設計地盤面の取扱い	常時、地震時ごとに設定可能です。		
	鋼菅矢板、鋼菅杭	外周矢板、隔壁矢板、中打ち単独杭ごとに鋼菅径、断面変化(板厚、材質)を指定できます。		
	地盤バネ	水平方向地盤反力係数および底面バネ値を計算します。 また、使用値の修正が可能です。		
基礎本は	打込み工法のほかに中掘り工法(最終打撃ほ方式、セメントミルク噴出攪拌方式、コンクル 打設方式)にも対応しています。 また、負の周面摩擦力に対する検討を行うことができます。			
ゆの計算	設計荷重	上載土、頂版、中詰めコンクリートの各重量を算出し、入力された脚柱下端作用力とを集計し、 設計荷重を計算します。 荷重ケース数は、各方向ごとに10ケースまでとし、各ケースごとに地盤バネと支持力の取扱い (常時扱い/地震時扱い)を指定できます。		
	断面力・安定計算	弾性床上の有限長梁および継手のせん断ずれを考慮した仮想井筒梁として断面力、変位、傾斜 角を指定された深さ方向のピッチごとに計算します。同時に外壁、隔壁鋼菅矢板、中打ち単独杭 の応力度を求めます。また、外壁鋼菅矢板1本当りの最大・最小鉛直反力を算出し、許容支持力と 照査します。 地震時保有水平耐力法による照査を行うことができます。		

また、固有周期算出用の地盤バネ定数を算出する機能があります。 仮締切り兼用方式のとき以下の計算を行います。

	支点バネ値、地盤バネ値	支保エバネ定数、底盤コンクリートバネ定数を計算します。 水平方向地盤反力係数は本体計算の常時の換算載荷幅を用いて算出します。使用 値の修正が可能です。
仮締切りの計算	断面力の計算	各施工ステップごとに有効手働、受働側圧を求め、弾塑性解析により深さ方向の ピッチごとに計算を行います。 また、着目点ごとに鋼菅矢板の応力度を算出します。 指定されたステップ番号における応力度を残留応力度として、後述する合成応力度 を求めます。
71	支保工の検討	断面力の計算で算出された支保工反力を用いて腹起し、切梁、火打ち梁の検討を 行います。
	根入れ長の検討	仮締切り壁としての安定計算を行い、必要根入れ長を算出します。ボイリングに対 する必要根入れ長も同時に計算可能です。
合成応力度	合成応力度の照査	基礎本体の計算で算出した完成形での応力度と仮締切りの計算で算出した残留応 力度を合成して応力度の照査を行います。

部材設計として、頂版及び頂版と鋼管矢板との結合部の計算を行います。

項目	備 考
頂版の計算	片持ち梁または2方向スラブとして断面力を算出し、応力度照査を行います。 また、地震時保有水平耐力法による照査を行います。(※仮締切り兼用方式の場合)
鋼菅矢板、鋼菅杭	 ①プレートブラケット方式 ②差し筋方式 ③鉄筋スタッド方式 上記から選択された方式について計算を行います。 また、地震時保有水平耐力法による照査を行います。(※仮締切り兼用方式の場合)
杭頭結合部の計算	杭頭を頂版内に埋込ませて結合する場合について、「道路橋示方書・同解説Ⅳ下部構造編(社団 法人日本道路協会)」に記載されている方法A、方法Bの2とおりの計算が可能です。 (※立上り/締切り方式の場合) (※仮締切り兼用方式の隔壁および中打ち単独杭)

部材設計は、本体データの連動処理及び単独での計算が可能です。 ただし、頂版の計算のレベル2地震時照査は本体データとの連動が必要です。 また、対象構造物が橋台の場合の頂版レベル2地震時照査には対応していません。

下記のレベル2地震時照査を行うことができます。

・柱基部に生じる作用力を直接指定

・突出部の仮想井筒モデル化=頂版下面

・流動化の影響を考慮

弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(水の単位重量、形状、作用力、設計水平震度等)を読み込むことができます。

ケーソン基礎

「道路橋示方書・同解説 IV下部構造編、V耐震設計編(平成24年3月)(社)日本道路協会」に準拠したケーソン基礎の設計計算を支援します。サポートしている計算範囲は以下のとおりです。

		止水壁ケーソン方式		
		ピアケーソン方式		
佐丁注	オープンケーソン	止水壁方式		
他上広	充実断面	オープン		
		ニューマチック		
	根入れの浅いケーソン基礎			
平面形状	円形	隔壁数≦1(2方向)		
	小判形	隔壁数≦5 (1方向)		
	矩形	隔壁数≦5 (2方向)		

	項目	常時、地震時 (震度法)、 暴風時許容応力度法	地震時保有水平耐力法に よる耐震設計耐力照査
	地盤反力係数	0	0
	許容支持力度	0	-
	地盤反力度の上限値	0	0
安定計算	作用力集計	0	0
	基礎本体剛性	0	0
	断面力、地盤反力度および変位	0	0
	応答塑性率照査	-	0
	側壁水平方向	0	0
	側壁鉛直方向	0	0
	隔壁	0	-
	頂版	0	0
	頂版支持部	0	0
☆材計質	頂版と側壁連結部	0	0
	パラペット	0	-
	作業室天井スラブ	0	0
	刃口	0	-
	吊桁	0	_
	2次応力	0	-
	底版(オープンケーソン)	0	-
沈下計算		()
基礎バネ	固有周期算出に用いる地盤バネ定数	(C

地中連壁基礎

「道路橋示方書・同解説 IV下部構造編、V耐震設計編(平成24年3月)(社)日本道路協会」に準拠した地中連続壁基礎の設計計算を支援します。サポートしている計算範囲は以下のとおりです。

平面形状	矩形	隔壁数≦5(2方向])		
	項	目	常時、地 暴風明	』震時 (震度法) 、 寺許容応力度法	地震時保有水平耐力法によ る耐震設計耐力照査
	地盤反力係数			0	0
	許容支持力度			0	-
	地盤反力度の上限値			0	0
安定計算	作用力集計			0	0
	基礎本体剛性			0	0
	断面力、地盤反力度およ	くび変位		0	0
	応答塑性率照查			_	0
	側壁水平方向			0	0
部材計算	側壁鉛直方向			0	0
	頂版			0	0
	頂版と側壁連結部			0	0
基礎バネ	固有周期算出に用いる地	也盤バネ定数			C

橋脚基礎のレベル2地震時照査において、柱基部に生じる作用力を直接指定して照査することができます。 弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(水の単位重量、形状、作用力、設計水平震度等)を読み込 むことができます。

直接基礎

「道路橋示方書・同解説 IV下部構造編(平成24年3月)(社)日本道路協会」(以下、道示IVと略します)および「設計要領 第二集(NEXCO)」(以下、設計要領と略します)に準拠して、直接基礎の支持力計算を行います。

水平地盤の基礎

■フーチング前面の抵抗を考慮した作用力の算定(設計要領)

- ■荷重の偏心傾斜を考慮した許容鉛直支持力の算出
- ・荷重の方向が1方向(道示Ⅳ・設計要領)
- ・荷重の方向が2方向(道示IV)
- ■安定計算 滑動、転倒、地盤反力度の照査(道示IV・設計要領)
- ■基礎底面形状の指定(長方形・帯状)
- ■フーチングの補強設計に対応
- ■橋脚底版の許容応力度法およびレベル2地震時照査
- ■固有周期算定に用いる地盤バネ定数の算出

斜面上の基礎

■斜面の影響、荷重の偏心を考慮した許容鉛直支持力の算出(設計要領)

■段差がある基礎の安定計算 滑動、転倒、地盤反力度の照査(設計要領)

弊社「橋脚の設計」プログラムで設計し保存したXMLファイル(水の単位重量、形状、作用力、設計水平震度等)を読み込むことができます。

液状化の判定

「道路橋示方書・同解説V. 耐震設計編(平成24年3月)(社)日本道路協会」に準拠して、液状化の判定を行います。

■液状化の判定

■土質定数の低減係数の計算

■流動化が生じる場合の流動力の計算

(4) 計算書作成

設計条件、計算結果を図表混じりでプリンタに出力します。計算結果は、計算書として利用できる書式でプリンタに出力します。このとき、必要な部分だけを出力できるように出力項目が細分化されています。

(5) 設計調書 (※液状化の判定)

比較検討結果などに利用できるように複数の計算結果を一覧表形式で出力する比較表(設計調書)をサポートしています。 比較表テンプレートとして震度法、保耐法、混在(基礎ごとの比較用)を用意しています。 注)設計調書を実行するには「調表出力ライブラリ」を本製品とは別にインストールする必要があります。

2 バージョン及び改良点

【最新版】(Ver.2.4.0) 2019.6 (Suite版 Ver.4.4.0相当)

■機能拡張

1)杭基礎:ハイスペックマイクロパイル工法の内管の基準値に、267.4mm径のデータを追加しました。
 (2)杭基礎:ハイスペックマイクロパイル工法のねじ継手の基準値に、267.4mm径のデータを追加しました。
 (3)杭基礎:ハイスペックマイクロパイル工法の内管基準値の管厚を編集可能としました。
 (4)杭基礎:ハイスペックマイクロパイル工法のねじ継手基準値の鋼管肉厚を編集可能としました。
 (5)杭基礎:ハイスペックマイクロパイル工法の杭頭接合照査で、支圧板形状として円形を選択可能にしました。

(Ver.2.3.2) 2019.4 (Suite版 Ver.4.3.2相当)

■不具合対策

(1) 杭基礎: 杭配置画面の杭データ及び斜角の「データ確認」 が正しく動作しない場合があり、これを修正しました。

(2) 杭基礎:落橋防止作動時の任意荷重が指定できないケースがあり、これを修正しました。

(3) 杭基礎: 杭基礎レベル2地震時の流動時計算を行う場合、柱間の誤差判定ボタンでエラーが発生する不具合を修正しました。

(4) 杭基礎: 杭基礎レベル2地震時の作用力直接指定で杭頭M=Muになるときの、計算結果一覧表の杭体区間が正しく表示されない不具合を修正しました。

■ヘルプ

(1)「概要」-「バージョン及び改良点」-「Ver.2.0.0~」

3 フローチャート

第2章 操作ガイダンス

1 杭基礎

サンプルデータ「Kui_1.F1F」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

1-1 基礎選択

操作ガイダンスムービー Youtubeへ操作手順を掲載しております。 基礎の設計・3D配筋(旧基準) Ver.2 操作ガイダンスムービー (09:06)

https://www.youtube.com/watch?v=xZ68QeI3fsI

16

1-2 地層

- 左メニューから「地層」 をダブルクリックします。

- 地層線「地層線」タブ、「設計地盤面」 タブの値をそれぞれ下 記のように入力します。

地層線

<地層数:4>を入力し、 層厚を下表のように入力します。

層No	層厚(m)
1	5.000
2	12.000
3	6.000
4	99.000

一 設計地盤面タブ

<中立点:-17.000> 層名の一番下にある「中立点」のみ入力します。

※突出杭の設定方法 (Q1-2-1参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-2-1

土質データ
「土質一覧」タブに切り替え、下表に従って「土質データ①」の
値を入力します。

地層データ	×
中間点という開発(m) 法点し 0.0 全悟 0.0 原語 0.0 0.0 0.0	1892年 NE 上安一気 計算品件 液状化 (毛幼研練) 2015年 2011年20日 2015年 2011年20日 2015年 2011年20日 2011年2000000000000000000000000000000000
4 4 4 4 4	IPPE IPET(m) 1 550 2 1080 3 6.80 4 10.80
-40 -45 -cn Max 縮小 STD 批大 Auto Tem 10cm 1m 務務家	- 入力方法 - 入力方法 - (現私力) ◎ 署写入力 - 「地間時料 - ○ 以志向 - ○ 以志向 <u></u> 進用
地層数:1~50	2832 ✔ NUCE ¥ NUCE ? 167(E)

8届于								
-PREEUDERA(m)	地屠線 N值 土	第一覧 計算条 (牛 液状化 個	GNA 新聞				
50/00 ±10 ±10	主気テージ の 土	17-3© ± #	17-30					
1256 [0.0 [0.0 [0.0	地層の土質データ		※液状化の判	上資料 より立	=砂礫土と探	います		
5		平均 N值	(x.・Eo 常時 (k.N/m²)	a・Eo 地震時 (kN/m ²)	7 t 0×N/m³)	∵sat (kN/m³)		
	1 2	2.0	5500	11200	16.00	16.80		
	2 2	8.8	10640	21280	16.00	16.80		
-5	3 1	20.0	56000	112000	18.00	18.80		
	4 1	50.0	140010	288000	20.00	20.80		
-25								
-30								
-35-	ー α・Eoの 推定 方法							
-40- 「 常特2400N, 地震特5601N C 入力 C 入力(分差)時31常時の2億) 平均均高の算出								
-45	入力方法	○ 水中重	intγ'					
-50	最大周勤摩擦力推	定方法(高耐力	MP/ねじ込み	CMP/SPMP	しまは無効)			
fax 編小 STD 拡大 Auto Icm 10cm Im I		ぶ着力。 (nin(N值, 粘著	力() 「	N<513cl	から獲定		
	_					a segurite	The second	
					100 M	▲ 48.0E	ACM	1 497 (2

層No	土質	平均N值	α・Eo 常時 (kN∕㎡)	α・Eo 地震時 (kN∕㎡)	γt (kN∕m³)	γsat (kN∕mٌ)
1	2	2.0	5600	11200	16.00	16.80
2	2	3.8	10640	21280	16.00	16.80
3	1	20.0	56000	112000	18.00	18.80
4	1	50.0	140000	280000	20.00	20.80

き増データ								×
中間点Uの間隔(m)	地層線	植 主質一覧	11.11111111111111111111111111111111111	铁化 低減係動	el			
10月10日 11日 11日 11日 11日 11日 11日 11日 11日 11日								
1255 0.0 0.0 0.0 0.0							Mai	E0 1
	No	(k.N/m²)	(kN/m²)	(kN/m²)	(něc)	νD	(m/s)	(k.N/m²)
5	1	0.0	20.0	30.0	0.00	0.50	125.99	49760
	2	0.0	38.0	30.0	0.00	0.50	158.05	76134
0-	3	100.0	100.0	0.0	30.00	0.50	217.15	165295
5	4	200.0	200.0	0.0	40.00	0.50	294.72	340355
25- 30-								
40-	問題律能力 新設・開設抗 場所行ち工法							
sen sx 紹小 STD 拡大 Auto Icm 10cm 1m 前部	最大周囲 (* N腫	■摩擦力推定方: ○ 粘着力	±〈編新力MP/ lo Cnain(h	ねじ込み式MP/ 順、粘着力o)	SPMP工法は第 「N<5	効) まel動のら描定		
					1	BÀ 🖌	ane 🗙 Te	满 ? へ67100

土質データ2

――「土質データ②」タブに切り替えます。

周面摩擦力

<新設・既設杭:場所打ち工法>を選択します。 下表に従って値を入力します。

※周面摩擦力の選択を「入力」にし、最大周面摩擦力度fを直 接指定も可能です

(Q1-3-4参照)

https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-3-4

土質データ②

層No	f (kN∕m²)	fn (kN∕mႆ)	c (kN∕mႆ)	Φ (度)	νD	Vsi (m∕́s)	ED (kN∕㎡)
1	0.0	20.0	30.0	0.00	0.50	125.99	49760
2	0.0	38.0	30.0	0.00	0.50	156.05	76334
3	100.0	100.0	0.0	30.00	0.50	217.05	166296
4	200.0	200.0	0.0	40.00	0.50	294.72	340355

土質データ③

層No	支持層	(kN∕mႆ)	先端地盤 N値	q d (kN∕m²)	改良体qu (kN/㎡)	弾性指定
1	0	0	0.0	0	0	
2	0	0	0.0	0	0	
3	0	0	0.0	0	0	
4	1	0	0.0	3000	0	

土質データ

「土質データ③」 タブに切り替え、下表に従って値を入力しま す。

最後に「確定」ボタンを押します。

1-3 計算条件

👹 基礎の設計・3D配筋 Ver.2(Advanced版) (抗基礎) (更新) - 🗆 🗙						
ファイル(E) 計算実行(C) オブション(Q) ヘルプ(Ð					
🕒 😂 🔒 1 1 🤐 🤐理モードの選択 🛛 入	力 計算書作成 図面作成 設計調書	自動設計 💡 📦 📼 🍓				
A 89920	タイトル:	איאב:				
- + 地層	平面図	橋軸直角方向(X方向)				
日 前 杭基礎						
·····································						
<u>◎</u> 着目杭指定						
 ローーレベル2地震時照査 サナキかけ 						
		橋軸方向(Y方向)				
──◎ 地盤データ						
回計算·結果確認						
────────────────────────────────────						
○ 安定計算 ○ 約休広力度						
○ 杭頭接合計算						
— ◎ 底版照査(許容)						
	,	3				

---- <mark>計算条件</mark> 左メニューから「計算条件」 をダブルクリックします。

E-P-MIT		
照查対象	○ 新設·既設	○ 増し杭工法 ○ 異種杭混在
対象構造物	④ 橋脚	○ 逆T式橋台 ○ 重力式橋台 ○ 水門(中央堰柱) ○ 水門(端堰柱)
常時,レベル1地震時計算方法	○ 2次元解析	○ 2.5次元解析
杭配置の入力方法	☞ 詳細入力	○ 簡易入力
杭基礎設計便覧の通用基準	○ 平成4年10月	④ 平成19年1月 ○ 平成27年3月
枕頭の段差	○ 考慮する	・ 考慮しない
約時,レベル1地震時		
液状化の影響	☑ 無視	□ 考慮
作用力の指定方法	〇 入力	○ 自動計算
杭頭接合計算	○ する	○ しない マコンクリート照査を省略する(方法Bのみ)
底版前面水平抵抗	○ 道示	○ 国鉄 ○ 無視
底販照査(許容応力度法照査)	○ する	C Utati
バル2地震時		
レベル2地震時照査	○ する	○ しない ※H28.7設計要領の落構防止作動時の照査を行う場合もするとします。
底版前面水平抵抗	○ 考慮	☞ 無視
底版照査(レベル2地震時照査)	○ する	C しない
寺殊書設計		
□ 水平変位の制限を緩和した設計		
 「 盛りコまし橋台の設計(NEXCO) 	洋拠基準	C H12.1 C H18.4
□ 斜面の傾斜を考慮した地盤ばね	の低減を行う	■ 基礎はね計算にも適用する
■ お記術校における側方移動の格	語寸(NEXCO)	
1 #/10/0*Callar @00/07/07/17/07/07/07/07		

- 「基本条件」タブを下記に従って選択します。

基本条件

<照査対象:新設・既設> <対象構造物:橋脚> <常時,レベル1地震時計算方法:2.5次元解析> <杭配置の入力方法>選択できない状態です。 <杭基礎設計便覧の適用基準:平成19年1月> <杭頭の段差:考慮しない>

常時,レベル1地震時

<液状化の影響>選択できない状態です。 <作用力の指定方法:自動計算> <杭頭接合計算:する>を選択し、<コンクリート照査を省略 する(方法Bのみ)>にチェックを入れます。 <底版全面水平抵抗:無視> <底版照査:(許容応力度法照査):する>

レベル2地震時

<レベル2地震時照査:する> <底版全面水平抵抗:無視> <底版照査(レベル2地震時照査):する>

※常時,レベル1地震時の「液状化の影響」のスイッチが選択で きない場合 (Q1-3-1参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-3-1

8・新設 : 支持力・引数 Kv値算出時の断値 @ 絵断面積	の k値+Ky値 応力度服査 その他の条件
Kv値算出時のビノ C 計算しない で ビノ/D=108	/D<10時の計算(マイクロバイル以外)
突出杭扱い時のKr A・E/LのL a算出用のL [*] 地震時のBH算出M (* 常時	値置出用の抗長し((√==)+(な・日)-(上・補正任務会=定録+((:/0)+定録の) ○ 該計#整面以等の抗長 ○ 現地論面以等の抗長 ○ 原版下面以等の抗長 ○ 該計#整面以等の抗長 ○ 現地論面以等の抗長 ○ 原版下面以等の抗長 約の = Eo ○ 地類母/2
BH算出時の杭径, (・第1断面を用)	新面割性の取扱い
k値の補正係数ル- Y方向 1.000 X方向 1.000 厂 基礎はね計算	※本種正体拠は、下記版面は3週月3日ません。 ・レベル2地理時間面 ※水平実位参照機種402程計で25.5元時所のとき、 い方向と大方向の消圧体験以は回過となります。

設計条件

― 設計条件タブを開きます。

k値・Kv値 k値・Kv値タブに切り替え下記に従ってチェックを入れます。

Kv値算出時のL'D<10時の計算(マイクロパイル以外) くL'D=10とした補正係数aを用いて計算する>を選択します。

杭長L(Kv=α・(A・E) ∕LのL)の取扱い <L=10・D>を選択します。

突出杭扱い時のKv値算出用の杭長L

(Kv=α・(A・E)/L、補正係数α=定数1・(L/D) ±定数2) <A・E/LのL:設計地盤面以深の杭長 >を選択します。 <a算出用のL':設計地盤面以深の杭長 >を選択します。

地震時のBH算出時の*a*・Eo <常時>を選択します。

BH算出時の杭径, 断面剛性の取り扱い <第1断面を用いる>を選択します。

k値の補正係数µ

特に変更箇所はありません。

自の周面摩擦力	in total and and a second		
○ 検討しない	群杭としての負の周面摩擦力	○ 適用する	☞ 適用しない
検討する	SL杭としての検討	C (75)	€ 行わない
	杭の有効重量	・ 考慮する	○ 考慮しない
	コンクリート杭の鋼材の軸方向力	()考慮する	④考慮しない
	PHC(PC)杭の杭体応力度	€ σœ老考慮する	€ σceを考慮しない
	設計地盤面より上の周面摩擦力	○ 考慮する	・ 考慮しない
	Y方向幅 0.00	(m) = X)) (可临×Y方向隋
断面二次モーメントーーー の 総断面	 C 換算断面 斜枝時の圧墜 C 換訂し 	沈下 はい C 検討する	
計算値・許容値の抽出方 反力・許容値	注 ・ 反力と許容値の比 C 反力	と許容値の差	
応力度·許容値	 ○ 応力度と許容値の比 ○ 応力 	度と許容値 の差	
業時 しいし 地の間時のほ	WEIチカ		
med, D. OV MERENDOS		allanda V	

「その他の条件タブ」に切り替え、下記に従ってチェックを入れます。

負の周面摩擦力

<検討する>を選択します。

<群杭としての負の周面摩擦力:適用しない> <杭の有効重量:考慮する> <コンクリート杭の鋼材の軸方向力:考慮しない> <設計地盤面より上の周面摩擦力:考慮しない>

最後に「確定」ボタンを押します。

※常時、レベル1地震時の計算方法が2次元解析の場合「常時、 レベル1地震時の基礎ばね」が算出可能 (Q1-23-2参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-23-2

1-4 杭配置

基礎の設計・3D配筋 Ver.2(Advanced版) (杭	(基礎) (更新)			
ファイル(F) 計算実行(C) オプション(O) ヘルプ	(H)			
🕒 🚔 🖬 🜆 🛛 処理モードの選択 🛛 🤈	大力 計算書作成 図面作成 設計調書	自動設計 🛛 🤗 📦 🖃 🍓		
A ###2010	タイトル:	コメント:		
- · · · · · · · · · · · · · · · · · · ·	平面図	橋軸直角方向(X方向)		
□ Ⅲ 杭基礎				枯酮黑
○ 計算条件				小旧い国
○ 善目材指定				左 メニューから 「杭
- • 材料				
@ 許容値				
○ 予備計算・結果確認				
○ (F/12) ○ 所面計算				
○ 杭頭接合計算				
ロー・・・レベル2地震時照査				
○ 塗本発行 ○ 送料滞析		「「「「「「」」」(「」」(「」」)(「」」)(「」」)(「」」)(「」」)(
·····································				
○ 地盤データ				
◎ 底版前面水平抵抗				
白計算·結果確認				
- O 総括表 - 1705-117				
○ 支定計算 ○ 粒体広力度				
 ○ 杭田接合計算 				
— ◎ 底版照査(許容)				
──○ レベル2地震時計算				
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
·····································				
1]		

メニューから「杭配置」をダブルクリックします。

杭配置

「杭配置」タブに切り替え、下表に従って値を入力します。

杭最小間隔(m)	DP	3.000
杭縁端距離(m)	DLX	1.200
	DLY	1.200
杭列数	NX	4
	NY	3
杭間隔	WX	
	WY	

<配置タイプ:全配置>を選択します。

- <mark>整形配置</mark>ボタンを押すと左側画面に反映されます。

秋配 窗	本本条件 原設幅 杭配屋 株データ 東位量 基礎実曜 「場所打ち林 林奈(4) [2000
	Entition i設計枕長(m) 1 25.00
	はおね値 せん約1 US GMEX IR (0.1/m) 常時 2000000000000000000000000000000000000
→X 全然選択 全然防済 KOtrl(Shiftでも可) + クリック,ドラックで雑級銃の選択	
*vtrl + h ontrl + トラックで1500移動 ドラックでは大表示 ※右クリッケで表示及び選択の初期化	20月

――杭データ

「杭データ」タブに切り替え、下記に従って値を入力します。

場所打ち杭

<杭外径 (m):1.2000> <設計杭長 (m):25.00>と入力します。

― 「適用」 ボタンを押します。

最後に「確定」ボタンを押します。

※鋼管ソイルセメント杭の場合の設計杭長(杭の先端)について (Q1-2-5参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-2-5

1-5 材料

🎆 基礎の設計・3D配筋 Ver.2(Advanced版) (杭基礎) (更新)		
ファイル(F) 計算実行(C) オプション(O) ヘルプ(H)		
📄 🎦 🚰 🔜 🕺 処理モードの選択 入力 計算書作成 図面作成 読計調	2) 👔 🗐 😭 🔁 🖀	
9个儿:	コメント:	
◆ 2000 2000 ◆ 地層 二冊 林共进	橋軸直角方向(X方向)	
- • 計算条件		
		材料
····································		
		在ハニュ から「約件」をメノルノリップしょう。
		_
──○ 流動荷重	積釉方向(Y方向)	
◎ 底版前面水平抵抗		
○ 杭(体応力度)		
──○ 杭朋报合計算 (#FF897 #6/47 30)		
○ MSMORTELITED 		
·····································]	

C SD29	5 (• SD345	C SD390	C S	D490	○ その他]
帯鉄筋の៛ C SD29	失筋材質 15 @ SD345	C SD390	C S	D490	○ その他			
コンクリー	トの設計基準強度			σck	N/mm2	24.00	1	
主鉄筋の	降伏点			σsy	N/mm2	345.00		
帯鉄筋の	降伏点			σsy	N/mm2	345.00		
"	許容引張応力度			ɗsa	N/mm2	160.00		
"	地震時の許容引張	応力度の基本	値	σsa	N/mm2	200.00		

ここでは初期値から値を変更しませんのでそのまま「確定」ボ タンを押します。

1-6 許容値

🚟 基礎の設計・3D配筋 Ver.2(Advanced版) (お	(夏新) (夏新)	– 🗆 X
ファイル(F) 計算実行(C) オプション(O) ヘルブ	(H)	
🕒 🚔 📙 💷 🛛 処理モードの選択 🤍	大力 計算書作成 図面作成 設計調書	自動設計 🛛 💡 📦 🖃 🍓
	タイトル:	コメント:
	平面図	括軸直角方向(Y方向)
二冊 枯基礎	1 101 125	We water of the transmission of transmission of the transmission of transmission o
日111 11 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		
○ 着目杭指定		
• #26		
○ 予備計算・結果確認		
— ◎ 應版形状		
— ● 作用力		
 ○ (U)現後音計量 ○ (広)見後音計量 		
→ VEARENDI → VEARE		
○ 基本条件		,
 〇 流動荷重 		橋軸方向(Y方向)
◎ 底版前面水平抵抗		
□計算·結果確認		
◎ 安定計算		
○ 杭1年/6/7度 ○ ##回時#○○□1分		
○ 10.5月安合計具 ○ 度時間寄住(1次)		
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
 		
◆ 基準値		
,		1

―― 許容値 左メニューから「許容値」をダブルクリックします。

11.500			第印册(系数)	бca	σ sa(*1)	σ sa(*2)	of sa'	τal	τ α2
鉄筋材料		SD345	1.00	8.00	160.00	200.00	200.00	0.230	1 700
コンクリート設計基準強度	σck	24.00	1.50	0.00	194.00	220.00	200.00	0.266	1.055
ヤンダ係数 (×104)	Ec	2.50	1.15	10.00	200.00	250.00	250.00	0.203	2 125
降伏応力度(コンクリート)	σcy	20.40	135	10.80	216.00	270.00	270.00	0.311	2.120
降伏応力度(綱材)	σsy	345.00	1.50	10.00	010.00	000.00	000.00	0.070	0.550
i伏応力度は下記計算に用。 「負の周面摩擦力に対するれ	いています。 第月」の杭作	応力度の検討	1.50	12.00	240.00	000.00	000.00	0.000	2.000
3次応力度は下記計算に用。 「負の周囲摩擦力」ごけずる地	いています。 無利の杭作	応力度の検討		12.00	24000	000.00		0.000	2.000

下表に従って許容値の値を変更し、「確定」 ボタンを押しま す。

割増係数	σca	σsa(*1)	<i>σ</i> sa(*2)	σsa'	τa1	τa2
1.00	8.00	160.00	200.00	200.00	0.230	1.700
1.15	9.20	184.00	230.00	230.00	0.265	1.955
1.25	10.00	200.00	250.00	250.00	0.288	2.125
1.35	10.80	216.00	270.00	270.00	0.311	2.295
1.50	12.00	240.00	300.00	300.00	0.350	2.550

1-7 予測計算・結果確認

響 基礎の設計・3D配筋 Ver.2(Advanced版) (お	(基礎) (更新)	- 🗆 ×
ファイル(F) 計算実行(C) オプション(O) ヘルフ	(H)	
📗 🗅 🚔 🔜 🚾 🛛 処理モードの選択 🤍	(力)計算書作成 図面作成 設計調書	自動設計 🛛 💡 📦 🖃 🝓
A \$10,7210	ቃ/ኑル:	ㅋ×ン사:
	平面図	橋軸直角方向(Y方向)
二冊 枯基理	1 1 1 1 2 3	
L g 计管备件		
◎ 着目杭指定		
@ 許容値		
● 予備計算·結果確認		
● 作用力		
○ (九)現後吉吉丁具 (古)(元)(九)		
□		
○ 基本条件		, <u> </u>
◎ 清動荷重		橋軸方向(Y方向)
□ 計算・結果確認		
<u>◎</u> 総括表		
◎ 安定計算		
○ 杭1本心力度 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
○ 机局接合計算 (1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)		
○ USLASSE2(計谷)		
● ス細ゴわ		
		1

____ 予備計算 · 結果確認

左メニューから「予備計算・結果確認」 をダブルクリックしま す。

予備計算結果の確認を行います。 ここでは初期値から値を変更しませんのでそのまま「確定」ボ タンを押します。

1-8 底版形状

底版形状 左メニューから「底版形状」をダブルクリックします。

下表に従って値を入力します。 「適用」ボタンを押すと左側画面へ反映されます。 最後に「確定」ボタンを押します。

-	記号	単位:(m)
底版上面寸法	L1	2.200
底版天端偏心量	ey	0.000
底版下面寸法	LY	8.400
底版上面寸法	B1	11.400
底版天端偏心量	ex	0.000
底版下面寸法	LX	11.400
上載土(レベル1用)	H1	2.000
底版ハンチ部の高さ	H2	0.500
底版下端部の高さ	H3	2.000

脚柱形状寸法

<柱本数:2>と入力し、 <矩形>を選択します。 下表に従って入力してください。

	柱寸	法(m)	柱位	置(m)
柱	а	b	х	у
1	2.500	2.000	-3.000	
2	2.500	2.000	3.000	0.000
3				

1-9 作用力

– <mark>作用力</mark> 左メニューから「作用力」 をダブルクリックします。

用力			
基本条件 荷重ケースの設定	荷重ケースごとの設定 柱下端作用力 作用力		
- 底版上の過載荷重 (* なし	 ଜନ୍ମ 		
底版の任意荷重 (* ねし	ு கூட		
枕突出部の水平荷重 で なし	c ණප		
杭体水平荷重 の おし	c නිව		
- 増し枕工法時の既設死荷重 ◎ しない □ 既設死荷重時の上載土	の作用力自動計算 ○ する ※を考慮する		
設計震度	 上載十		
Y方向 0.20			
×方向 0.20			
慣性力を考慮する土の高さ	[0.000] ※底板上面から		
		水位達動 📝 確定 🗶 取消 🍷 🔧	-7"(H)

下表に従って設計震度の値を入力します。

		底版	上載土
_ Y	方向	0. 20	
x	方向	0. 20	

		THE NET ACCOUNT	1.2.1.40104222	1			_	一負の回商廠協力
ю	参照 番号	荷重ケース名	書明曾係数	地館ばね	許容支持力	底版前面 抵抗	î.	検討する荷重ケ
1	1	常時	1.000	常時	常時	常時		してたまい
2	7	地震時	1.500	地震時	地震時	地震時		参照番号ではな く、荷重ケース番
3	7	地震時	1.500	地震時	地震時	地震時		考を入力してください。
1	9	常時(浮)	1.000	常時	常時	常時		
;	15	地震時(浮)	1.500	地震時	地震時	地震時		1 主
;	15	地震時(浮)	1.500	地震時	地震時	地震時		
2							~	
	No		荷重ケーステ	ーブル				
[常時	1.000	常時	常時	常時	^	
Ī	4	常時+温度	1.150	常時	常時	常時		
Ī		常時+風荷重	1.250	常時	地震時	常時		
Ì		常時+温度+風荷重	1.350	常時	地震時	常時		
1	5	常時+制動荷重	1.250	常時	常時	常時		
i	6	常時+衝突荷重	1.500	常時	常時	常時		
i	7	地震時	1.500	地震時	北震時	地震時		
Ì	8	死荷重時	1.000	常時	常時	常時		
Ī	9	常時(浮)	1.000	常時	2614	常時		
i i	10	AMAGE . 3H IDE/34H)	1.150				~	

一荷重ケースの設定

「荷重ケースの設定」タブに切り替え、下表に従って「参照番 号」の値を入力します。

_ 負の周面摩擦力

<1>と入力します。

- ※参照番号のセルにカーソルを合わせ、Deleteキーを押すと既 存の荷重ケースを削除可能 (Q0-5参照) https://www.forum8.co.jp/faq/win/foundation-tqa.htm#q0-5

No	参照番号	荷重ケース名	割増係数	地盤ばね	許容支持力	底版前面抵抗
1	1	常時	1.000	常時	常時	常時
2	7	地震時	1.500	地震時	地震時	地震時
3	7	地震時	1.500	地震時	地震時	地震時
4	9	常時(浮)	1.000	常時	常時	常時
5	15	地震時(浮)	1.500	地震時	地震時	地震時
6	15	地震時(浮)	1.500	地震時	地震時	地震時

lo	参照 番号	荷重ケース名	割増 係数	地盤ばね	許容 支持力	安定照査 をする	許容引抜力を 0.0にする	衝突,地震時♂sa の基本値を用いる	※ <u>σ</u> saの基本値
1	1	常時	1.000	常時	常時	R			道示IV表-4.3.1 (P.165)の
!	7	地震時	1.500	地震時	地震時	R		R	14)荷重の組合 ゼ
1	7	地震時	1.500	地震時	地翻時	R		P	に衝突荷重又は 地震の影響を含
	9	常時(浮)	1.000	常時	常時	P			む場合の基本値 」
;	15	地震時()至)	1.500	地震時	地震時	R		R	
5	15	地震時()罕)	1.500	地震時	地翻時	P		R	

一荷重ケースごとの設定

「荷重ケースごとの設定」タブに切り替え、下記に従ってチェッ クを入れます。

<No1:安定照査をする>

<No2:安定照査をする・衝突,地震時 σsaの基本値を用いる> <No3:安定照査をする・衝突,地震時のsaの基本値を用いる> <No4:安定照査をする>

<No5:安定照査をする・衝突,地震時のsaの基本値を用いる> <No6:安定照査をする・衝突,地震時 σsaの基本値を用いる> 基本条件 | 荷重ケースの設定 | 荷重ケースごとの設定
柱下端作用力 | 作用力 | 柱1 | 柱2 | 水位(m) 慣性力 慣性力 (X) (Y)
 No
 ∨ (kN)
 Hx (kN)
 My (kN·m)
 Hy (kN)
 Mx (kN·m)
 荷重ケース名 No 米 御 時 米 歌 時 (浮) 地 歌 時 (学)
 1
 3996.40

 2
 3800.20

 3
 3800.20

 4
 3996.40

 5
 3800.20

 6
 3800.20

 0.00
 0.00

 1225.90
 12871.70

 0.00
 0.00

 0.00
 0.00

 1225.90
 12871.70

 0.00
 0.00

 1225.90
 12871.70

 0.00
 0.00
 0.000 1 0 0 0.00 0.00 98.10 1588.70 3 4 5 6 0.000 2.500 2.500 2.500 98.10 662.00 0.00 98.10 662.00 7524.40 1 0 0 0.00 1588.70 7524.40 0 地震時(浮) 0 水位達動 🖌 確定 🗶 取消 🤶 🤨 パラミビ

左の表

No	荷重ケース名	水位(m)	慣性力(X)	慣性力(Y)
1	常時	0.000	0	0
2	地震時	0.000	0	1
3	地震時	0.000	1	0
4	常時(浮)	2.500	0	0
5	地震時(浮)	2.500	0	1
6	地震時(浮)	2.500	1	0

柱1

No	V (kN)	Hx (kN)	My (kN•m)	My (kN)	Mx (kN • m)
1	3996.40	0.00	0.00	0.00	0.00
2	3800.20	98.10	1588.70	1225.90	12871.70
3	3800.20	662.00	7524.40	0.00	0.00
4	3996.40	0.00	0.00	0.00	0.00
5	3800.20	98.10	1588.70	1225.90	12871.70
6	3800.20	662.00	7524.40	0.00	0.00

柱2

No	V (kN)	Hx (kN)	My (kN • m)	My (kN)	Mx (kN • m)
1	3996.40	0.00	0.00	0.00	0.00
2	3800.20	98.10	1588.70	1225.90	12871.70
3	3800.20	662.00	7524.40	0.00	0.00
4	3996.40	0.00	0.00	0.00	0.00
5	3800.20	98.10	1588.70	1225.90	12871.70
6	3800.20	662.00	7524.40	0.00	0.00

柱下端作用力

「柱下端作用力」タブに切り替え、下表に従って左側と「柱1」 「柱2」タブの値を入力します。

最後に「確定」ボタンを押します。

1-10 断面計算

断面計算 左メニューから「断面計算」をダブルクリックします。

下記に従って「場所打ち杭の自動配筋」のチェックと「帯鉄 筋」の値を入力します。

場所打ち杭の自動配筋

- <しない>にチェックを入れます。

帯鉄筋

<区関数:1>と入力し <有効長を直接指定する>にチェックを入れます。

区間	帯鉄筋変	鉄筋径	鉄筋量Aw	間隔s	有効長
	化位置(m)	(mm)	(c㎡)	(cm)	(cm)
1	0.000	16	3.972	15.0	90.0

使用鉄筋

「使用鉄筋」タブに切り替え、下表に従って値を入力します。

主鉄筋 <断面数:2>と入力します。

		/		0.20			
	断面	断面変化 位置(m)	段	経 (mm)	本数	ピッチ (mm)	鉄筋量 (c㎡)
			1	25	24	118	121.608
	1 0.	0.000	2	0	0	0	0.000
			3	0	0	0	0.000
	2	11.365	1	25	12	236	60.804
	Z	未計算	2	0	0	0	0.000
	2		1				
	3		2				

最後に「確定」ボタンを押します。

1-11 杭頭接合計算

杭頭接合計算

左メニューから「杭頭接合計算」をダブルクリックします。

仮想RC断面照査時のコンクリート応力度の照査 <仮想RC断面照査時のコンクリート応力度の照査:する> にチェックを入れます。

73720	44 0 JE 1 2 E		mm	1200.0
	植の理心が長	L h	mm	1500
h	水平有効厚さ	h'	mm	600
	Lo=a· Ø	а	- 1	

杭径·底版形状

「杭径・底版形状」 タブに切り替え、下表に従って値を入力し ます。

杭外径	D	mm	1200.0
杭の埋込み長	L	mm	100
垂直有効厚さ	h	mm	1500
水平有効厚さ	h'	mm	600
Lo=a ∙ Φ	а		

		0 Da()((+)	ďса	σsa(*1)	σsa(*2)	σsa'	τa	₹at	τac
1.000	7.20	7.20	8.00	180.00	200.00	200.00	0.900	0.900	0.140
1.500	10.80	10.80	12.00	270.00	300.00	300.00	0.900	0.900	0.210

一 底版許容値

「底版許容値(杭頭接合計算用)」タブに切り替えます。 この画面では初期値から変更はありません。

- <mark>杭頭作用力</mark> 「杭頭作用力」タブに切り替え、下表に従って値を入力しま *す*。"

		鉛直反	力(kN)	水平反	力(kN)	÷-	-メント(kN・m)
40	荷重名称略	鉛直最大	鉛直最小	水平最大	水平端部	杭頭	地中部	使用 モーメント
1	常時	1418.3	1418.3	0.0	0.0	0.0	0.0	
2	地震時	3134.5	-363.2	295.3	295.3	471.4	601.3	
3	地震時	2225.0	546.2	200.9	200.9	463.2	409.0	
1	常時(浮)	1224.3	1224.3	0.0	0.0	0.0	0.0	
5	地霞時(浮)	2940.4	-557.3	295.3	295.3	471.4	601.3	
6	地震時(浮)	2030.9	352.2	200.9	200.9	463.2	409.0	
后相	RC断面照査には枕頭曲	げモーメントを用	見いる。			※使用モー	-メント 1:杭	頭 2:地中部

		鉛直反力(kN)		水平反	力(kN)	Ŧ	モーメント(kN・m)		
No	荷名称略	鉛直最大	鉛直最小	水平最大	水平端部	杭頭	地中部	使用 モーメント	
1	常時	1418.3	1418.3	0.0	0.0	0.0	0.0		
2	地震時	3134.5	-363.2	295.3	295.3	471.4	601.3		
3	地震時	2225.0	546.2	200.9	200.9	643.2	409.0		
4	常時(浮)	1224.3	1224.3	0.0	0.0	0.0	0.0		
5	地震時(浮)	2940.4	-557.3	295.3	295.3	471.4	601.3		
6	地震時(浮)	2030.9	352.2	200.9	200.9	463.2	409.0		

杭頭接合計算			_					×
基本条件 杭径・底版形状 底版許容値(杭頭排	寝合計算用)	杭頭作用力	杭頭補強	鉄筋				1
±#20	1	充外径 D		mm	1	200.00		
	i	直径 Do		mm	1	600.00		
かぶり断面柱	内径(充	実断面のときに	\$0)	mm		0		
4	必要	與鉄筋量 Asr		cm ²		59.34		
					直径Doの	自動設定	1	
	使用鉄筋 鉄筋段数	1	•		*##3354	よ鉄筋中心	からの距離	
		径(mm)	本数	かさ	5카(mm)	補強	決筋	
杭外径D	1段目	D25	24		350.0	主部	뛟	
	2段目						-	
	3段目						-	
	鉄筋量(cm²) 121.61	有効鉄道	筋量(cm²)	121	.61	決筋連動	
							計算実行 一	H
			Ĺ	🖌 確定		🗙 取消	? NU791	D

——杭頭補強鉄筋

「杭頭補強鉄筋」 タブに切り替え、下表に従って値を入力します。

	径(mm)	本数	かぶり(mm)	補強鉄筋
1段目	D25	24	350.0	主鉄筋

――― 「計算実行」 ボタンを押します。

補	強鉄筋								
杭種 場所打ち杭 方法 B									
			断百	面力	中立軸	コンクリー	・ト応力度	鉄筋口	じカ度
lo	荷重ケース名	軸力	₩ (kN•m)	N (kn)) (cm)	ОС (N/mm2)	OCa (N/mm2)	(N/mn2)	o⊺sa (N/mm2)
1	常時	Nmax Nmin	0.00	1418.30 1418.30	0.00 0.00	0.65 0.65	8.00 8.00	-9.70 -9.70	-200.00 -200.00
2	地震時	Nmax Nmin	471.40	3134.50 -363.20	183.14 34.69	2.54 3.39	12.00 12.00	-30.79 132.45	-300.00 300.00
3	地震時	Nmax Nmin	463.20	2225.00 546.20	154.40 59.57	2.10 2.47	12.00 12.00	-24.42 40.65	-300.00 300.00
4	常時(浮)	Nmax Nmin	0.00	1224.30 1224.30	0.00 0.00	0.56 0.56	8.00 8.00	-8.37 -8.37	-200.00 -200.00
5	地震時(浮)	Nmax Nmin	471.40	2940.40 -557.30	176.75 31.85	2.45 3.49	12.00 12.00	-29.47 153.01	-300.00 300.00
6	地震時(浮)	Nmax Nmin	463.20	2030.90 352.20	147.26 51.48	2.02 2.71	12.00 12.00	-23.12 58.04	-300.00 300.00
 総新の応力度および許容応力度は、正値が引張,負値が圧縮を示す。 依分径 仮想砲(maige 鉄筋径 本数 かぶり 間隔 (mm) 1801 1200-00 1000 00 125 24 350-0 118 									
い専	專鉄箭量 2007	59.94	1						λ

結果を確認したら「閉じる」ボタンを押し、最後に「確定」ボタンを押します。

1-12 底版設計

底版設計 左メニューから「底版設計」をダブルクリックします。

下記に従って値を入力します。

<mark>主鉄筋タブ</mark>の「Y方向」「X方向」を入力します。 <mark>Y方向</mark>

上側1段目<かぶり:100><径:D25><ピッチ:125> 上側2段目は入力しません。 下側1段目<かぶり:150><径:D29><ピッチ:125> 下側2段目は入力しません。

X方向(張出部)

上側1段目<かぶり:100><径:D25><ピッチ:125> 上側2段目は入力しません。 下側1段目<かぶり:150><径:D32><ピッチ:125> 下側2段目は入力しません。

X方向を「柱間」タブに切り替えます。

X方向(柱間)

上側1段目<かぶり:100><径:D25><ピッチ:125> 上側2段目は入力しません。 下側1段目<かぶり:150><径:D32><ピッチ:125> 下側2段目は入力しません。

X方向(柱間)

上側1段目<かぶり:100><径:D25><ピッチ:125> 上側2段目は入力しません。 下側1段目<かぶり:150><径:D32><ピッチ:125> 下側2段目は入力しません。

鉄筋 せん断補器鉄筋				1
方向				
径	D22			
幅1(m)当たりの本数	2.000			
1895萬 (cm)	25.00			
飯のとき用いる本数	5.000			
方向				
径	D22			
幅1(m)当たりの本数	2.000			
間隔 (cm)	25.00			
飯のとき用いる本数	5.000			

せん断補強鉄筋

「せん断補強鉄筋」タブに切り替え、下記に従って値を入力します。

X方向

<径:D22> <幅1(m)当たりの本数:2.000> <間隔(cm):25.00> <版のとき用いる本数:5.000>

Y方向

<径:D22>を選択を選択します。 <幅1(m)当たりの本数:2.000> <間隔(cm):25.00> <版のとき用いる本数:5.000>

計算条件

「計算条件」タブに切り替え、 連続フーチングの柱間のせん断照査を <する(せん断スパン=中間の1/2)>にチェックを入れます。

レベル2地震時

「レベル2地震時」タブに切り替え、下記に従ってチェックを入れます。

連続フーチングの柱間照査

<する>にチェックを入れます。 連続フーチングの柱間のせん断照査 <する(せん断スパン=柱間の1/2)>にチェックを入れます。 底版下面鉄筋を考慮した水平方向押抜きせん断照査 <する>にチェックを入れます。 照査対象杭範囲(最端部杭座標からの離れ) <新設・既設部:1.000×D>と入力します。 有効幅が重なる場合の取扱い <重なりを考慮する>にチェックを入れます。 端部杭の有効幅の広がりの取扱い <端部または1・Dとする>にチェックを入れます。 考慮する底版下面鉄筋範囲 <新設・既設部:最下段のみ>を選択します。

底版釣合鉄筋量算出時の取扱い

<複鉄筋>にチェックを入れます。 版としてのせん断照査のせん断スパンの算出方法 <柱前面に生じる曲げモーメントとせん断力との比>にチェッ クを入れます。 せん断照査における照査位置の集中荷重の取扱い <考慮/無視の厳しい方を採用>にチェックを入れます。 最小鉄筋量照査 <しない>にチェックを入れます。

版設計	×
記筋 曲げ照査位置〈レベル2〉 計算条件	
許容応力度法 レベル2地震時 共通	
主鉄筋の入力方法 「配置による入力」 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 によっ入力 にまっ 、 の にまっ 、 の にまっ 、 の にまっ 、 の にまっ 、 の 、 の 、 の	性範囲の設計曲げモーンントの取扱い で 柱転面の面げモーンントを用いる で 柱転心の面げモーンントを用いる ※ 柱転面の面げ医一ジントを開たす。 米に転面の面が感動に用いる統計曲げモーンントを指定する。 預出版 3 厚く。
上語 1 ¹⁰⁰ (mm) F1回 p (mm)	
「 上環値Lを考慮する 上側引換時の上環値 「 Lとする	
	【 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

「共通」タブに切り替え、下記に従ってチェックを入れます。

せん断スパンの取扱い

 - <上限値Lを考慮する>にチェックを入れ、
 <上側引張時の上限値:L+min(tcc/2,d)とする>にチェックを 入れます。

最後に「確定」ボタンを押します。

1-13 レベル2地震時照査

【基本条件】

し2地震時基本条件 本条件 (共通) 基 線	\$条件(抗差		⊾/4⊕ #	22(10)	計算条件◎					
計算条件 作用力を指定してし	レベル2地震	時照査を行う	ເປ	ສມ	○ 柱基部 ○ 柱基部 ○ 柱基部	「面力(両方向) (「面力(Y方向のみ)(「面力(Y方向のみ)(底版下面作用力(両方向 底版下面作用力(Y方向 底版下面作用力(X方向	司) (のみ) (のみ)		
レベル2地震時計算方法				 ○ 2次元解析 ○ 2.5次元解析 						
		▼ ×方向			杭体水平荷重	ಾಭರಿ ೧ಶ	IJ			
計算条件 🔽 液状化無視 🗌		□ 液状化	汚慮 🗖	流動化	底版上の任意荷重	□ 底版照查 □ 安定	計算			
地震動タイプ	▼ タイブ	I	□ タイブ	Π Γ	落橋防止	分割制	100			
水位	☑ 浮力無	宅見	□ 浮力考	慮						
- 情性力の向き v5 X3 V方向 X方向	方向 方向	(* 正方向 (* 正方向	† (→ (↑負方向 ・負方向 ↔	ļ _	武道(7前後)(許容望性率	16各型性手順査を行う 1.000			
			正方	句 1		負方	向↓			
		タイプ	۶I	タイプロ		タイプ I	タイプロ			
C2z•kho	0	0.85	00	1.7500		0.8500	1.7500			
khp		0.6	8	0.68		0.68	0.68			
khg		0.5	5	0.70		0.35	0.70			
橋脚の終局水	平耐力	大きな余裕	訪ない	大きな弁	特がない	大きな余裕がない	大きな余裕がない			
Wu (kN)		633	80.00	4	740.00	4740.00	4740.00			
		12.2	00	1						
hu (m)										
hu (m)				-						
hu (m)										
hu (m)										
hu (m)							X D H	2 (12)11		

基本条件

左メニューからレベル2地震時照査「基本条件」をダブルク リックします。

基本条件(共通)

計算条件の「タイプⅡ」のチェックを外し、下表に従ってY方向 (正方向↑:タイプⅠ)の値を入力します。

	正方向↑
	タイプI
C2z/khco	0.8500
khp	0.68
khg	0.35
橋脚の終局水平耐力	大きな余裕がない
Wu(kN)	6330.00
hu(m)	12.200

X方向

-「X方向」タブに切り替え、左表に従ってX方向(正方向→:タイ プト)の値を入力します。

	正方向→
	タイプI
C2z/khco	1.3000
khp	0.90
khg	0.35
橋脚の終局水平耐力	大きな余裕がある
Wu(kN)	7822.50
hu(m)	14.700

バル2地震時基本条件 X								
基本条件(共通) 基本条件(杭基礎) 計算条件① 計算条件② 計算条件③								
Rd (kN)	852	2.00					浮力無視	浮力考慮
Wp (kN)	339	3.00			鉛直力算出用水位 (m)		0.000	0.000
hp (m)	8.03	80	*hp:底	*hp:底版下面からWp		Up (kN)	0.00	0.00
上載土厚(m)	4.50	0	E-C-DDE-	K COMB/COID		Ws (kN)	3594.61	3594.61
WF (kN)	543	2.39	*hF:底版下面からWF			WF'(kN)	5432.39	5432.39
hF (m)	1.16	14	重心位置	そでの高き(m)		Vo (kN)	20942.00	20942.00
上載土の増性力を考慮する(作用力計算時)						Vo'(kN)		
※水位は標高、上載土厚は底版下面からの厚さ						備計算用水位 (m)	0.000	0.000
 予備計算用水位(連動ボタンによる連動方法) ○ 水位(地震時) ○ 公 協直力算出用水位と同じ 						Vo', Hd', Md' 連載	」 水位高,上載土厚。	惠動 作用力計算
Hd (kh) Md (kh*m Hd' (kh) Md' (kh*m Hd' (kh Md' (kh*m Md' (kh*m ※)應該反下面標 ※)應該反下面標	1) 1) 11) 11) 11) 11) 11) 11) 11) 11) 1	80/5-2)-よい3880/1.22/ 「				;禄力 ○000 ○000 	考慮 X方向 0.00 0.00 	
							✔ 確定 🛛 🗙	取消 ? ヘルブ(出)

—— 基本条件(杭基礎)

「基本条件(杭基礎)」タブに切り替え、下表に従って値を入力 します。

Rd(kN)	8522.00
Wp(kN)	3393.00
hp(m)	8.030
上載土厚(m)	4.500
WF(kN)	5432.39
hF(m)	1.164

 「作用力計算」ボタンを押すことで右側の表が、下記の値で自 動的に入力されます。

※自動入力されます	浮力無視	浮力考慮
鉛直力算出用水位(m)	0.000	0.000
Up(kN)	0.00	0.00
Ws(kN)	3594.61	3594.61
WF′(kN)	5432.39	5432.39
Vo(kN)	50942.00	50942.00
Vo(kN)		
予備計算用水位(m)	0.000	0.000

的変動を考慮した @ 考慮しない	レベル2地震時照査 C 考慮する 「 「	Mc<0のときMc=0.0として計算を 転開仮想鉄筋コンクリート断面のf M − φの大小関係が正しくない場	総行する W質出にも適用する 合も計算を続行する
1− ¢算出用軸力の ● 平均反力	D取扱い 〇 杭列ごと成力	変位照査の取 で 応答変位 5	風い 照査時のみ行う C 常に服査を行う
割性化した部材の曲 Y-U, Y-Y'区間	げ間性の取扱い こ対する低減率 1/ 1	10000	
に体から決まる引抜 © 杭体の鋼材よい	き支持力の上限値 寛出 C 杭本の鋼材と杭	頭補強鉄筋の小さい方より算出	□ 杭外周溶接鉄筋を考慮しない
HC/PC枕のスパ C 考慮しない	イラル鉄筋 © 考慮する		
・ん断力照査 -SC杭+PHC杭時 の しない	 (のPHC杭の杭住せん断力照響) (こ)する(スパイラル鉄筋無) 	 でする(スパイラル鉄節) 	考慮〉
せん断力照査方法 (* 杭基礎のせ)	去(RC枕, PHC枕, PC枕, 場) ん断力≦枕基礎のせん断耐力	所打ち枕,内面リブ付鍋管巻き場所打 ○ 枕体のせん断力≦杭(15枕のみ) 体のせん断耐力
杭頭カットオフの新 の 考慮しない	「響(PHC杭, PC杭のみ) C 考慮する	ー中詰め部分のせん断耐力を考慮。 ゴレストレスの損失を考慮する範囲	する〈H19, H27杭基礎設計(便覧) 囲を指定する
*れ3単わットオフのオ ⑥ 考慮しない	e響 (PHUM, PC杭のみ) C 考慮する 「 「	中詰め部分のせん断耐力を考慮す ブレストレスの損失を考慮する範疇	する 〈H19, H27杭基礎設計便覧〉 囲を指定する

____ 計算条件①

「計算条件①」タブに切り替えます。

せん断力照査方法(RC杭、PHC杭、PC杭…)

—— <杭基礎のせん断力≦杭基礎のせん断耐力>にチェックを入れます。
伏判定用の枕頭仮想鉄筋	コンクリート断面の降伏曲げる	ーメントMy算出用の	軸力の取扱い	
所設・既設杭	C 死荷重反力	○ 軸力=0	 押込み側:死荷重反力、引抜き側:軸力=0 —— 	
曾し枕	C 死荷重反力	C 触力=0	☞ 押込み側:死荷重反力、引抜き側:軸力=0	
※杭頭部(深度=0)の札 この「杭頭仮想RC断配	れの降伏判定は、min(杭体M 面My」算出に用いる軸力を選	ly,枕頭仮想RC断配 限してください。	ōMy)を用いています。	
頭仮想鉄筋コンクリート断	面の照査			
(で 1列()	本)ごとに照査 ()全	列(杭)で照査		
照査判定用の杭頭仮想鉄	筋コンクリート断面の降伏曲	fモーメント My算出!	用の軸力の取扱い	
基礎に主たる塑性化を	考慮するとき 【杭体の降伏	曲げモーメント ≦ 仮	想RC断面の降伏曲げモーメント】	
新設・既設枕	C 死荷重反力	○ 軸力=0	 押込み側:死荷重反力、引抜き側:軸力=0 	
増し杭	C 死荷重反力	☞ 顧力=0	€ 押込み側:死荷重反力、引抜き側:軸力=0	
- - 基礎に主たる塑性化を	考慮しないとき 【枕頭発生的	ヨプモーメント ≦ 仮	想RC断面の降伏曲げモーメント】	
新設・既設枕	○ 死荷重反力	○ 9自力=0	 押込み側:死荷重反力、引抜き側:軸力=0 —— 	
増し杭	€ 死荷重反力	⑦ ●●フ)=0	€ 押込み側:死荷重反力、引抜き側:軸力=0	
				I

計算条件③

<押し込み側:死荷重反力、引抜き側:軸力=0>にチェックを 入れます。

─ 杭頭仮想鉄筋コンクリート断面の照査 <1列(本)ごとに照査>をチェックを入れます。

最後に「確定」ボタンを押します。

【杭本体】

Μ-φ

「M-φ」タブに切り替え、下表に従って曲げモーメント、曲率タ ブの値をそれぞれ入力します。

曲	げー	F	×	2
	· · ·	-	*	-

区間No	区間長	Mc(kN ⋅ m)	My(kN ⋅ m)	Mu(kN • m)
1	11.356	620.4	1875.6	2678.2
2	13.644	603.5	1340.3	1839.2

曲率

区間No	区間長	Φc(1/m)	Φy(1/m)	Φu(1/m)
1	11.356	0.0002223	0.0027818	0.0262491
2	13.644	0.0002262	0.0026568	0.0314672

- 下の「計算」 ボタンを押すとある程度同じ値が入力されるので 便利です。

37

その他

「その他」タブに切り替え、下記に従って値を入力します。

支持力上限值(kN本)

<押込み支持力の上限値:7977> <引抜き抵抗力の上限値(浮力無視):-4195>

最後に「確定」ボタンを押します。

【地盤データ】

上載荷重	(浮力無視)	<u>k</u> 1	1/m²	85.50	杭間隔	i÷杭径 既設,新	i設杭(Y方向)	2.500
	(浮力考慮)	k k	U∕m²			既設,新	設杭(X方向)	2.500
荷重算	出用の上載土	厚の指定				増し杭く	(方向)	
地盤面	(地震時)	④ 上載土問	Į.	□ 計算 ·		増し杭く	の方向)	
i motani								
080036 080036	erer Lauraan							
関工生気	±度 水平地	肇反71条数						(
No	層種	層厚 (m)	(kN/m²)	(度)	γ́ (kN∕m³)	層上端pp (kN/m ²)	層下端pp (kN/m ²)	着目点ビッチ (m)
1	粘性土	5.000	30.00	0.00	7.00	145.50	180.50	0.200
2	粘性土	12.000	30.00	0.00	7.00	180.50	264.50	0.200
3	砂質土	6.000	0.00	30.00	9.00	716.80	906.08	0.200
4	砂質土	2.000	0.00	40.00	11.00	1549.98	1681.89	0.200
								圖 計算

上載荷重算出用の上載土厚

── <上載土厚>にチェックを入れます。

一隣の「計算」ボタンを押します。 上載荷重(浮力無視)に自動的に値が入力されます。

受働土圧強度

 下の「計算」ボタンを押すと受働土圧強度の値が自動的に入力 されます。

水平地盤反力係数

「水平地盤反力係数」タブに切り替え、下表に従って値を入力 します。

No	層厚(m)	kHE(kN ∙ mੈ)
1	5.000	6932.334
2	12.000	13171.434
3	6.000	69323.339
4	2.000	173308.351

最後に「確定」ボタンを押します。

【水平方向押抜きせん断照査】

- 水平方向押抜きせん断照査

左メニューから「水平方向押抜きせん断照査」をダブルクリックします。

1-14 計算・結果確認

ここでは初期値から変更はありませんのでそのまま「確定」ボ タンを押します。

総括表

左メニューから「総括表」をダブルクリックします。

		水平	変位		鉛直	反力		水平反力	杭作用モ	-メント		
lo	荷重名略称	δfx (nn)	δxa (m)	PNnax (kN)	PNmin (kN)	Ra (kN)	Pa (kN)	PH (kN)	MT (kN+n)	Min (kii•n)		
1	常時	0.00	15.00	1418.3	1418.3	2390.0	-1330.0	0.0	0.0	0.0		
2	地震時	8.38	15.00	3134.5	-363.2	3683.0	-2245.0	295.3	471.4	601.3		
3	地震時	4.72	15.00	2225.0	546.2	3683.0	-2245.0	200.9	463.2	409.0		
4	常時(浮)	0.00	15.00	1224.3	1224.3	2390.0	-1330.0	0.0	0.0	0.0		
ō	地震時(浮)	8.38	15.00	2940.4	-557.3	3683.0	-2245.0	295.3	471.4	601.3		
3	地震時(浮)	4.72	15.00	2030.9	352.2	3683.0	-2245.0	200.9	463.2	409.0		

荷重ケースごとに、安定計算,杭体応力度照査結果を抽出して 表示します。増し杭工法のときは、既設杭と増し杭に分けて出 力します。

【安定計算】

安定計算

左メニューから「安定計算」をダブルクリックします。

				荷重 No	荷重名略称	PNna	× ≦ (kN)	≦ Ra)	PN,	'în (kl	≧ Pa ()	δf	c≦ (nn	δa)
				1	常時	1418.32	≦	2390.00	1418.32	≧	-1330.00	0.00	≦	15.
\sim	\bigcirc	\circ		2	地震時	3134.46	≦	3683.00	-363.22	≧	-2245.00	8.38	≦	15.
				3	地震時	2224.99	≦	3683.00	546.25	≧	-2245.00	4.72	≦	15.
_	~	~	~	- 4	常時(浮)	1224.28	≤	2390.00	1224.28	≥	-1330.00	0.00	≤	15.
				5	地震時(浮)	2940.42	≦	3683.00	-557.27	≥	-2245.00	8.38	≦	15.
<u> </u>				6	地震時(浮)	2030.95	≦	3683.00	352.20	≥	-2245.00	4.72	≦	15.
te o	■ (1) [利 [0	桃 _ 全 ま行	枕取消 列酸定											
	0 EX	,												
6 開始語														

指定された杭について、各々の計算結果を表示します。

複数杭指定した場合、各項目ごとに最大値あるいは最小値を 表示します。ただし、許容支持力・引抜力が異なる杭が混在す る場合の杭軸方向反力は「計算条件」-「設計条件」-「その 他の条件」で指定した方法(反力と許容値の比、反力と許容値 の差)により抽出した値を表示します。

【抗体応力度】

🧱 基礎の設計・3D配筋 Ver.2(Advanced版) - Ku	↓_1.F1F(抗基礎) (更新)	– 🗆 🗙
ファイル(E) 計算実行(C) オブション(Q) ヘルプ(Ð	
🎦 🚔 🛃 📧 🛛 処理モードの選択 入	力 計算書作成 图面作成 設計調書 自動設	8+ 🛛 💡 📦 📼 🍓
0 17 17 1810	ያ-/F.ル:	DOM:
- · 地層	平面図	橋釉直角方向(X方向)
 ● 智 秋光政治 ● 計算高件 ● 計算高件 ● 計算高件 ● 計算備 ● 引持備 ● 引持備 ● 引援機構設 ● 北美地内当 	1100 9 Y 9 0 0 0 0 0 10 0 10 0 0 10 0 10 0 0 10 0	
	WHITE	禄袖方向(v方向)
	And a state	

杭体応力度

- 左メニューから「杭体応力度」 をダブルクリックします。

杭体 1断面	応力度 結果間 i]第2新面 断	122 面支(七位講	E]							- 0	3	×
鉄筋	デー タ		~										-
段 1	12 (mn) 本数 25 24	(nni 118	,0 °	A s (om2) 121.608 1	2 A s (om2) 21.608								
曲け	「応力度	1-		м	N	<i>σ</i> c≤ σcs	<i>π</i> ∘≤ <i>π</i> ∘∘	<i>π</i> ∘'> ποο'	b4-	帝生位男			
No	倚重名略称	13	옛	(kN·n)	(kN)	(N/am2)	(N/am2)	(N/nn2)	(kN · n)	(a)			
1	堂時	1	1	0.0	1418.3	1.08≦8.00	_	-16.20≧-200.00	895.3	-			
	Mir or J	1	1	0.0	1418.3	1.08≦8.00	_	-16.20≧-200.00	895.3	-			
2	地雷時	1	4	(*)601.3	3134.5	5.42≦12.00	-	-69.91≧-300.00	1401.0	-			
	- Gat-1	3	1	(*)601.3	-363.2	5.78≤12.00	199.36≦300.00	-45.83≧-300.00	971.5	-			
3	地震時	1	4	463.2	2225.0	4.06≦12.00	1.87≦300.00	-51.97≧-300.00	1348.8	-			
		1	1	463.2	546.2	4.25≦12.00	76.30≦300.00	-43.69≧-300.00	1264-1	-			1
4	常時(浮)	1	1	0.0	1224.3	0.93≦8.00	-	-13.98≧-200.00	883.8	-			
		1	1	0.0	1224.3	0.93 28.00	-	-13.98 ≤ -200.00	883.8	_			
5	地震時(浮)	H	4	(*)001.3	2040.4	5.31.212.00	1.02 - 300.00	-07.30 E -300.00	1000-6				
		3	1	469.9	-007.3	2 96 < 12 00	5 22 < 200.00	-42.00 = -300.00	1997.9				
6	地震時(浮)	H	4	403-2	2030.8	4 94 \$ 12.00	92 92 < 900 00	-30.22 = "300.00 -42 49 > -300.00	1994.9				
重 : まん	ケース毎に上 に、ビンジ時(・断応力度	段が の断定	·Nama 面力で	403.2 x, 下段がト を採用してい	- 552.2 Nainを表 います。	示しています。 ただし、 Nは聞	結時の軸力を採り	目しています。	122410				
荷加	を を ま た の た の た の た の た の の の の の の の の の の	〒、 ント観文	Ē	印刷	•	所面位置指定			[開じる(0)	?	∿ \$7°	Œ

登場の設計・3D配数 Ver.2(Advanced版) - Kui_1. プライル(F) 計算実行(C) オプション(O) ヘルブ(H) 登録 日 20 単発モードの選択 計算書作成 図面作成 該計調書 自動設計 🦓 📦 🖼 🎬 94Fル 平面図 静植直角方向(X方向) 1140 ĄΥ \circ \circ \bigcirc ş - \bigcirc \bigcirc 橋軸方向(Y方向) 所式 ニーノ MRR語 Ĩ

杭体応力度照査結果を表示します。

場所打ち杭自動配筋を行うとき、主鉄筋径,本数,断面変化位 置の自動計算を行い、算出された断面変化位置における応力 度照査結果を表示します。

杭頭接合計算

左メニューから「杭頭接合計算」をダブルクリックします。

【杭頭接合計算】

1.00	場所行られ	лл	B BEFR	ត្រ	由立軸	コンクリー	下広力度	绊筋质	向力度	
0	荷重ケース名	軸力	M (kN•m)	N (kN)	X (cm)	OC (N/mm2)	Oca (N/mm2)	OS (N/mn2)	OTSa (N/mm2)	
1	常時	Nnax Nnin	0.00	1418.30 1418.30	0.00	0.65	8.00 8.00	-9.70 -9.70	-200.00	
2	地震時	Nnax Nnin	471.40	3134.50 -363.20	183.14 34.69	2.54 3.39	12.00 12.00	-30.79 132.45	-300.00 300.00	
3	地震時	Nmax Nmin	463.20	2225.00 546.20	154.40 59.57	2.10 2.47	12.00 12.00	-24.42 40.65	-300.00 300.00	
4	常時(浮)	Nmax Nmin	0.00	1224.30 1224.30	0.00 0.00	0.56 0.56	8.00 8.00	-8.37 -8.37	-200.00 -200.00	
5	地震時(浮)	Nmax Nmin	471.40	2940.40 -557.30	176.75 31.85	2.45 3.49	12.00 12.00	-29.47 153.01	-300.00 300.00	
3	地震時(浮)	Nmax Nmin	463.20	2030.90 352.20	147.26 51.48	2.02 2.71	12.00 12.00	-23.12 58.04	-300.00 300.00	
鉄段	筋の応力度およ 杭外径 (0 D (nm) 目 1200-00	び許容 想RC直 Do (mm) 1600・	応力度は 径 鉄筋 00 D	、正値が 径 本数 25 24	引張, 負(かぶり F (mn) - 350.0	直が圧縮を 間隔 (mm) 118	त्त् च.			
	新外常用 。	59.94								

杭頭接合計算結果を表示します。

杭頭と底版接合部

杭頭と底版の接合部の計算結果を表示します。

杭頭補強鉄筋

仮想鉄筋コンクリート断面の応力度照査結果を表示します。 [入力表示] により入力画面を表示しますが、入力値の変更、 計算実行は行えません。

杭頭カットオフ

フーチング下面以下に生じる鉄筋コンクリート断面として扱う 範囲の杭本体の照査結果を表示します。。 [入力表示]により入力画面を表示しますが、入力値の変更、 計算実行は行えません。

【底版照查(許容)】

底版照査(許容)

左メニューから「底版照査(許容)」をダブルクリックします。

< Y 7	方向:橋輔	ある	>							
ase	M	<u>左側</u>	<i></i>		右側		許容以	5力度		
	(kN·n)	(N/ms ²)	(N/an ²)	M (kW-n)	σ̃C (N/nn²)	O′S (N/mm²)	σ′ca. (N/mu≭)	o″sa (N/∩m²)		
1	5658.79	0.87	45.01	5658.79	0.87	45.01	8.00	180.00		
2	-7531.02	1.41	83.03	18325.41	2.81	145.76	12.00	300.00		
3	5397.19	0.83	42.93	5397.19	0.83	42.93	12.00	300.00		
4	5517.33	0.85	43.89	5517.33	0.85	43.89	8.00	180.00		
5	-7672.48	1.44	84.59	18183.95	2.79	144.64	12.00	300.00		
日創	「筋量照査	Mu odina	.99 19	Mc 1 Maina)	.7M /	As 判定 和/m)	As (Mc=Nu (ma ² /m)	1)		-

開じる(Q) ? ヘルフ*(H)

単位系変換 7% 対設定 印刷 •

算方向ごとに曲げ照査, せん断照査結果を表示します。赤文 は許容値を超えていることを示しています。

【レベル2地震時計算】

レベル2地震時計算

左メニューから「レベル2地震時計算」 をダブルクリックします。

计算条件		₩化 ④ 無視	C 考虑	○ 流創	11÷	地震動タイ (* タイブ	J I C	タイプロ	水位 (*	洋力無視 C 洋力考慮	
舌表	覧表 荷重	変位関係	詳細表示								
「利定OK	時の許容は	と率(計算値/	「制限値)を表	示する							
(方向											-
液状化	地震動 タイブ	水位	総合判定	基礎	職会 して して	応答 塑性率	変位	せん断力	杭頭		
無視	I	浮力無視	OK	OK	OK	-	-	OK	OK		
無視	I	浮力考慮	-	-	-	-	-	-	-		
無視	Π	浮力無視	-	-	-	-	-	-	-		
無視	Π	浮力考慮	-	-	-	-	-	-	-		
考慮	I	浮力無視	-	-	-	-	-	-	-		
考慮	I	浮力考慮	-	-	-	-	-	-	-		
考慮	I	浮力無視	-	-	-	-	-	-	-		
考慮	П	浮力考慮	-	-	-	-	-	-	-		
く方向 液状化	地震動 タイプ	水位	総合判定	基础	提降伏 支持力	応答 塑性率	变位	せん断力	杭頭		
< 方向 液状化 無視	地震動 タイブ I	水位 浮力無視	総合判定 OK	基 (體降伏 支持力 <u>0K</u>	応答 塑性率	变位 <u>0K</u>	せん断力 <u>0K</u>	杭頭 <u>0K</u>		
< 方向 液状化 無視 無視	地震動 タイブ I I	水位 浮力無視 浮力考慮	総合判定 OK 一	基 (花体 (本) (本)	壁降伏 支持力 <u> のK</u> 一	応答 塑性率 <u>0M</u> 一	要位 <u>0K</u> 一	せん断力 <u>0K</u> 一	杭頭 <u>QK</u> 一		
< 方向 液状化 無視 無視	地震動 タイブ I I I	水位 浮力無視 浮力無視 浮力無視	総合判定 OK 一	基码 杭体 <u>降伏</u> 一	提降伏 支持力 0K 一 一	応答 望性率 <u>()()</u> 一	変位 <u>0K</u> 一	せん断力 <u>0K</u> ー ー	杭頭 <u>0K</u> 一		
< 方向 液状化 無視 無視 無視	地震動 タイブ I I I I I	水位 浮力無視 浮力考慮 浮力考慮	総合判定 0K - -	基 杭体	豊隆伏 支持力 <u> 0K </u> 一 一 一	応答 塑性率 <u>0K</u> 一 一	変位 <u>0K</u> 一 一	せん断力 <u>QK</u> ー ー ー	枕頭 <u>0K</u> 一 一		
<方向 液状化 無無規規 規規規 属	地震動 タイブ I I I I I	水位 浮力無意視 浮力無考視 浮力無考 現	総合判定 OK 	基	提降伏 支持力 <u>0K</u> 一 一 一 一	応答 塑性率 — — — —	変位 <u>0K</u> 一 一 一	せん断力 <u>QK</u> ー ー ー	杭頭 <u>0K</u> 一 一 一		
<方向 液 紙 規 規 規 無 無 考 考 考 考 制	地震動 タイブ I I I I I I	水位 浮力为無考現 源力無考無現 意 視 慮 現 の 第 力 月 二 第 二 二 第 二 二 二 二 二 二 二 二 二 二 二 二 二 二	総合判定 OK 	基 杭体 <u>降伏</u> 	提降伏 支持力 <u>0K</u> 一 一 一 一 一 一	応答 望性率 — — — — —	変位 <u>QK</u> 一 一 一	せん断力 <u>QK</u> ー ー ー ー	杭頭 <u>0K</u> 一 一 一		

レベル2地震時の照査結果を表示します。

総括表

各検討ケースごとの判定結果を表示します。OK, OUT, 降伏をクリックすると、該当検討ケースの結果画面を開きます。

一覧表

安定計算結果一覧表を方向ごとに表示します。

荷重変位関係

水平震度~上部構造慣性力作用位置水平変位をグラフおよび 数値にて方向ごとに表示します。

流動化考慮時,盛りこぼし橋台の場合,作用力を指定してレベル2地震時照査を行う場合、水平震度の代わりに基礎に作用する水平荷重を表示します。

詳細表示

最終震度時,もしくは降伏時,応答変位時における、断面力 図,地盤反力度分布図,杭頭反力等の詳細結果を表示しま す。

【底版照査(レベル2)】

底版照査(レベル2)

左メニューから「底版照査 (レベル2)」をダブルクリックしま す。

「底版照査エラー」が表示されるので、「確認」 ボタンを押しま す。

#			底版照	査(レベル2♯	也震時) 結果確		- 🗆 🗙
計算条	件	液状化 (・ 無視	C 考慮 (1 流動時	を震動タイプ で タイプI C タイ	水位 ④ 浮力無観	C 浮力考慮
総括表	Y方向 X	方向 抽出結	R				
考慮	i I	浮力無礼					-
考慮	i I	浮力考慮	t				
流動	時 I	浮力無初					
流動	時 I	浮力考慮	t				
流動	時 🛛	浮力無礼					
流動	時Ⅱ	浮力考慮					
×方	向						
	地雪	ih			水亚方向细技考		
液状1	化资学	ジョン 水位	曲げ熊査	せん断照査	せん断照査		
無視	1 I	浮力無礼	! <u>OUT</u> .	OK	OK		
無視	1 I	浮力考慮					
無視	1 I	浮力無礼					
無視	1 1	浮力考慮	C				
考慮	ξ I	浮力無礼	!				
考慮	i I	浮力考慮					
考慮	i I	浮力無礼	1				
考慮	i I	浮力考慮	t				
流動	時 I	浮力無初	1				
流動	時 I	浮力考慮	t				
		Section Area 41	1				
流動	時Ⅱ	浮刀無包					
流動 流動	時 Ⅱ 時 Ⅱ	浮力無也 浮力考慮	t				
流動B 流動B	時 I 時 I	浮力無1 浮力考慮	t				_
流動	時 Ⅱ 時 Ⅱ)浮力考慮 浮力考慮	i				•

算条件	→液状化 (● 無視	○ 考慮	C 流動時	- 地震動タイプ- 「 タイプ I	C タイプエ	水位 ④ 浮力無視	○ 浮力考慮
表 Y方向	×方向 抽出結	果]					
基部断面力	曲げ照査 せん	。断照査 FF	RAME結果 水	※平方向押抜きせ/	(断照査)		
主1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1						1
			断面照査時 の水平震度	V (kN)	H (kN)	M (kN•m)	判定
液状化無	視・地震動タイプI・	浮力無視	0.860	2637.03	5680.67	47886.42	
液状化無	視・地震動タイプI・	浮力考慮		0.00	0.00	0.00	
液状化無	見・地震動タイプⅡ	·浮力無視		0.00	0.00	0.00	
液状化無:	現・地震動タイプⅡ	·浮力考慮		0.00	0.00	0.00	11
液状化考	慮・地震動タイプI・	浮力無視		0.00	0.00	0.00	
液状化考	€・地震動タイプⅠ・	浮力考慮		0.00	0.00	0.00	
液状化考.	意・地震動タイプⅡ	・浮力無視		0.00	0.00	0.00	
液状化考.	愈・地震動タイプⅡ	·浮力考慮		0.00	0.00	0.00	
			·				Ľ,
						_	誤差判定
柱1	柱2 柱:	3	Γ		断 <u>面照</u> 査時の 底版下面作用力	柱基部地 算出した	「面力より と作用力
				V (kN)		-	
				H (kN)		-	
			L	M (kN•m)		-	

■ 底版照査(レベル2地震時) 結果確認

柱基部断面力

- 「柱基部断面力」タブに切り替え、柱1、柱2タブの値を下記 に従ってそれぞれ入力します。

柱1:液状化無視・地震動タイプト・浮力無視

柱2:液状化無視・地震動タイプト・浮力無視 <V(kN):9277.98> <H(kN):3597.51> <M(kN・m):26148.40>

総接入 Y方向 X方向 抽出結果 水平方向押抜きせん断照査
- New The West of We
社会認知面の「面力強金」せん助協会「FRAME結果」パーカルロ#Y%とせん初始金」 新設、開設
No 列 行 有効幅 (mm ²) 鉄鋼師面機 (mm ²) PH (kN) SH (kN) 抽出 対象
1 1 3 24000 15089.8 5205.98 943.44 🖻
2 1 2 2400.0 15089.8 5205.99 943.44 C
3 1 1 2400.0 15089.8 5205.98 843.44 ₽
単位系変換 7月21歳定 印刷 - ✓ 確定 ★ 取消 ? √1/2*(1)

【基礎ばね】

基礎ばね

左メニューから「基礎ばね」をダブルクリックします。

常時、地震時、および固有周期算定用の地盤ばね定数を算出 します。

k値

常時、地震時、および固有周期算出に用いる各層の水平方向 地盤反力係数を表示します。

計算結果(常時、地震時、固有周期算定用地盤ばね定数)

底版下面中心におけるばね値を算出、出力します。増し杭工法の場合、既設底版下面中心における値となります。

1-15 基準値

基準値

左メニューから「基準値」をダブルクリックします。

(21+31:第2210)	ank	19	21	24	27	20	20		
時間によりません	d'en	00.3	2.00	2.4	0.00	10.00	10.00	日 八日 王	
	arke -	5.00	6.10	2.10	0.10	0.00	0.00	山口田王	
単位的 位2 25 広市時	atta .	0.00	0.00	0 2000	0.9975	0.2750	0.9750		
1000年6月15807月8 1110日 - 1111日 - 1111日	7.1	0.2100	0.2020	0.3000	0.0070	0.3750	0.0700	日本	
	Cu1	1.6	16	1.2	10	10	1.0		
件母を入り入り成 は交援は++1版広力度	102	0.90	0.95	0.90	0.95	1.0	1.0	目目生	
中容性物で入りに	C d	0.00	0.00	0.00	0.00	1.00	1.00		
#19/11/02/20/102/102 は安け第広力度 (建築)	C dt	0.00	1.40	1.60	1.70	1.00	1.00	明久 王	
	Coa	0.00	0.14	0.14	0.14	0.14	0.14		
	C au	0.14	0.14	0.14	0.14	0.14	0.14		
	coa	0.00	0.00	0.70	0.75	0.00	0.00		
十月七人朝心八度	10	0.32	0.33	0.35	0.36	0.37	0.37	目の日本	
1.2.2.1#BL (*109)	Ec	220	2.50	2.00	2.00	2,00	2.60		
を礎の支圧応力度									
許容支圧応力度(垂直)	ɗba	5.40	6.30	7.20	8.10	9.00	9.00	T	
許容支圧応力度(水平)	ơba	5.40	6.30	7.20	8.10	9.00	9.00	17	
	σba<∰i € 0.3σ	售)の設定 'ck ○ 0.5c	rck ⊂ Z Ø	one (*	a(水平)の) 13σck(設定 ^ 0.5 or ck	○ その他		
									前 枝基礎
									() 服管矢板基
									日ケーソン基
									軍 地中連結機
									AL ACTION

コンクリートの許容応力度,鉄筋の許容応力度,荷重ケース等の共通データ、および各基礎の諸数値を設定します。

本画面のデータは、基礎形式を変更しても引き継がれ、同じ データを用いることができます。

[開く] ボタンにより、基礎データファイル (*.F1F,*.F8F等) から、基準値データのみを抽出して読み込むことができます。

基準値データを変更した場合、関連する照査の再計算を行う 必要があります。必ず、再計算を行ってください。

 ※計算書等に用いている各方向の名称は、「基準値」-「荷重 ケース」画面の方向名称で変更可能 (Q0-7参照)
 https://www.forum8.co.jp/faq/win/foundation-tqa.htm#q0-7

2 鋼管矢板基礎

サンプルデータ「Koukan_1.F1F」を例題として作成します。 ※以降左メニュー選択の説明は省略します 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

管矢板基礎

「鋼管矢板基礎」を選択し、「確定」ボタンを押します。

2-1 地層

地層データ		
- 中間点Uの間隔(m)	地層線 N/商 十賢一賢	計算条件 液状化 低減採助
始点リ 0.0 全幅 0.0		
0.0 0.0 0.0	-Contract and - Canton	
10-1		
	層名	標高 (m)
	現地論面	2.000
0	設計地盤面(常時)	-1.000
	設計地驗面《地震時》	-1.000
	地設由(常時)	2100
-10	152500(1556s4)	2100
-16	小山(市村)	4.500
10	水(立(始工論)	4500
-20-	中立る	2100
-25	1 880700	
4.0		
-30		
-35	1	
-40-		
-45		
	入力方法	
sel Max 編小 STD 拡大 Auto Icm 10cm 1m 首僚家	○ 標面入力 ○ 層厚入:	⑦ X方向 C Y方向 適用
現地:-989.000 ~ 989.000		👩 1882 🗸 NOTE 🗙 NOTE ? ^67789

設計地盤面

「設計地盤面」の値を下表に従って入力します。

層名	標高(m)
現地盤面	2.000
設計地盤面(常時)	-1.000
設計地盤面(地震時)	-1.000
地盤面(常時)	2.000
地盤面(地震時)	2.000
水位(常時)	4.500
水位(地震時)	4.500
水位(施工時)	4.500
中立点	2.000

-10.0	********************************	地層線 「地層線」 タブに切り <地層数:4>と入力し	替え、拡大図に従ってイ よます。 展厚(m)	直を入力します。
-16 -20 -25		/音NO 1	21.500	
-30- -35- -40-		2	3.500	
-45 	入力方法 「 税務入力 の <i>得</i> 厚入力」 「 化型材料 「 化 次方向 C ×方向 本用	3	6.500	
層框: 0.000 ~ 100.000	(2) 1.02 € 1.02	4	2.000	
4夏(光明信) Ng 土式 ⁻ 15 (お写点本 2010 4-5430	「適用」 ボタンを押しま	きす。	
	[王賀子二90] 士賀学一90 土賀学ー90 地間の土賀データ 約歳状化の円位では、観賀土=約磯土と扱います 弾 査 門均 (56) 増添計 (100) (100) (100)	「土質一覧」タブに切り	リ替え、	
5 0 -5 -10	No N NB OutPart OutPart OutPart OutPart OutPart 1 2 2 36 600 1500 1500 1500 2 1 14.0 2000 20640 18.00 18.00 18.00 3 2 10.0 2000 56000 17.00 17.10 4 1 50.0 164000 20800 20.80 20.90	<i>α</i> ・Eoの推定方法 <入力 (地震時は常時(の2倍) >にチェックを	を入れます。
-16 -28 -28 -38 -46 -46 -46 -46 -46 -46 -46	(*150/2015月2日 「クロジロの」を開始50001 (入力 6入力(化振時12月4502日) - スカルニ - あれた量子von (水中型量)' - 市入工量量すい (水中型量)' - 市入工量量すい (水中型量)' - ドル目 (150) (*1410日、15月20) - ドル目 (150) (*150) (*1410日、15月20日、15月10日) - ドル目 (*150) (*150	下表に従って土質デー: (③は今回入力する項	タ①~②の値を入力し 目はありません)	<i>、</i> ます。
層厚: 0.000 ~ 100.000	國 総社 ▲ 福祉 ▲ 10% 「「「「「「」」」 「「」」 「「」」 「」 「「」 「 「」 「 「」 「 「			

土質データ①

層No	土質	平均 N値	<i>α</i> ・Eo 常時 (kN/㎡)	α・Eo 地震時 (kN/㎡)	γt (kN/mੈ)	γsat (kN/mႆ)
1	2	2.0	8000	16000	16.00	16.80
2	1	14.0	39200	78400	18.00	18.80
3	2	10.0	28000	56000	17.00	17.80
4	1	50.0	140000	280000	20.00	20.80

土質データ②

層No	f (kN/m²)	fn (kN/mႆ)	c (kN/m²)	Φ (度)	vD	Vsi(m/s)	ED (kN/㎡)
1	0.0	20.0	30.0	0.00	0.50	125.99	46760
2	28.0	28.0	0.0	30.00	0.50	192.81	131103
3	100.0	100.0	80.0	0.00	0.50	215.44	154593
4	100.0	100.0	0.0	35.00	0.50	294.72	340355

地層データ			×
- 中間点Uの間隔(m)	地屠線 N值 土質一覧 計算条件 ;深	NUNC (EDEXER	
始点1 0.0 全幅 0.0	木の単位重量 9.81	kN/m ³	
225% [e.u]e.u]e.u]e.u	一厂 液状化の利定を行う		
10	▶ 流動化の判定を行う		
5-	地域明確正係数	or 110 or 110	
0	10.802.55 Mz 2 02 1.00	CELIN CELIN	
.6	地論種別	0.7.15 0.775	
	6 内部計算	o n (n. so m/n	
-10-	C 土地条件 1511年第一 新数均计 15	の基礎面 C 自動利定	
-16			
-20- 1	C 基本国有国際指定 地域の基本(2140 (FUR TO(a) (0.01	
2			
-20-	(1)(1)+(1)(1) (C)入力值 (C)内部計算	2. 入力値 @ 内部計算	
-30 3	A MARINESS IN AN INVESTIGATION	and I TOTAL	
-35	G 地理境界 C 1001(m)ビッチ	C 入力値 C 内部計算	
-40	地層は解神時の液状化判定位置	動約せん期程度比Rの取扱い	
-45	C1 C2 G3 C4 C5	☞ 最小链 C 平均值	
50	1		
Max 縮小 STD 拡大 Auto 1cm 18cm 1m 19198	留 18 存	適用	
水の単位重量: 5.00~15.00		👩 (K). 🗸 H	室 🗶 取消 🥐 ND7(H)

2-2 鋼管矢板基礎

【基本条件】

計算条件

「計算条件」タブに切り替えます。

水の単位重量

<9.81 kN/m >と入力し、最後に「確定」ボタンを押しま す。

ここでは初期値から変更はありませんのでこのまま「確定」ボ タンを押します。

【形状】

形状入力

「形状入力」タブに切り替え、下表に従って値を入力し、「適 用」ボタンを押します。

外周鋼管矢板本数、井筒外径、平面図が自動的に入力されま す。

外周鋼管本体径	(m)	1.0000
外周継手の有効間隔	(m)	0.2478
井筒仮定外径	(m)	12.0000

※隔壁を設けた際に「形状入力」と「頂版・矢板」で表示位置 にずれが生じても、計算等には影響ありません

(Q2-3-1参照)

https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q2-3-1

頂版・矢板

「頂版・矢板」 タブに切り替え、下表に従って頂版、 矢板タブの 値をそれぞれ入力し、 「適用」 ボタンを押します。

頂版タブ	単位:m
頂版天端高	-1.000
頂版厚	5.000
底版コンクリート厚	0.300
敷砂厚	0.200
鋼管内中詰めコンクリート厚	10.000

矢板タブ 外周矢板

	外周部	鋼管矢板の天端	5.500				
	外周部	鋼管矢板の下端	¦高(m)	-31.500			
<矢板の分割数:1>と入力します。							
	断面	標高(m)	鋼管厚(m)		材質		
	1	-31.500	12	.0	SKY400		

内土重量 • 考慮する	視する			
獨管本体単位重量	kN∕m³	77.0		
維手重量	N/m	820.1		
中詰めコンクリート単位重量	kN∕m³	0.0		
支持層への換算根入れ深さ	m	2.00		
先端地盤(設計用)N値		40.00 -	 	
骨管矢板先端の種限支持力度 qd	kN/m²			
内部土短辺長 Lo	m	10.145		
		니 算出		
込み支持力の周面摩擦力の控除剰	i II			
杭先端から 📀 1・D	0.2	力 0.00 m		

許容支持力・引抜力

「許容支持力・引抜力」タブに切り替え、拡大図に従って値を 入力します。

鋼管本体単位重量	kN/mឺ	77.0
継手重量	N/m	820.1
中詰めコンクリート単位重量	kN/m³	0.0
支持層への換算根入れ深さ	m	2.00
先端地盤(設計用)N値		40.00
鋼管矢板先端の極限支持力 qd	kN/m³	
内部土短辺長 Lo	m	10.145

内部土短辺長 Loは

「Lo算出」ボタンを押すと自動的に入力されます。 最後に「確定」ボタンを押します。

2-3 予備計算・結果確認

Ŧ	予備計算結果 X							
Annual Annual	テータ 水平方向	地盤反]	力係	敫 kH丨	底面ばね(直 計 彩	容支持力·引抜力	
			_					
	外周矢板	外径	Do	1000.0	(mm)			
	"	本数	n1	28	(本)			
	隔壁矢板	外径	Do		(mm)			
	"	本数	n2		(本)			
	中打ち単独杭	外径	Do		(mm)			
	"	本数	n3		(本)			
	基礎の載荷幅	(側面幅	Ð	D	12.14461	(m)	(橋軸方向)	
	"			D	12.14461	(m)	(橋軸直角方向)	
	基礎長			L	30.500	(m)		
	基礎の有効根ク	∖れ深さ		Le	30.500	(m)		
	基礎の特性値			β	0.0419	(m-I)	(橋軸方向)	
	"			β	0.0419	(m-I)	(橋軸直角方向)	
	構造特性値			L/D	2.5114		(橋軸方向)	
	"			L/D	2.5114		(橋軸直角方向)	
	"			βLe	1.2776		(橋軸方向)	
	"			βLe	1.2776		(橋軸直角方向)	
ľ	,							
							🖌 確定 🔰 🗶 取消 📔 🤈 ヘルプ(H)	

基礎本体の水平方向地盤反力係数の計算、鉛直・せん断・回転バネ値の計算、許容支持力、引抜力の計算を行います。

水平方向地盤反力係数kH

水平方向地盤反力係数の計算結果の表示と使用値の修正を行います。

底面バネ値の計算結果の表示と使用値の修正を行います。

許容支持力・引抜力

底面バネ値

許容支持力・引抜力の計算結果の表示と使用値の修正を行い ます。

既に予備計算を実行している場合、再計算を行うか確認のメッ セージが表示されます。再計算を行う場合は[計算実行]を、行 わない場合は[取消]を押してください。データの修正を行った 場合は、必ず実行してください。

2-4 作用力

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	支持力	
1	1	常時	常時	1.00	常時	常時	検討する荷重な
2	7	地震時	地震時	1.50	地震時	地震時	一人番号を入り
3							6 00 00 00 00 00 00 00 00 00 00 00 00 00
4							警照番号 じん
5							荷重ケース乗行
6							2010102
7							0 🐳
8							
9							
10							
-		244++	<u></u>	4.00	Non+	2149 #	_
	1	常時	7549	1.00	常時	常時	^
	2	第時+温度 第時	市温	1.15	常時	常時	
	3	常時+風何重	常・風	1.25	常時	地震時	
	4	常時+温度+風荷重	帘·温·風	1.35	常時	地震時	
	5	常時+制動荷重	常・制	1.25	(約8時	常時	
	6	市時+衝突荷重	帝衡	1.50	7587	7517	
	/	地震時	地震時	1.50	地震時	地震時	
	8	死而重時	死而重時	1.00	常時	常時	
	9	常時(浮)	常時()孚)	1.00	常時	常時	
	10	常時+温度(浮)	常·温(浮)	1.15	常時	常時	~

_下表に従ってY方向、X方向タブの参照番号をそれぞれ入力し ます。

Y方向

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	支持力
1	1	常時	常時	1.00	常時	常時
2	7	地震時	地震時	1.50	地震時	地震時

X方向

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	支持力
1	7	地震時	地震時	1.50	地震時	地震時

作用力 荷重ケースの設定 [御任形状寸法] 単位重量等 続け外力	形状 〜 矩形 〜 円形 ・ 小甲形	×
	a (m) b (m) 脚柱断面積 (m2)	7.000 2.500 16.18
→ X方向	▶ 脚柱断面積老柱幅より算出	13
a: 0.000 ~ 100.000	✓ 確定 X II	調 へルフベビ)

脚注形状寸法

- 「脚注形状寸法」タブに切り替え、下表に従ってチェックと値 を入力します。

<形状:小判型>にチェックを入れます。

a(m)	7.000
b(m)	2.500
脚柱断面積(㎡)	16.16

荷重ケースの設定 脚柱形状寸; 設計水平震度	ま (単位重:	登英〕₩ 柱下端	開力	設計外力	 				
	-	0.00							
	-	0.00							
1頁 版(入方向)	_	0.30							
内郡土(X方向)		0.00							
単位重量									
上載土(影開)	kN∕m³	16.0							
上載土(跑和)	kN∕m³	17.0							
J削板コンクリート	kN∕m³	24.5							
中詰めコンクリート	kN∕m³	23.0							
底盤コンクリート	kN∕m³	23.0							
敷砂の影問)	kN∕m³	19.0							
敷砂(飽和)	kN∕m³	20.0							
a: 0.000 ~	100.000			🗸 確定	🗙 Rei	ň (?'	#7*(H)	

単位重量等 ── 「単位重量等」タブに切り替え、拡大図に従って値を入力しま す。

設計水平震度

頂版(Y方向)	0.30
内部土(Y方向)	0.00
頂版(X方向)	0.30
内部土(X方向)	0.00

単位重量

上載土(湿潤)	kN/mឺ	16.0
上載土(飽和)	kN/mឺ	17.0
頂版コンクリート	kN/mឺ	24.5
中詰めコンクリート	kN/m	23.0
底版コンクリート	kN/mឺ	23.0
敷砂(湿潤)	kN/mឺ	19.0
敷砂(飽和)	kN/mឺ	20.0

case	荷重名称	上载土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN•m)
1	常時	2.000	4.500	0	31634.4	0.0	0.0
2	地震時	2.000	4.500	0	26295.5	7626.9	100892.5
3							
4							
5							
6							
7							
8							
9							
10							
性の浮力	5@75 C #@	1.711.5	40 I `+-41	1		V M	

—— 脚注下端作用力

「脚注下端作用力」 タブに切り替え、下表に従って橋軸方向、 橋軸直角方向タブの値をそれぞれ入力します。

橋軸方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN ⋅ m)
1	常時	2.000	4.500	0	31634.4	0.0	0.0
2	地震時	2.000	4.500	0	26295.5	7626.9	100892.5

橋軸直角方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN • m)
1	地震時	2.000	4.500	0	26295.5	7626.9	112247.0

	间里石桥	VU (KN)	HO (KN)	IVIO (KIN•m)	
1	常時	42013.1	0.0	0.0	
2	地震時	36674.2	7626.9	100892.5	
3					
4					
5					
6					
7					
8					
9					
10					

「設計外力」タブに切り替えます。ここでは初期値から変更は ありませんのでそのまま「確定」 ボタンを押します。

2-5 仮締切り

- 残留応力度考慮位置			- 根2	、れ長の検討− □ する	○ しない			
支保工の幅 ・ H綱中心	○ 井筒内幅		×1	リングの検討- こ する	(* しない			
鋼管矢板先端の境 ・ 自由	早条件 ○ ヒンジ		盤 () (べれの検討 うする	○ しない			
支保工:腹起し検討 〇 付加する	時の軸力としての温度応力(の 付加しない	150(kN))	任意	(荷重の載荷	್ ರಭು			
腐	食(ふ(外側)	mm	0.0]頁版打	設後の検討			
腐良しろ(内側)		mm	0.0	- •u	 ○ しない ○ する(先行変位を考慮しない) ○ する(先行変位を考慮する) 			
上載荷重(主働側) qa		kN/m ²	0.0	 				
上載荷	重(受働側) qp	kN/m²	6.0					
底盤コンクリー	トのヤング係数 (×107)	kN/m²	2.35	215	人ナツノ留ち	FRL_C071用100年(m)		
底盤コング	ノートのばね低減係数		0.050		-			
施口	二紀ステップ数		4					
残留応	力度ステップ番号		3	月的方	L=5.000(m) 判页	E × 21期双厚=0.000(m)		
底盤コンクリ	リート打設ステップ番号		4					
3	专保工段数		3					
			qp算出					

下表に従って値を入力します。

腐食しろ(外側)	mm	0.0
腐食しろ(内側)	mm	0.0
上載荷重(主働側) qa	kN/m	0.0
上載荷重(受働側) qp	kN/m	6.0
底版コンクリートのヤング係数(×10 ⁷)	kN/m	2.35
底版コンクリートのバネ低減係数		0.050
施工総ステップ数		4
残留応力度ステップ番号		3
底版コンクリート打設ステップ番号		4
支保工段数		3

施エステップ

- 「施エステップ」タブに切り替え、下表に従って値を入力します。

ステップ 番号	内水位高標高 (m)	堀削面髙標高 (m)	描画ステップ (入力状況)
1	1.500	1.500	
2	-1.000	-1.000	
3	-6.500	-6.500	
4	-6.500	-6.500	0

「確定」 ボタンを押します。

2-6 仮締切り 予備計算・結果確認

切り-予備計算結果				
点ばね値 アーチばね値	kH値 側圧			
局軸方向 │ 福軸百角方向	1			
1.11444111.1111	· 1	(kN/m/m)	1
	計算値	使用値	_	
1	97734	97734		l
2	97734	97784		
8	97734	97784		l
底盤コンクリート	69495	69495		
				ļ
				l
				l
				l
				l
				l
				l
				l
				l
				l
		🖌 確定	🔜 💢 取消 🦿 ヘルフ(日)	

支保工および底盤コンクリートバネ値,水平方向地盤反力係 数,側圧の計算を行い、結果を表示します。使用値欄で算出さ れた値を変更することができます。

既に予備計算を実行している場合、再計算を行うか確認のメッ セージが表示されます。再計算を行う場合は[計算実行]を、行 わない場合は[取消]を押してください。なお、データの修正を 行った場合は、必ず実行してください。

支点バネ値

支保エバネ値、底盤コンクリートバネ値の使用値の入力を行い ます。底盤コンクリートバネを考慮しない場合は、ここで、バネ 値=0としてください。

アーチバネ値

アーチバネ値の使用値の入力を行います。 ※本プログラムでは平面形状が円形のときのみ算出します。

kH値

水平方向地盤反力係数の使用値の入力を行います。 <ステップ>指定されたステップ番号をAとすると、 1~A-1ステップ:kH1 A~最終ステップ :kH2 を用いて計算します。0と入力された場合は、全施エステップ でkH1を用います。

側圧

主働側圧等の使用値の入力を行います。

作用力を指定してレ~	ペル2地震時照査を行う	○ する	(● しない		
計算方向	☑ 丫方向	▼ ×方向			
計算条件	☞ 液状化無視/考	慮 ○ 流動化考	应 □ 既設時の	応答塑性率照査を行う	
液状化	☑ 無視	□ 考慮	許容塑性率	1.000	
地震動タイプ	▼ タイプ I	□ タイプⅡ			
	21	'ヲI	21	JI	
	Y方向	×方向	Y方向	×方向	
C2z•khco	1.5000	1.5000	0.0100	0.0100	
khp	0.50	1.49	0.01	0.01	基本条件(共通)
khe	0.00	0.00	0.00	0.00	 下表に従い入力します
橋脚の終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がない	大きな余裕がある	
Wu (kN)	18925.55	18925.55	18925.55	18925.55	
	Y方向	X方向	Rd (kN)	19797.39	
hu (m)	15.000	17.000	Wp (kN)	6498.12	
			hp (m)	8.070	

	タ	イプI	タイプⅡ		
	Y方向	X方向	Y方向	X方向	
C2z•khco	1.5000	1.5000	0.0100	0.0100	
khp	0.50	1.49	0.01	0.01	
khg	0.00	0.00	0.00	0.00	
橋脚の終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がある	大きな余裕がある	
Wu(kN)	18925.55	18925.55	0.00	0.00	

	Y方向	X方向	Rd(kN)	19797.39
hu(m)	15.000	17.000	Wp(kN)	4698.12
			hp(m)	8.070

2-7 レベル2地震時基本条件

0.00	0.00 0.02 0.00 0.00 0.00	該計地盤面高 q q0 q1 WF hF	m kN/m ² kN/m ² kN/m ²	-1.000 20.97 0.00 20.97	-1.000 20.97 0.00	-1.000
0.02	0.02 0.00 0.00	q q0 q1 WF hF	kN/m ² kN/m ² kN/m ² kN	20.97	20.97	20.97
0.00	0.00	q0 q1 WF hF	kN/m² kN/m² kN	0.00	0.00	
0.00	0.00	q1 WF hF	kN/m² kN	20.07		0.00
地花园士林中		WF	kN	20.01	20.97	20.97
出版图士林中		hF		0.00	0.00	0.00
治疗用于持 力			m	0.000	0.000	0.000
1945.00±15±1				LN (-2	1 10	00000
(kN)	底面鉛直ばねkv (kN/m ³)			kin/m-	- 12	200
3769.91	378336		いチ			10
		水位	 高	m		4.500
		WF'算出用	の水位高	m		4.500
		上載日	L厚	m	5	1.000
		WF	,	kN	11	378.73
データ連動		Va		kN	31	5674.24
		※水位高	は標高,上	載土厚は1弾物	天端からの周	lð
		_	√ i	锭	🗙 取消	? 147%
	 デーク連動	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		・・ ・・・・ ・・・ ・・・ ・・・ ・・・ ・・・・・ ・・・・・・		

震度増分

Hd(kN)

Md(kN • m)

0.02

0.00

0.00

基本条件 (鋼管矢板基礎) 「基本条件 (鋼管矢板基礎)」タブに切り替え、下表に従って 値を入力します。

		液状化無視
設計地盤面高	m	-1.000
q	kN/m	20.97
q0	kN/m²	0.00
q1	kN/m²	20.97
WF	kN	0.00
hF	m	0.000

1200000

200

1.0

4.500

4.500

3.000 10378.73

36674.24

kΝ

X方向		Gj	kN/mੈ
0.00		qcr	kN/m
0.02		計算ピッチ	m
0.00		水位高	m
0.00		WF'算出用の水位高	m
		上載土厚	m
		WF'	kN

Vo

レベル2地震時基本条件 ×	
基本条件(決) 基本条件(決) 計算当件 基礎に主たる2週性化を考慮するか(装描/容易/なん) 活動の時間 基礎に主たる2週性化を考慮するか(装描/容易/なん) 活動の時間 「「「特別に主たる2週性化が生いるとき、各場に主たる2週性化を考慮しない」 主た2週期化が生いるとき、日本の2週間化が生いる トッドをおけいました。 トッドをおします。 レッド・ 日本の2週間化が生いるとき、各場に主たる2週間化が生いる 「「「免壊構のとき、各場へ地を添加したがと2週間化が生いる」 日本の2週間化が生いる 「「免壊構のとき、各場に主たる2週間化を考慮しない」 ● 免疫構成とされる2週間化を考慮しない ●	 計算条件 ──「計算条件」タブに切り替え、 ── <橋脚に主たる塑性化が生じるとき、基礎に主たる塑性化を考慮しない>のチェックを外し、「確定」ボタンを押します。
opr:0~9000 🗸 確定 🕺 取消 🦿 ∿//7(田)	

2-8 レベル2地震時 予備計算・結果確認

状化無視 也盤反力係費 kH kS	友 地盤耐力 VB kSHD kSVD	1				
前面水平方向地盤反力係数 kH (kN/m3)						
No	層厚 (m)	計算値	計算値	使用値	使用値	
1	5.000	5893	5893	5893	5893	
2	13.500	5893	5893	5893	5893	
3	1.855	28875	28875	28875	28875	
4	1.645	28875	28875	28875	28875	
5	6.500	20625	20625	20625	20625	
6	2.000	103125	103125	103125	103125	
			****	·		

地盤反力係数、地盤反力度の上限値を液状化無視/考慮ごと に算出します。既に予備計算を実行している場合、再計算を行 うか確認のメッセージが表示されます。再計算を行う場合は [計算実行]を、行わない場合は[取消]を押してください。なお、 データの修正を行った場合は、必ず実行してください。

地盤反力係数

基礎周面の地盤反力係数を算出します。基礎先端から内部土 短辺長の範囲は内周面の抵抗を考慮するため周面の鉛直方向 せん断地盤反力係数kSVB、kSVDについては、外周面と内周 面との和としています。

地盤耐力

基礎前面および周面の地盤反力度の上限値を算出します。地盤バネと同様に基礎先端から内部土短辺長の範囲は周面の鉛直方向のせん断地盤反力度の上限値pSVuについては、外周面と内周面との和としています。

2-9 基礎ばね

を礎に	fa				×
基7	本条件 地盤ばね				
r					_
		橋軸	方向	橋軸直角方向	
	単位水平力(kN)	100	0.00	1000.00 —	
	単位モーメント(kN・m)	1000	00.00	10000.00	
					_
	Gj(kN/m²)			1200000	
	qcr(kN/m)			200	
	計算ビッチ(m)			1.0	
	設計地盤面高(m)		-1.000	
			=÷	計地盤面運動	
_					
			確定	🗙 取消 🛛 孝 🗤	·7℃ <u>H</u>)

基本条件

下表に従って値を入力します。

	橋軸方向	橋軸直角方向
単位水平力(kN)	1000.00	1000.00
単位モーメント(kN・m)	10000.00	10000.00

基本条件 地盤はね
kH kSVB kSHD kSVD 前面水平方向地盤反力係数 kH (kN/m³) 橋軸方向 橋軸直角方向 No 計算値 使用値 1 18327 18327 2 18327 18327 3 48286 48286
前面水平方向地盤反力係数 kH (kN/m ³) 橋軸方向 橋軸直角方向) No 計算値 使用値 1 18327 18327 2 18327 18327 3 48286 48286
橋軸方向 橋軸直角方向 No 計算値 使用値 1 18327 18327 2 18327 18327 3 48286 48286
No 計算値 使用値 1 18327 18327 2 18327 18327 3 48286 48286
1 18327 18327 2 18327 18327 3 48286 48286
2 18327 18327 3 48286 48286
3 48286 48286
4 48286 48286
5 56937 56937
6 125354 125354
※常時、レベル1地震時については「予備計算」を参照してください。
【 ✔ 確定】 ★ 取消 ? ヘルフ(円)

地盤ばね

- 「地盤ばね」タブに切り替え、各値を確認します。

既に計算を実行している場合、再計算を行うか確認のメッセージが表示されます。再計算を行う場合は[計算実行]を、行わない場合は[取消]を押してください。なお、データの修正を行った場合は、必ず実行してください。

最後に「確定」ボタンを押します。

2-10 部材

【頂版】	頂版の計算
項版の計算 ×	基本条件
基本条件 資産ケ-スの設定 外周矢板反力 7額防形状 配筋 広力度計算 計算方法 ・ ・ とあのに、 となり販売者可定 ・ ・ ・ と方向スラブ ・ ・ と、からて、 こので、 ・ ・ 2方向スラブ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	下記の項目にチェックを入れます。 ――― <せん断照査判定:τm≦τaを満足>
使用集結材理 ・ SD295 ・ SD345 ・ SD390 ・ SD490 鉄筋の許容応力度 ・ 一般部材 ・ 水中部材 福祉・中打ち杭 ・ 考慮する ・ 考慮しない	
「際炉自査・上統荷査」 (へ 入力 73.6 (kl/m ²) ○ 計算 心裏別能防厚の計算 (計算しない ※福正保設は、L/TCV(値を買定します。 ※福正保設は、L/TCP(した)で計算します。 (計算する ※KV(値室出用の私長Lの取取) (L = 10・0とする (L = 実矢板長(根入れ深さ)とする) (運産) ※取満 ? へりて出)	<u> 頂版自重・上載荷重</u> </td

ase 1	参照番号 1	荷重名称	<u>荷重略称</u> 常時	<u>害</u> 単曽係数 1.00	
2 3	7	地震時	地震時	1.50	
5	_				
6					
8					
9 10	_				
	1	常時	常時	1.00	^
	2	常時+温度 2013年 - 日前年	常:温	1.15	_
ł		市村工作同業	10,100, 201,100,100	1.20	
ŧ İ	5	学時+創動荷乗	学-割	1.00	
藓卜	6	学時+衝空荷香	堂、衡	1.50	
直	7	「世界時	物香時	1.50	
ł	8	死荷重時	死荷重時	1.00	
	9	常時(浮)	常時()浮)	1.00	
1	10	常時+温度(浮)	常·温(浮)	1.15	~

荷重ケースの設定 「荷重ケースの設定」タブに切り替え、拡大図に従ってY方向、 X方向の値をそれぞれ入力します。

Y方向

case	参照番号	荷重名称	荷重略称	割増係数
1	1	常時	常時	1. 00
2	7	地震時	地震時	1. 50

X方向

case	参照番号	荷重名称	荷重略称	割増係数
1	7	地震時	地震時	1. 50

ase	荷重名称	害啡曾係数	最大鉛直反力(kN)	最小鉛直反力(kN)
1	常時	1.00	1361	1361
2	地震時	1.50	2952	-612

外周矢板反力

- 「外周矢板反力」タブに切り替え、下表に従って橋軸方向、橋 軸直角方向タブの値をそれぞれ入力します。

橋軸方向

case	荷重名称	割増係数	最大鉛直反力(kN)	最小鉛直反力(kN)
1	常時	1.00	1361	1361
2	地震時	1.50	2952	-612

橋軸直角方向

case	荷重名称	割増係数	最大鉛直反力(kN)	最小鉛直反力(kN)
1	地震時	1.50	3097	-758

	J醎反厚	h(m)	5.000	L .	
	外周鋼管矢板本体径	(m)	1.0000	к <mark>L</mark> B	
	計算(1:する/2:し	しない)	1		
Ϋ́	スパン長	L(m)	3.822		
简	せん断応力度照査位置	₹LB(m)	2.500		h
	鋼管矢板中心間隔	a(m)	1.2478		
	計算(1:する/2:し	しない)	1		
χŀ	スパン長	L(m)	1.822		
简	せん断応力度照査位置	₹LB(m)	1.822	- (i)	
	鋼管矢板中心間隔	a(m)	1.2478	l i da	

頂版形状

- 「頂版形状」タブに切り替え、下表に従って値を入力します。

	頂版厚	h (m)	5.000
	外周鋼管矢板本体	×径 (m)	1.0000
	計算(1:する/2:	しない)	1
Y	スパン長	L (m)	3.822
万 向	せん断応用力度照査の	立置 LB(m)	2.500
	鋼管矢板中心間隔	a (m)	1.2478
	計算(1:する/2:	しない)	1
X	スパン長	L (m)	1.822
方向	せん断応力度照査位	置 LB(m)	1.822
	鋼管矢板中心間隔	a (m)	1.2478

××#20 でんめが開始 -> 古向	鉄筋				
[かぶり(mm)	鉄筋径(mm)	ピッチ(mm)	k p→
	1段目	100	D82	150	<u> </u>
	2段目				
1 🔹 段	3段目				h
	1段目	500	D38	150	
1 1 1 1 1	2段目	650	D38	150	······ <u>*</u>
2 🔹 段	3條目				h = 100.0
	-140				D = 100.0 cm
×方向		カジジJ(mm)	 鉄筋径(mm)	 ピッチ(mm)	0 = 100.0 cm
×方向	1#28	カッジャリ(mm) 100	3.55 (mm) D25	 ピッチ(mm) 150	b = 100.0 cm
×方向 上面	1段目 2段目	カバジリ(mm) 100 	鉄筋徑(mm) D25 	 ビッチ(mm) 150 	<u> </u>
X方向 上面 1 1 段	1段目 2段目 3段目	かぶい(mm) 100 	鉄筋径(mm) D25 	 ピッチ(mm) 150 	0 = 100,0 cm
X方向 上面 1 章 段	1段目 2段目 3段目 1段目	かぶり(mm) 100 500	鉄筋径(mm) D25 D29	ビッチ(mm) 150 150	0 = 100,0 cm
X方向 上面 1 ま 段 下面	1段目 2段目 3段目 1段目 2段目	ກາວສະມ(mm) 100 500 650	鉄筋径(mm) D25 D29 D29	ビッチ(mm) 150 150 150	0 = 100,0 cm
X方向 上面 1 全段 下面 2 全段	1段目 2段目 3段目 1段目 2段目 3段目 3段目	ກາວເປັນ 100 500 650 	鉄筋窪(mm) D25 D29 D29 D29 	ビッチ(mm) 150 150 150	

配筋

「配筋」タブに切り替え、下記に従って主鉄筋、せん断補強鉄 筋タブの値をそれぞれ入力します。

主鉄筋

Y方向 上面<1段>と入力します。 1段目<かぶり:100><鉄筋径:D32><ピッチ:150>と入力 します。 2、3段目は入力しなくてかまいません。

下面<2段>と入力します。 1段目<かぶり:500><鉄筋径:D38><ピッチ:150>と入力 します。 2段目<かぶり:650><鉄筋径:D38><ピッチ:150>と入力 します。 3段目は入力しなくてかまいません。

X方向

上面<1 段>と入力します。 1段目<かぶり:100><鉄筋径:D25><ピッチ:150>と入力 します。 2、3段目は入力しなくてかまいません。

下面<2段>と入力します。 1段目<かぶり:500><鉄筋径:D29><ピッチ:150>と入力 します。 2段目<かぶり:650><鉄筋径:D29><ピッチ:150>と入力 します。 3段目は入力しなくてかまいません。

せん断補強鉄筋

「せん断補強鉄筋」タブに切り替えます。 <鉄筋径(mm):0> <X方向間隔(cm):30.0> <Y方向間隔(cm):30.0>と入力します。

頂版	の計算 本条件 荷重ケースの設定	2 外周矢板反力 1離反形	状 配筋 応力	度計算	×	▶ ^{▶ ▶} ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶
R	。 橋軸方向 橋軸直角方向	а. — . — .				
[下側引張	上側引張		
Ì	使用鉄筋量	(cm ²)	0.00	0.00		
	必要鉄筋量	(cm²)	0.00	0.00		
	σc	(N/mm²)	0.00	0.00		
	σs	(N/mm ²)	0.00	0.00		
İ	τm	(N/mm²)	0.000			
	ď ca	(N/mm²)	0.00	0.00		
	07 Sa	(N/mm²)	0.00	0.00		
	τα	(N/mm²)	0.000			
İ	ディープビーム所要鉄	(cm ²)	—			
	最小鉄筋量照査		ОК	OK		
						──── 「計算実行」ホタンを押し、「確定」ホタンを押します。
					計算実行	
_					詳細表示	
[必要]戴反厚	(m)				
				🗸 確定	🗙 取演 🧳 ヘルフ (H)	

【頂版・矢板接合部】

下表に従ってY方向、X方向の値をそれぞれ入力します。

Y方向				
case	参照番号	荷重名称	荷重略称	割増係数
1	1	常時	常時	1. 00
2	7	地震時	地震時	1. 50

X方向

case	参照番号	荷重名称	荷重略称	割増係数
1	7	地震時	地震時	1. 50

<u>市時</u> <u>1,000</u> 1361 0 地震時 1.50 2952 272	2952 272		1.00	2952	272
<u>사만</u> 됐다가 1.30 2362 272	2362 272	心腔时	1.50	2902	

反力

「反力」 タブに切り替え、下表に従って橋軸方向、橋軸直角方 向タブの値をそれぞれ入力します。

橋軸方向

case	荷重名称	割増係数	鉛直反力 (kN)	水平反力 (kN)
1	常時	1.00	1361	0
2	地震時	1.50	2952	272

橋軸直角方向

case	荷重名称	割増係数	鉛直反力 (kN)	水平反力 (kN)
1	地震時	1.50	3097	272

鉄筋スタッド溶接方式

「鉄筋スタッド溶接方式」タブに切り替え、下表に従って「せん
 断鉄筋本数(本)」まで値を入力し、「計算実行」ボタンを押します。

最後に「確定」ボタンを押します。

モーメント鉄筋の間隔(mm)	2000.0
モーメント鉄筋径 (mm)	32
モーメント鉄筋本数(本/段)	16
せん断鉄筋径(mm)	32
せん断鉄筋本数(本)	32
モーメント鉄筋の引張応力度 (N/mm)	45.86
モーメント鉄筋の許容応力度 (N/mm)	160.00
せん断鉄筋せん断応力度 (N/mm)	121.86
せん断鉄筋許容応力度 (N/mm)	180.00

モーメント鉄筋の間隔 h (mm)	2000.0		
モーメント鉄筋径 (mm)	32		- ::
モーメント鉄筋本数 (本/段)	16		=
せん断鉄筋径 (mm)	32	h	
せん断鉄筋本数 (本)	32		
モーメント鉄筋の引張応力度(N/mm ²)	0.00		
モーメント鉄筋の許容応力度(N/mm ²)	0.00		
せん断鉄筋せん断応力度 (N/mm ²)	0.00		
せん断鉄筋許容応力度 (N/mm ²)	0.00		
			計算実行

【杭頭接合部】

case	参照番号	荷重名称	荷重略称	書申曾係数		
1	1	常時	常時	1.00		
2	7	地震時	地震時	1.50		
3						
4						
5						
6						
7						
8						
9						
10						
	1	常時	常時	1.00	^	
l	2	常時+温度	常·温	1.15		
[3	常時+風荷重	常·風	1.25		
[4	常時+温度+風荷重	常·温·風	1.35		
蓋 [5	常時 + 制動荷重	常·制	1.25		
凖 [6	常時+衝突荷重	常·衝	1.50		
16	7	地震時	地震時	1.50		
[8	死荷重時	死荷重時	1.00		
[9	常時(浮)	常時(浮)	1.00		
ſ	10	**時+温度(浮)	常·温(浮)	1.15	~	データ連動

下表に従ってY方向、X方向の「参照番号」の値をそれぞれ入 力します。

Y方向

case	参照番号	荷重名称	荷重略称	割増係数
1	1	常時	常時	1.00
2	7	地震時	地震時	1.50

X方向

case	参照番号	荷重名称	荷重略称	割増係数
1	1	常時	常時	1.00

杭頭接合部の計算	×	基本条件
(荷重ケースの設定 基本条件 私は 私類44用力 林類4条合部応力度 損合方式 「方法A」「方法B 設計基単発度 「21 0 24 0 27 0 80 0 80 (N/mm ²) 使用鉄筋 「SD295 ○ SD345 ○ SD390 ○ SD490 鉄筋の4字部広力度 「一般部材」「小中部材 使用綱材 「 SKK400 ○ SKK490	? \\\\7\\\\}	— 「基本条件」タブに切り替えます。 ここでは初期値から変更はありません。

頭接合部の計算			×	形状
「「重り−スの設定 基本条件 形状 杭頭作用力	「枕頭接合部応力度↓	短期補強結節	[――「形状」タブに切り
新活品 鋼管径 D (mm) 増込長 I (mm) 垂直有効厚 h (mm) 水平有効厚 h [*] (mm)	800.0 100 1900 300	, h' , D		<鋼管系 D (mm) <埋込長 l (mm) <垂直有効厚 h <水平有効厚 h
		🖌 確定 🛛 👗 取消	? ^#7"(H)	

り替え、下記に従って値を入力します。

n):600.0>) :100> (mm) :1900> ' (mm) :300>

л.щ.	195° (A) A)	SUNT 昇						\sim
荷	重クース	の設定 基本条件 形状 杭頭所	¹ 開力 <u>杭</u>	頭接合部応力原	<u>度 杭頭補強鉄</u>	筋		
ł	喬軸方	向 橋軸直角方向						
	case	何重名称	割四日余数	沿直最大(kN)	鉛直最小(kN)	水平刀(kN)	t-39N(kN+m)	
	1	常時	1.00	1313	797	74	302	
	2	地震時	1.50	1541	534	98	394	
	_							
					✔ 確定	🗙 取消	7 147	ίн)
								_

杭頭作用力

「杭頭作用力」 タブに切り替え、下表に従って橋軸方向、橋軸 直角方向タブの値をそれぞれ入力します。

橋軸方向

case	荷重名称	割増係数	鉛直最大(kN)	鉛直最小(kN)	水平力(kN)	モーメント(kN・m)
1	常時	1.00	1313	797	74	302
2	地震時	1.50	1541	534	98	394

橋軸直角方向

case	荷重名称	割増係数	鉛直最大(kN)	鉛直最小(kN)	水平力(kN)	モーメント(kN・m)
1	地震時	1.50	1541	534	98	394

杭頭接合部の計	<u>ث</u>		×	杭頭補強鉄筋
荷重ケースの誤	定 基本条件 形状 杭頭作用力 杭頭	接合部応力度(杭頭補強鉄	16 J	─── 「杭頭補強鉄筋」 タブに切り替え、下記に従って値を入力しま
	直径 (mm)	800.0		す。
	かぶり (mm)	10		
1段目	鉄筋径 (mm)	32		✓古径(mm):000 0>
	本数(本)	12		へ但1空(IIIII)・000.0/
	かぶり (mm)	0		1段目 1911 - 1911
2段目	鉄筋径 (mm)	0		<かぶり (mm) :10>
	本数(本)	0		
	ビッチ1段目 (mm)	0		<
	ビッチ2段目 (mm)	0		<本数 (mm):12>
	使用鉄筋量 (cm ²)	0.00		
	必要鉄筋量 (cm ²)	0.00		
	応力度♂c (N/mm ²)	0.00	データ連動	2段目
	応力度 of s (N/mm ²)	0.00		<かぶり (mm) :0>
	許容10 f ca. (N/mm ²) 許容値 f ca. (N/mm ²)	0.00	計算実行	< <p><鉄筋径 (mm):0></p>
<u> </u>	and the source of the source o	0100	Except =	(大教 (如)) :0
			======================================	
				└── 「計算実行」 ボタンを押します。
		「ノ確定」	🖌 取消 🛛 🧟 ヘルフギ用)	
1		L DECE	· · · · · · · · · · · · · · · · · · ·	
L				最後に「確定」 ホタンを押します。

2-11 計算・結果確認

【仮締切り計算】

計算ピッチ数が「1.0」であることを確認し、「計算実行」 ボタン を押します。

化后效和	1.1=14	宵 仕甲2	¢=21]	医士								
110(44 9)	9614	异 和木1	E 661 -	一見衣	E .							
« 	4854	4-+										
~ 1 기미	161	圌∕기믜∥										
			締切	同部	井管	節部		1				
	δ _{nax} (on)	(L_m) (n)	σ _{max} (N/mn2)	(∟n) (n)	σ _{nax} (N/mn2)	(Ln) (n)	σa (N/mm2)					
第1ステッフ。	0.8	-11.500	16.40	+1.500	14.17	-14.500	210.00	1				
第2ステッフ。	1.6	-12.500	20.39	-0.500	27.96	-14.500	210.00	ī –				
	0.0	12 500	10.75	+2 500	48.38	-14 500	210.00	- II				
弗ゴステッノー	3.0	-12.000	10.73	12.000	40,000	14.000	210.00	4				
第3 <i></i> 7ップ 第4 _{7ップ} 。 注) L	3.0 2.8 nlは標i	-12.500 -12.500 高を示す	15.93	+2.500	45.10	-14.500	210.00)				
^{第3,(79,7*} 第4,(7•7* 注)∟ ≪ ×方向	3.0 2.8 』は標i :橋	-12.500 -12.500 高を示す 袖直角方	16.73 15.93 向≫ 締∜	+2.500	45.10 #i	-14.500 first	210.00					
^{第3,仄+y} / 第4, ₇₊ 7* 注)∟ K × 方向	3.0 2.8 nlは標i : 橋和 ठ _{nax} (on)	-12:300 -12:500 高を示す 抽直角方 (Lm) (n)	15.93 15.93 向≫ 締t) _{(N/m2})#F (Lm) (m)	45.10 #1 0 max (N/m2)	14:000 -14:500 (L_n) (n)	03 (H/mm ²))				
第3,7597 第43,7597 注)∟ K×方向 第1,27597°	5.0 2.8 nlt標i :橋 δnax (on) 0.8	-12.500 -12.500 寄を示す 抽直角方 (Lm) -11.500	15.93 15.93 向≫ 締∜ (೫/m2) 16.40	12:300 +2:500)88 (L_m) (N) +1:500	#10100 45.10 #fi G _{nax} (N/m2) 14.17	部部 (Ln) (n) -14.500	ста (H/nm2) 210.00	1				
第3,759,7 第4,759,7 注) L K X 方向 第1,759,7 ⁸ 第2,759,7 ⁸	3.0 2.8 nlは標i : 橋口 るnax (on) 0.8 1.6	-12.500 -12.500 寄を示す (Lm) (Lm) -11.500 -12.500	15.73 15.93 向≫ 第七 (W/mm2) 16.40 20.39	12:300 +2:500 (L_m) (n) +1:500 -0:500	45.10 45.10 5.10 7.00 14.17 27.96	前部 (Ln) (n) -14.500 -14.500 -14.500	Съ 210.00 (N/m2) 210.00 210.00					
第3,7 ₇₉ // 第4,7 ₇ -7 [*] 注) L 《 X 方向 第1,7 ₇ -7 [*] 第2,7 ₇ -7 [*] 第3,2 ₇₇ -7 [*]	5.0 2.8 nlt標i : 橋和 δnax (on) 0.8 1.6 3.0	-12.500 -12.500 高を示す (Lm) -11.500 -12.500 -12.500	15.73 15.93 前≫ 第代 (N/nn2) 16.40 20.39 16.75	12:300 +2:500 (L_m) (m) +1:500 -0:500 +2:500	45.10 45.10 7nax (N/mm2) 14.17 27.96 48.38	-14.500 -14.500 (Ln) (n) -14.500 -14.500 -14.500	о _в (N/m2) 210.00 210.00 210.00 210.00 210.00					
第3,7 ₇₉ 7 第4,7 ₇ 77 注) ∟ K × 方向 第1,7 ₇ 77 第2,7 ₇ 77 第3,7 ₇ 77 第4,7 ₇ 77	5.0 2.8 nlt標i : 橋和 るnax (on) 0.8 1.6 3.0 2.8	-12.300 -12.500 高を示す (Lm) (h) -11.500 -12.500 -12.500	15.73 15.93 15.93 (max (W/max) 16.40 20.39 16.75 15.93	12:300 +2:500 (L_m) (%) +1:500 -0:500 +2:500 +2:500	45.10 45.10 (N/mm2) 14.17 27.96 48.38 45.10	=14.500 -14.500 (L m) (m) -14.500 -14.500 -14.500 -14.500	ста 210.00 Ста (К/им2) 210.00 210.00 210.00 210.00					

一覧表

各施工ステップの最大変位量,最大応力度および許容応力度 を方向ごとに表出力します。 記号は次のとおりです。

- δmax:鋼管矢板の最大変位
- ・σmax:鋼管矢板の最大応力度

・Lm: σmaxの発生位置で、「基本条件」で指定した結果の出 カ方法 (標高/深度) どおりに出力します。深度の場合、鋼管 矢板頂部からの深度になります。

変位·断面力図

施工ステップごとに変位,曲げモーメントの分布を描画しま す。スケールを変更することができます。最大変位,曲げモーメ ントを入力し [設定] をクリックしてください。

支点反力

各施工ステップの支点反力, 底盤コンクリート反力を方向ごと に表出力します。

支保工の検討

各段の腹起し,切梁,火打ち梁の検討結果を方向ごとに表出力 します。

根入れ長

根入れ長およびボイリングの検討結果を表出力します。

盤ぶくれ

盤ぶくれの検討結果を表出力します。

【本体計算】

計算ピッチ数が「1.0」であることを確認し、「計算実行」 ボタン を押します

※鋼管矢板基礎の本体計算、仮想井筒梁の本体計算の違い (Q2-8-1参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q2-8-1

** ** **	基礎	設計	外周	9 20	隔	壁 m2)	中打	Tち	_	_	_	σ a (8	i/nn2)	_	_
何重略称	δ1 (cn)	δ ₂ (cm)	σ _{nax}	σ _{nax} ②	σ _{max}	σ _{nax}	σ _{nax}	σ _{nax}	(kN/本)	Rmin (kN/本)	δa (on)	SKY400	SKY490	Ra (kN/本)	Pa (kN/本)
常時	0.000	0.000	44.0		-	-	-	-	1500	1500	5.0	140.0	-	2027	-600
ub - mt	1.394	1.394	103.2	-	_	_	-	_	1.421	1198	5.0	210.0	-	3041	-986
^{地震時} K X 方I	句:橋輔	直角方	向≫				1		1421	1100					
^{地震時} K X 方[荷重略	句:橋車 茎礎 天端	軸直角方 設計	而≫ 外服 (N/m	9 (2)	隔 (N/I	壁 mn2)	中 (N/r	丁ち m2)	Break	Rain	õ	σ a (8	4/nn2)	Ra	Pa
××方I 荷重略	句:橋軸 基礎 δ1 (cm)	軸直角方 設計 ^{地盤} δ _{2 (cm)}	而≫ 外师 (N/m Onax ①	ຍ ແມ ອ	隔 (N/I ①	壁 nn2) のnax ②	ф† (N/r Флах	J5 m2) σnax ②	R max (kW/本)	Rain (kW/本)	δ ₈ (cn)	σа (к SKY400	1/mm2) SKY490	Ra (kW/本)	Ра (км/2‡

【合成応力度計算】

弾性床上の有限長ばりとしての計算を行います。

一覧表

各荷重ケースの変位量,最大応力度,最大・最小鉛直反力と各 許容値を方向ごとに表出力します。

- 記号は次のとおりです。
- ・δ:基礎の変位量
- ・σmax:鋼管矢板,鋼管杭の最大応力度

・Lm: σmaxの発生位置を「基本条件」の結果の出力方法 (標高/深度)で指定された方法で出力します。深度の場合、 基礎天端からの深度になります。

•①:材質SKY400, ②:材質SKY490

変位・断面力図

荷重ケースごとに基礎本体の変位,曲げモーメント,せん断力 の分布を描画します。スケールを変更することができます。最 大変位,曲げモーメント,せん断力を入力し[設定]をクリック してください。

負の周面摩擦

「基本条件」で負の周面摩擦力に対する検討を行うと指定されているとき、検討結果を出力します。

本体計算結果に仮締切り計算により算出した残留応力度を加 算して合成応力度の計算,出力を行います。

最大応力度一覧表

各荷重ケースの最大応力度および許容応力度を方向ごとに表 出力します。

応力度分布

荷重ケースごとに合成応力度と許容応力度の分布を行がしま す。スケールを変更することができます。最大応力度を入力し [設定]をクリックしてください。

【仮想井筒梁計算】

仮想井筒梁解析法による本体計算を行います。計算ピッチは弾性床上の有限長ばり解析とは異なり、地層および井筒断面 変化点間を区間長とし、これを入力された計算ピッチにより分割数を求め着目点位置を決めています。例えば、区間長が 5.1mで計算ピッチが1.0mのときこの区間を6等分割した位置を着目点とします。

本体計算

計算ピッチ数が「1.0」であることを確認し、「計算実行」 ボタン を押します。

	茎礎	設計 160.85	州	割	隔	壁	中打	Jち				σ. ()	(/nn2)		
荷重略称	天 xmt δ1 (cm)	δ2 (cn)	(N/n	mz) Onax	(N/I	mz) σnax	(N/a	mil) Onax	Rmax (kN/本)	Rmin (kN/本)	δa (cn)	SKY400	SKY490	Ra (kN/本)	Pa (kN/本)
常時	0.000	0.000	44.0	-	-	-	-	-	1501	1501	5.0	140.0	-	2027	-600
地雷時	1.443	1.443	91.5	-	-	-	-	-	2019	600	5.0	210.0	-	3041	-986
×大市]:橋輔	直角方	向≫												
× × 方向]:橋輔 ^{基礎} ^{天端}	直 角 方 設計 地盤	向≫ ^{外∫}	割 m2)	隔 (N/I	壁 m2)	中打 (N/a	[ち m2)	Base	Bain	8	σ, ()	i/nn2)	Ba	P.
くX方向 荷重略]:橋軸 基礎 天端 δ1 (on)	i直角方 設計 地盤 δ2 (cm)	向≫ 外/ (N/m Omax ①	割 m²) のmax ②	隔 (N/I のmax ①	₽ m²) Onax	中引 (N/a のnax	Jち m ²⁾ のmax	R max (kW/本)	R _{min} (kW/本)	δa (cn)	σa () SKY400	1/mm²) SKY490	Ra (RN/本)	Pa (kN/本)

一覧表

各荷重ケースの変位量,最大応力度,最大・最小鉛直反力と各 許容値を方向ごとに表出力します。 記号は次のとおりです。

- δ:基礎の変位量
- ・σmax:鋼管矢板,鋼管杭の最大応力度
- ・Lm: σmaxの発生位置を「基本条件」の結果の出力方法 (標高/深度)で指定された方法で出力します。深度の場合、
- 基礎天端からの深度になります。
- •①:材質SKY400, ②:材質SKY490

変位・断面力図

荷重ケースごとに基礎本体の変位,曲げモーメント,せん断力 の分布を描画します。スケールを変更することができます。最 大変位,曲げモーメント,せん断力を入力し[設定]をクリック してください。

合成応力度計算

🧱 仮想井筒刻	設計算・合成	(応力度 結	果確認 [计算单位系	:SI単(×
合成応力度一	覧表 合成	応力度分析	FX									
【仮想井 ≪ Y 方向 材質: SKY	筒梁計1 :橋軸5 400	算・合成 方向≫	成応力度	1 結果研	雀認】 -	合成応:	力度一	覧表				
荷重略称	Gnax	σ ₁	σ ₂	標高 (m)	σ ₃							
常時	92.37	43.99	48.38	-14.50	140.00							
地震時	136.63	88.25	48.38	-14.50	210.00							
≪×方向 材質:SKY	:橋軸 400 _{(Max}	重角方向 σ1]≫ ₀	標高	σ.							
10 里 哈尔	(N/nn2)	(N/nn2)	(N/nm2)	(m)	(N/mm2)							
地震時	141.41	94.46	46.96	-13.71	210.00							
		4	紅条切替	7#	小設定	EDBI			開	:3(0)	? 🗤	7"H)

本体計算結果に仮締切り計算により算出した残留応力度を加 算して合成応力度の計算,出力を行います。

合成応力度一覧表

各荷重ケースの最大応力度および許容応力度を方向ごとに表 出力します。

合成応力度分布図

荷重ケースごとに合成応力度と許容応力度の分布を行がしま す。スケールを変更することができます。最大応力度を入力し [設定]をクリックしてください。

【レベル2地震時計算】

Select 15.71		<u>ж</u> яң - 0	- 1 122]		No. CTO ALL IN					-	
液状化 計算条件	0 #	疲	O 清新	的時	地震動3 ● 91	バブー (ブ I	0.94	JΠ			
(事)本体,账票书网)水平费度。:	*****	++ on l≡	¥anu+i l			-					
133、 英田·明国/123 水干展度~3	A.1118	±1375 83	eenaary ji ji								
「」 ペリク地帯時四本 付り	T Tak	ra=	影素生	キルレター・ショ	L. MARES	64.5	/ -110	. 85 -	F		
レンル2地展时照直 粕フ	木唯	E 66.1	- 1/1921	入16.黑的	- 地震!	動メイ	1 / 14	一見7	Σ.		
(Υ方向:橋軸方向≫-占	最終	震度									
			0.1.00	All Materia							
(亚香度			訂具	10 刊定							
- 部工慣性力作用位置変位		(nn)	51.	.08 - 80.	-						
1111年の1月1日の1月1日の1月1日の1月1日の1月1日の1月1日の1月1日	ic ((N/nm2)	107.1	00 OK	1						
管生板先端板限支持力		(*)	0	1.0 OK	-						
限支持力と浮き上がりの合計	†	(%)	25	5-0 OK	1						
ALL YOU YOU THE YOU ALL AND AL											
		×*.0									
		× • • •									

(X方向:橋軸直角方向)	>-≪	降伏	時の状	態							
、 X 方向:橋軸直角方向> hvF = 0.880 < kbrF = 1.0	»–	降伏	時の状	態							
、 X 方向:橋軸直角方向 > hyF = 0.880 < khcF = 1.0	≫ 100	降伏	時の状	態 値 判定							
: ×方向:橋軸直角方向> hyF = 0.880 < khcF = 1.0 平震度	»-	降伏	時の状 計算 0.8	態 :値 判定 :80 一							
【 ×方向:橋軸直角方向】 hyF = 0.880 < khcF = 1.0 (平景度 :部工情性力作用位置変位	» – 100	降伏I	時の状 計算 0.8 183.	態 (値 判定 (80 — (82 —	_						
★ ×方向: 橋軸直角方向> hyF = 0.880 ≤ khcF = 1.0 (平景度 :部工情性力作用位置変位 習気板部材の応力度 g g	≫ 100	(nn) (N/nn ²)	時の状 計算 0.8 183. 238.0	館 :値 判定 :80 	-						
(X方向:橋軸直角方向) hyF = 0.880 < khcF = 1.0 (平景度) :部工情性力作用位置変位 環告板部材の応力度 g 響気板部材の応力度 g 響気板形術の応力度 g	> 100	(nn) (N/nn2) (%)	時の状 11算 0.8 183. 238.0 10	館 昭 - 一 - 82 - 一 - 78 - 降伏 	-						
(×方向:橋軸直角方向) hyf = 0.880 < khcf = 1.0 ·平景度 部工備性力作用位置变位 習生機能材の応力度 g 習生機能材の応力度 g 習生機能材の応告 (第二人当年前月前日)	>	(nn) (N/nn2) (%) (%)	時の状 計算 0.8 183・ 238・0 10 64	應 11 11 11 11 11 11 11 11 11	-						
	> 100 is (t	(nn) (N/nn2) (%) (%) - 冬 件2	時の状 計算 0.8 183. 238.0 10 64	館 180 — 82 — 178 降伏 1.7 OK 4.3 降伏							
X 大向: 橋軸直角方向2 hyf = 0.880 < khcF = 1.0 (平書度 部工債性力作用位置変位 電を載載がの応力度 電 て 電を実施手線磁際支持力 認支持力と浮き上がりの合言 表の青表示は基礎が降伏に達 ま あの青表示は基礎が降伏に達 ま た	≫ 100 t	(mn) (N/mn2) (%) (%) (%)	時の状 11算 0.8 183. 238.0 10 64 を示して	館 180 — 182 — 178 降伏 1.7 OK 4.3 降伏 います。							
(X、方向: 橋軸直角方向)2 hyf = 0.080 < khcf = 1.0 (平景度 部工債性力作用位置变位 習客、抵部材の応力度 g 電気、振先端極限支持力 調整支持力、調査支持力の合言 表の青表示は基礎が降伏に違 で知此なっなたこ	> 100 t t ∪ t;	(mn) (N/mn2) (%) (%) 定条件?	時の状	<u>館</u> 180 — 182 — 178 降伏 1.7 OK 4.3 降伏 います。							
(×、方向: 橋軸直角方向) hyf = 0.880 < khcf = 1.0 (平景度 部工債性力作用位置変位 管先板部材の応力度 0 電先板形体の応力度 0 電先板形体の応力度 0 電先板形体の応力度 0 電先板形体の応力度 0 電先板形体の応力度 素の青表示は基礎が降伏に違 、答望性率の算定	≫ 100 † †	(nn) (N/nn2) (%) (%) (%) (%)	時の状 11算 0.8 183. 238.0 10 64 を示して	館 182 - 178 降伏 1.3 降伏 います。							
★×方向:橋軸直角方向2 hyf = 0.880 < khcf = 1.0 (平着度 部工情性力作用位置变位 習性失抵影响 の力度 「常失抵影響和優支持力 跟支持力と浮き上がりの合き 表の青表示は基礎が降伏に違 (答望性率の算定)	≫ — 100 †	(mn) (N/mn2) (%) (%) 定条件?	時の状 11算 0.8 183. 238.0 10 64 を示して	(値 判定 (値) 一 (82 一) (78 降伏) (77 0K (1.3 降伏) います。 計算値	制限值	判定	I				
(× 大方向: 橋軸直角方向) hyf = 0.880 < khcf = 1.0 (平義度 部工備性力作用位置变位 管実板部材の応力度 0 管装板形成内応力度 0 管装板形式加速度力 環境功力と浮き上がりの合計 表の音表示は基礎が降伏に違 (各型性率の算定) 環境の応答塑性率	≫ 100 t t t	(mm) (N/mm2) (%) (%) (%) (%) (%)	時の状 0.8 183. 238.0 10 64 を示して	 10 判定 10 一 10 一 10 厚伏 11 算値 1.146 	制限值	判定					
	>> 100 t t t t t t t t t t t t t t t t t	(nm) (N/nm2) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	時の状 0.8 183. 238.0 10 64 を示して	 10 判定 10 一 10 一 10 厚伏 10 厚伏 11 降伏 11 耳値 1.146 210.72 	制限值 4.000	判定 0K					
(×大方向:橋軸直角方向) (×大方向:橋軸直角方向) (平景度 (平景度 (部工情性力作用位置变位 (習客失板部形のの力度) (留実板売端極限支持力と浮き上がりの合き表の考表示は基礎が降伏に違い) (含塑性率の算定 (高工情性力作用位置の応答理性率) (部工情性力作用位置の応答理性率) (部工情性力作用位置の応答理性率) (部工情性力作用位置の応答理性率) (部工情性力作用位置の応答理性率) (部工作性力であるの形式のでの形式の)	≫ — 100 fs (t t にた	(nm) (N/nn2) (3) (3) (3) (3) (3) (3) (3)	時の状 11算 0.8 183. 238.0 10 64 を示して	館 111 111 111 111 111 111 111 1	制限值 4.000 一一	判定 0K 一					
	≫ 100 t t t t t t t t t t	(nm) (nm) (N/nm2) (N) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X	時の状 183 238.0 10 64 を示して (nn) (nr ad)	館 111年 111年 111年 111年 111年 111年 111年 11	制限値 4.000 	<u>判定</u> のK のK					

計算条件

液状化無視/液状化考慮, 地震動タイプI/タイプIIの複数 ケースが計算されている場合、どのケースを表示するか選択し てください。1ケースのみ計算している場合、現在表示している ケースがチェックされます。

一覧表

基礎の設計に用いる設計水平震度に相当する荷重を作用させた場合の基礎の耐力および変位の照査結果を表示します。

変位·断面力図

基礎の変位,曲げモーメント,せん断力の分布を描画します。スケールを変更することができます。最大変位,曲げモーメント,せん断力を入力し[設定]をクリックしてください。

水平震度~変位曲線

「レベル2地震時基本条件」で指定された開始水平震度と震 度増分により算出した水平震度と上部構造慣性力作用位置で の水平変位との関係を図示します。

流動化の検討を行う場合、流動力~変位関係を、作用力を直 接指定してレベル2地震時照査を行う場合、水平力~水平変位 関係を図示します。

詳細出力

方向ごとに計算開始水平震度から震度増分ごとの水平震度と水平変位や降伏条件の計算値を表出力します。

流動化の検討を行う場合、流動力~変位関係を、作用力を直 接指定してレベル2地震時照査を行う場合、水平力~水平変位 の詳細結果を表示します。

【レベル2地震時(部材)】

「照査 せん断照査 橋軸方向 橋軸直角方	()			
		下側引張	上側引張	
	鉛直反力 Mv(kN・m)	115551	-32603	
]開版自重 Mww(kN・m)	4641	4641	
作用曲げモーメント	水平反力 MH(kN·m)	5063	5063	
	杭頭拘束 MM(kN·m)	866	866	
	集計 Ma(kN·m)	104982	-31315	
	有効幅 b(cm)	983.2	983.2	
	有効高 d(cm)	442.5	490.0	
Ph (J).dbs -67.data	使用鉄筋量 As(cm²/m)	152.000	52.947	
P傘状曲け附刀	約合鉄筋量/2 Asb(cm²/m)	613.443	679.293	
	tc+2d (cm)	1535.0	1630.0	
	曲げ耐力 My(kN·m)	203929	-83620	
				詳細表示

レベル2 地震時照査(安定計算)が計算済みの時、計算可能で す。反力は、安定計算結果を自動的に取り込んでいます。

【基礎ばね計算】

22,322/	げわは東京	19.11111111111111111111111111111111111	c i¥i/mi
有周期	are no state 算定刊	90 (819#3#4)123# ·	0 i *i¤j
【基码	楚ばね 翁	吉果確認】-(固有周期算定
項目	単位	橋軸方向	橋軸直角方向
H.	kN	1000.00	1000.00
Mo	kN • n	10000.00	10000.00
бон		3.7054E-001	3.7054E-001
Ө он	mrad.	2.4842E-002	2.4842E-002
δом		2.4842E-001	2.4842E-001
Ө өм	mrad	3.4378E-002	3.4378E-002
A ss	kN/n	5.2350E+006	5.2350E+006
Asr	kN/rad	-3.7829E+007	-3.7829E+007
Ars	kN•n∕n	-3.7829E+007	-3.7829E+007
Arr	kN•m∕rad	5.6424E+008	5.6424E+008
		難位。	2.4m88+
		=107	RV/B

固有周期算定用の地盤バネ定数を算出、表示します。

2-12 基準値

「1-15 基準値」と同様です。

3 ケーソン基礎

サンプルデータ「Caisson_1.F1F」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

「ケーソン基礎」を選択し、「確定」ボタンを押します。

3-1 地層

r les les les	
i les les les las	地窖鉄 2 ※ 地層線の入力においては層厚を入力してください
	昭No 昭 年(m)
	1 16.607
	2 7.078
2	
	- 2 中地注

下表に従って地層線、設計地盤面タブの値をそれぞれ入力し ます。

<mark>地層線</mark> <地層数:2>

<層No1:16.607> <層No2:7.073>

設計地盤面

層名	標高 (m)
現地盤面	-6.320
設計地盤面(常時)	-6.320
設計地盤面(地震時)	-8.327
地盤面(常時)	-6.320
地盤面(地震時)	-8.327
水位(常時)	4.950
水位(地震時)	0.720
水位(施工時)	0.600
中立点	0.000

-入力後、適用ボタンを押します。

地層データ									×
中間点Uの間隔(m)	地層線	值 土質一	<u>원 (計算条)</u>	牛 液状化 伸	364年版				
始点U 0.0 全幅 0.0	土質デー	2① +留平	-921+1	1-931					
	地層の土	黄データ		※液状化の単位	までは、 機関日	= 砂礫土と初	います		
5	層 No	÷	平均 N種	(k.N/m ²)	a.*Eo 地翻時 (kN/m ²)	7 t (kN/m³)	Ƴ sat (k.N/m²)		
	1	1	23.0	64400	128800	18.00	19.00		
	2	1	35.0	98000	195000	20.00	21.00		
-5-									
-10									
- 15-									
-20									
-25									
4.V									
-30 2									
-35-									
	(* ##	2000N、地震	#\$560IN	с λл (こ 入力(地震)	引は常時の2個	(平均)	補の算出	
-40-	3.4545/4								
-45	● 飽和	重量Y set	○ 水中質	·兼γ'					
50	最大周囲	谭接力推定方	法 (高耐力	MP/ねじ込み5	CMP/SPMP	[法]は無効)ー			
Max 編小 STD 拡大 Auto 1cm 10cm 1m ※回家	€ N⊞	C 粘带	no C	nin(N值, 粘若	力の 「	「 N≤51まcl集	0-6推定		
						eff. (942).		The second	2 .com
						1897 1897	V 18.72	ACA	1 - WA (B)

土質データ①

層 No	土質	平均 N値	<i>α</i> ・Eo 常時 (kN/㎡)	a・Eo 地震時 (kN/㎡)	γt (kN/mੈ)	γsat (kN/mੈ)
1	1	23.0	64400	128800	18.00	19.00
2	1	35.0	98000	196000	20.00	21.00

土質データ2

層 No	c (kN/m²)	Φ (度)	νD	Vsi (m/s)	ED (kN/m²)
1	0.0	33.00	0.50	227.51	182535
2	0.0	38.00	0.50	261.69	268327

土質データ③

底面地盤の土質データ ※杭群杭としての許容支持力照査時, ケーソン, 地中連壁のみ

支持盤	α・Eo 常時 (kN/㎡)	α・Eo 地震時 (kN/㎡)	γt (kN/mੈ)	γsat (kN/mႆ)	c (kN/m²)	Φ (度)	cB (kN/m²)	ΦB (度)	qd (kN/m²)
1	98000	196000	20.00	21.00	0.0	38.00	0.0	25.33	

3-2 基本条件

1象構造物	コンタクトグラウト
○ 橋脚 ○ 逆T式橋台 ○ 重力式橋台	くしない ゆする
图工方式	コンタクトグラウト考慮時の最大周面摩擦力度
○ ニューマチック(止水壁方式)	 ・ 式(解11.5.13)の上限値に式(解14.5.1)の値を用いる
◎ ニューマチック(ピアケーソン方式)	○ 式(解14.5.1)を用いる
C オーブン	安定計算 基礎ゴれの曲ゴ刷性を全部材一定とする
○ 女実販売(オーゴン)	 ・一定とする
 「Lesinm(-」 - フチック) 	○ T顧振、側壁、底版部の部材で分ける
· · · · · · · · · · · · · · · · · · ·	
○ 根入れの浅いケーソン基礎	
使用鉄筋コンクリート設計基準強度 σ ck(N/mm²)	 (* 単位長さヨたり重重×洋度) (* 基礎報告書)
C 21 @ 24 C 27 C 30 C 30	○ 李琅和中重重
E III (* ** ++ 5F	一根人れの浅いケーソン基礎
	■ 基礎の根入れ部に水平荷重を分担させる
12/25/10 C SD245 (* SD345 C SD345 C SD450	▼ 支持刀1条数の寸法効果を考慮する
145 15 16 2 2 3 1 4 3 D 2 3 0 (* 3 D 3 4 0 (* 3 D 3 3 0 (* 3 D 4 3 0	有効載何面積を考慮した鉛直支持刀照直を行う
#果の出力方式	常時,レベル1地震時の基礎ばね
○ 標高出力 ○ 深度出力	● 計算しない ○ 計算する □ 低減係数DEを考慮する

下記に従ってチェックを入れます。 基本条件,安定計算 - 「基本条件,安定計算」タブを選択します。

対象構造物

<橋脚>

施工方法

<ニューマチック(ピアケーソン方式)>

コンタクトグラウト <する>

コンタクトグラウト考慮時の最大周面摩擦力度 <式(解11.5.13)の上限値に式(解14.5.1)の値を用いる>

安定計算,基礎ばねの曲げ剛性を全部材一定とする <一定とする>

ケーソン中間部の軸力算出 <単位長さ当たり重量×深度>

土質一覧

「土質一覧」タブに切り替え、下表に従って土質データ①~③ タブの値をそれぞれ入力します。

計算条件

隣の「計算条件」タブに切り替え、水の単位重量の値を <水の単位重量:9.81 kN/m³と入力します。

最後に「確定」ボタンを押します。

LTskars	\$##計算 	48.3.45 mSRL stells in classificat
<u>エロを</u> 15mLC#(-) 施工時 C 地震時 C	=とりつ しない でする しない でする	■ 常時、レベル1地震時の部材(スラブ)の照査を行う
最大地盤反力度の抽出 ○ 前面地盤反力度(○ 前背面地盤反力)	対象 のみ 変	(問題水平方向の)線工時照査ケース
側壁水平方向の施工® ・ 側壁下端	(体験3時)の照査位置 C 主働土圧最大位置	
 · · 『	送無視する S考慮する	
頂版の創体判定の側	き下端	7
☞ 底版上面	€ 刃口付け根	
	£	
刃口のせん断照査位置		
刃口のせん断照査位置 ○ 曲げ照査位置	☞ 曲げ照査位置+固定端部厚/2	
- カロのせん断照査位置 C 曲げ照査位置 - オープンケーソンの感	で 曲げ照査位置+固定端部厚/2 仮の応力伝達位置	

部材計算

「部材計算」タブに切り替え、下記に従ってチェックを入れ、 「確定」 ボタンを押します。

土圧を15m以深で一定とする <施工時:する> <地震時:する>

<mark>最大地盤反力度の抽出対象</mark> <前背面地盤反力度>

側壁水平方向の施工時(傾斜時)の照査位置 <側壁下端>

頂版の浮力の取扱い <頂版自重の浮力を無視する>

3-3 形状

部材寸法

「部材寸法」タブに切り替え、下表に従って部材、深さ方向、その他タブの値をそれぞれ入力します。

- 「適用」 ボタンを押すと左側に橋軸直角方向の図が表示され ます。

※「方向切替」 ボタンで橋軸方向も確認できます。

部材厚

「部材厚」タブを選択し <頂版天端高(標高:m):-8.327>と入力します。

頂版支持部張出長	T10	0.0000
フリクションカッタ幅	T1	0.1000
刃先幅	T2	0.2000
刃口基部幅	Т3	1.6000
隔壁支持部厚	Т9	1.0000
吊桁厚	Τ7	1.0000
頂版支持部厚	Т5	1.5000

深さ方向タブ

頂版厚	H1	4.0000
側壁高	H4	12.0000
頂版支持部高	H2	0.0000
頂版支持部ハンチ高	H3	0.0000
作業室天井スラブ厚	H5	1.7000
作業室高	H6	2.3000
吊桁高	H7	0.0100
基礎長		20.0000

その他タブ

施工時内水位	m	0.000
(荷重水満載状態)	m	0.000
水替え時の内水高	m	0.000
上載荷重q (常時)	kN/mੈ	18.0
(地震時)	kN/mื	18.0
(施工時)	kN/mੈ	0.0
中詰め材の単位重量γ	kN/mឺ	9.81
中詰め材の係数K		1.00

最後に「確定」 ボタンを押します。

3-4 予備計算

基礎本体の地盤反力係数の計算、地盤反力度の上限値の計 算、地盤反力度の許容値の計算を行います。 既に予備計算を実行している場合、再計算を行うか確認のメッ セージが表示されます。 再計算を行う場合は[計算実行]を、行わない場合は[取消]を押 してください。 なお、データの修正を行った場合は、必ず実行してください。

※計算書の「予備計算」の出力は、詳細な計算過程を出力する ことを目的としており、常に計算値および計算過程を出力して います。使用値から逆算して計算過程を出力することはできま せんので、常に計算値を出力します。(使用値は、「設計条件」 で出力しています。)

最後に「確定」ボタンを押します。

3-5 作用力

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	満番ク数	方手をな	数计通信系统	1000-51-51-	100000000000000000000000000000000000000	(BIRE-Ly TT-fried)
39 AR 88 -9	10里:65	10里哈你	割り留1未放気 1.00	1212013-13 14445	- 地震的/)	- 1別壁水牛方向 - 部材計管(側壁
	中中	市村	1.00	中村	中时	
	心脏的中	16.6504	1.50	地展時	地震时	- 事る荷重ケース
						- 番号を入力してく
-						参照番号ではな
-						荷香ケーフ番号
-						老夫方してく たき 日本
						2 🛨
-						
-						
1	常時	常時	1.00	常時	常時	<u>^</u>
2	常時+温度	常·温	1.15	常時	常時	
3	常時+風荷重	常·風	1.25	常時	暴風時	
4	常時+温度+風荷重	常·温·風	1.85	常時	暴風時	
5	常時+制動荷重	常·制	1.25	常時	常時	
6	常時+衝突荷重	常·銜	1.50	常時	常時	
7	地震時	地震時	1.50	地震時	地震時	
0	死荷重時	死荷重時	1.00	常時	常時	
0	(学()古()(学)	常時(浮)	1.00	常時	常時	
9	(1993)(7)					

Vt	ć-
тл	면

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	地震耐力
1	1	常時	常時	1.00	常時	常時
2	7	地震時	地震時	1.50	地震時	地震時

X方向

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	地震耐力
1	7	地震時	地震時	1.50	地震時	地震時

従ってY方向、X方向の参照番号の値をそれぞれ入力し

平方向 こ入力します。
作用力			×
荷重ケースの設定 脚柱形状寸法 単位重量等 脚柱下端作	用力 設計外力		
荷重クースの設定 IBHER 1 738 単位重量等 BHE F Wit ア 万 0 0 0 0 0 0 0 0 0 0 0 0 0	用力 記日 ガガ 形状 ○ 矩形 ○ 円形 ○ 小叶形 以(m) 単注野面面積(m?) マ 即注野面面積を注か	20450 3300 65.148 編より算出する	
a(m): 0.000 ~ 100.000		/確定 / 取消	? √17°(⊞)

脚柱形状寸法

「脚柱形状寸法」 タブに切り替え、下記に従って値を入力します。

形状

<小判形>を選択します。

<a(m):20.450> <b(m):3.300> <脚柱断面積(㎡):65.148>と入力し、

<脚柱断面積を柱幅より算出する>にチェックを入れます。

作用力			
荷重ケ・	- スの設定 脚柱形状	《寸法 単位重量等 <mark>)脚柱下端</mark>	_{開か 皺 か} 「単位里重寺」 ダブに切り替え、ト記に従つく 値を入力し
1931-1	水平震度(基礎構造物))	चित्र विक्र के समय के समय के समय के समय के समय के समय के समय के समय के समय के समय के समय के समय के समय के समय क
	Y方向	0.25	
	×方向	0.50	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
単位	重量		<y方向:0.25></y方向:0.25>
	上載土(湿潤)	kN/m ³ 18.00	<x方向:0.50></x方向:0.50>
	上載土(飽和)	kN/m ³ 19.00	
	ə(m) :	0.000 ~ 100.000	【 ✔ 職定】 ★ 取消 ? ^4/7(1)

-6.320	4.950	0	79810.0	0.0	0.0
-8.327					0.0
	0.720	1	73154.0	21540.0	276920.0
					V
					M

Y方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN ∙ m)
1	常時	-6.320	4.950	0	79810.0	0.0	0.0
2	地震時	-8.327	0.720	1	73154.0	21540.0	276920.0

X方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN ⋅ m)
1	地震時	-8.327	0.720	0	73154.0	18450.0	275870.0

			計算値			使用値	
ase	荷重名称	Vo(kN)	Ho(kN)	Mo(kN•m)	Vo(kN)	Ho(kN)	Mo(kN•m)
1	常時	72963.5	0.0	0.0	72963.5	0.0	0.0
2	地震時	67372.0	21540.0	276920.0	67372.0	21540.0	276920.0
3							
4							
5							
6							
7							
8							
9							
10							

──<mark>設計外力</mark> ──「設計外力」タブに切り替え、Y方向、X方向の値をそれぞれ確 認し、「確定」ボタンを押します。

脚柱下端作用力

- 「脚柱下端作用力」タブに切り替え、下表に従ってY方向、X方 向の値をそれぞれ入力します。

3-6 鉄筋

【側壁、隔壁】

側壁、隔壁配筋データ		×
側壁水平方向 側壁鉛	直方向 隔壁鉛直・水平方向 側壁拘束筋	
標準ビッチ(mm) 15	50 ※材質は斜引張鉄筋(SD345)を適用します	
- 外信服決筋	鉄筋配置指数	
	鉄筋配置接数 ○ 0.55段 ○ 2.05段 ○ 1.05段 ○ 2.55段 ○ 1.55段 ○ 3.05段 ○ 1.55段 ○ 3.052 ○ 1.5500 ○ 1.5500 ○ 1.5500 ○ 1.550	
	確 定	■

側壁水平方向

「側壁鉛直方向」タブの側壁水平方向の外側鉄筋、内側鉄筋 の値を下記のように入力します。 — <径(mm):D25><かぶり(mm):120><As(crd/m):33.780> と入力します。

側壁、隔壁配筋データ								×
側壁水平方向 側壁鉛頭	直方向 隔壁鉛直・水平7	6月	則壁拘束	筋				
標準ビッチ(mm) 15	0 ※材質は	主鉄筋	5(SD345):	を適用しま	ŧŦ			
外側鉄筋								
	鉄筋配置段数		恣	55371	Y動車行	√軸平行	Act	Ac2
	• 1.0fg ○ 2.5fg	段	(mm)	(mm)	片側本数	片側本数	(cm ²)	(cm ²)
	C 1.5£9 C 3.0£9	1	D32	140	144	44	1143.648	349.448
	○ 2.0段							
		· ·						
一内側鉄筋								
	鉄筋配置段数	_	472	abo 2001	L State TRAT	s dia 11 Art		<u> </u>
	○ 0.5段 ○ 2.0段	段	1至 (mm)	(mm)	大軸半行 片側本数	Y 軸半行 片側本数	(cm ²)	(cm ²)
	G 1060 C 2560	1	D32	140	127	27	1008.634	214.434
	10+Q (2.0+Q							
	○ 1.5段 ○ 3.0段							
		'						
						E	副本数,鉄	筋量計算
						_		
		-			/ ##=	¥ HU	·**	🤊 งแวชษา
1					væ∕E	A 42		: 407 (L)

側壁鉛直方向

「側壁鉛直方向」 タブに切り替え、下表に従って値を入力しま す。

外側鉄筋

<径(mm):D32> <かぶり(mm):140> <X軸平行片側本数:144> <Y軸平行片側本数:44> <As1(c㎡):1143.648> <As2(c㎡):349.448>

内側鉄筋

<径(mm):D32> <かぶり(mm):140> <X軸平行片側本数:127> <Y軸平行片側本数:27> <As1(c㎡):1008.634> <As2(c㎡):214.434>

※円形充実断面の鉄筋はどのように入力すればよいか (Q3-4参照) https://www.forum8.co.jp/faq/win/foundation-tqa.htm#q3-4

創壁、隔壁配筋データ 側壁水平方向 側壁鉛	直方向 隔壁鉛直·水 [。]	平方向 倒璧拘束筋	×
鉛直方向鉄筋 標準ビッチ(mm) [150 ※材	質は主鉄筋(SD345)を適用します	
	鉄筋配置段数 1.0段	採 採 パ酸 パッ パッ<	
-水平方向鉄筋 標準ピッチ(mm)	150 ※村 鉄筋配置段数	育は斜引現鉄筋(GD345)を適用します	
	C 1.5#g C 3.0#g	(mm) (mm) (cm²/m) 1 D25 100 33.780	
		🔜 本数, 鉄	筋量計算
		▲ 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 「 」	? ^#7°(H)

隔壁鉛直·水平方向

- 「隔壁鉛直・水平方向」タブに切り替え、下表に従って値を入 力します。

鉛直方向鉄筋

段	径	かぶり	Y軸平行	As
	(mm)	(mm)	片側本数	(cm ²)
1	D25	100	27	136.809

水平方向鉄筋

段	径 (mm)	かぶり (mm)	As (cm ^² /m)
1	D25	100	33.780

側壁、隔壁配筋データ						×	
側壁水平方向 側壁鉛直;	5向 隔壁3	台直・水平方向	側壁拘束筋			1	
側壁拘束筋							
径 (mm)	D19						
水平方向間隔 (cm)	75.0						
鉛直方向間隔 (cm)	15.0						
有効長 (cm)	183.0						
Ah (cm²)	2.865						
1							
				✔ 確定	🗙 耽消	? ∿⊮7"(⊞)	

<mark>側壁拘束筋</mark> - 「側壁拘束筋」タブに切り替え、下表に従って値を入力しま す。

径	(mm)	D19
水平方向間]隔(cm)	75.0
鉛直方向間	『隔(cm)	15.0
有効長	(cm)	183.0
Ah	(cm ²)	2.865

最後に「確定」ボタンを押します。

【頂版】

頂版

下記に従ってY方向、X方向、せん断補強鉄筋タブの値をそれ ぞれ入力します。

<橋脚躯体重量(kN):7045.0>と入力します。

<mark>Y方向</mark>タブ

<標準ピッチ(mm):150>と入力し、 上側鉄筋 <鉄筋配置段数:1.0段>にチェックを入れます。 <径(mm):D29><かぶり(mm):100><As(cm/m):42.827>と 入力します。

下側鉄筋

<鉄筋配置段数:2.0段>にチェックを入れます。 1<径:D29><かぶり:100><As:42.827> 2<径:D29><かぶり:200><As:42.827>と入力します。

X方向タブに切り替え、

<標準ピッチ(mm):300>と入力し、 上側鉄筋 <鉄筋配置段数:1.0段>にチェックを入れます。 <径(mm):D22><かぶり(mm):100><As(cm/m):12.903>と 入力します。

下側鉄筋

<鉄筋配置段数:2.0段>にチェックを入れます。 1<径:D25><かぶり:100><As:16.890> 2<径:D25><かぶり:200><As:16.890>と入力します。

せん断補強鉄筋

「せん断補強鉄筋」タブに切り替え、 <径(mm):D13> <X方向間隔(cm):25.0> <Y方向間隔(cm):25.0> と入力します。

版配筋データ 職版 連結部							>
総鉄筋量(cm²) 1795.	34 総鉄筋量/支持	寺面積(%) 0.21					
側壁 隔壁							
標準ピッチ(mm) 15	10						
外側鉄筋							
	鉄筋配置段数 ○ 0.5段 ○ 2.0段	段 (窪 (mm)	かぶり (mm)	X軸平行 片側本数	Y軸平行 片側本数	As1 (cm²)	As2 (cm ²)
	④ 1.04役 C 2.54役	1 D16	100	145	45	287.970	89.370
ii	○ 1.549 ○ 3.049						
内側維筋							
1 11112-010	鉄筋配置段数				1. 1. 1. 1. 1.		
	○ 0.54월 ○ 2.04월	段 (音mm)	(mm)	X軸平行 片側本数	Y軸半行 片側本数	As1 (cm²)	As2 (cm ²)
	① 1.04役 ○ 2.54役 ③	1 D16	100	127	27	252.222	53.622
<u> </u>	C 1.5#9 C 3.0#9						
					E	리 	** E-1 **
						🏦 (本叙), 鉄	977里61月
			[[""	✓ 確定	×	取演	? ^ルフ*(H)
					4		•

連結部

- 「連結部」 タブに切り替え、下記に従って 隔壁タブの値を入力 します。

※総鉄筋量、総鉄筋量/支持面積の値は自動的に入力されま す。

- 隔壁

「隔壁」タブを選択し、 <標準ピッチ(mm):150>と入力します。

配筋データ

<鉄筋配置段数:2.0段>にチェックを入れます。 下表に従い入力します。

段	径 (mm)	かぶり (mm)	Y軸平行 片側本数	As (cmႆ)
1	D16	100	27	53.622
2	D16	150	27	53.622

入力が終了したら「確定」ボタンを押します。

3-7 作業室天井スラブ

作業室天井スラブ、吊桁配筒デ	-9			×
作業室天井スラブ 吊桁)				
Y方向 X方向 せん断補	強鉄筋			
	1			1
作主 (mm)	D18			
×方向間隔 (cm)	25.0			
Y方向間隔 (cm)	25.0			
,				
		▲ 確定	🗙 取消	? NI7(E)

――Y方向、X方向の値は初期値のまま、「せん断補強鉄筋」タブに 切り替え、下記に従って値を入力します。

せん断補強鉄筋 <径(mm):D13> <X方向問隔(cm):30.0> <Y方向間隔(cm):30.0> と入力します。

作業室天井スラブ、吊桁配筋データ X	吊桁
作業室天井スラブ 吊桁	―― 「吊桁」タブに切り替え、吊桁、せん断補強鉄筋タブの値をそ
吊桁 せん断補金鉄筋	れぞれ入力します。
4標準ビッチ(mm) 150 	
鉄筋配置投数 「0.542 C 2.042 「12 (cm2)」 (cm2) (cm2) (cm2) (cm2) (cm2) (cm2) (cm2)	
C 1.5#@ C 3.0#@	
	吊筋
「竹筋」 	―― <標準ピッチ(mm):125>と入力します。
C 10fg C 25fg 1 D16 100 15.888	せん断補強鉄筋タブに切り替えます。
	<径(mm):D13>
	<本数:15>
	<間隔(cm):250>と入力します。
	最後に「確定」 ボタンを押します。

3-8 刃口、2次応力

カロ、2次応力配約データ × ガロ 2次応力 標準ビッチ(mm) 150 配約データ 鉄筋配置投設 (mm) (mm) (cm²/m) (mm) 1 D16 1 D16 100	下記に従って「せん断補強鉄筋」の値を入力します。
C 15長 C 30投 せん即研発技術 (mm) D13 水平方向間隔(cm) 250 約直方向間隔(cm) 250	せん断補強鉄筋 <径mm):D13> <水平方向間隔(cm):25.0> <鉛直方向間隔(cm):25.0>
▲ 東浦 ? ヘレブ(Ⴞ)	

刃口、2次応力配筋データ ×	2次応力
刃口 2)太吃力	――― 「2次応力」タブに切り替えます。
第1リフト側壁高(m) 0.00	
2次応力 (ジャブド羽)	―― 2次応力の値は初期値のまま
シャフト孔	「シャフト孔」タブに切り替え、下記に従って入力します。
シャフト孔直径 (m) 120 シュールガン教 9	
J TLEX 0	ンヤノト九
	<シャフト孔直径(m):1.20>
	<シャフト孔数:3>
	と入力し、「確定」 ボタンを押します。
✓ 確定 X 取清 ? ∿//7(L)	

3-9 レベル2地震時基本条件

Þ٨	l/2地震時基本条件					×		
8	本条件(共通)】基本条(牛(ケーソン基礎) 「	v1-φ 計算条件					
	計算条件							
	作用力を指定してレベル	ル2地震時照査を行う	こうち こうち	@ しない				
	計算方向	▶ 丫方向	▼ ×方向					
	計算条件	◎ 液状化無視/考	き慮 C 流動化考	卮 □ 既設時の	応答塑性率照査を行う		計笛冬佐	
	液状化	▶ 無視	□ 考慮	安全係数α	1.0			
	地震動タイプ	I▼ タイプ I	□ タイプⅡ				─── 地震動タイフのくタイフⅡ>のチェックを外しき	ます。
		2-	イブエ	31	JI			
		Y方向	X方向	Y方向	X方向			
	C2z•khco	1.2800	1.2800	1.2800	1.2800			
	khp	0.53	1.15	0.53	1.15			
	khg	0.00	0.00	0.00	0.00			
	橋脚の終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がない	大きな余裕がある			
	Wu (kN)	43674.00	43674.00	43674.00	43674.00			
Г			[54 (140)	10631.00	- 1		
-		Y/510]	×方回	Rd (KN)	43674.00	-		
L	hu (m)	18.100	19.100	Wp (kN)	29480.40			
				hp (m)	9.050		下表に従って値を入力します。	
-					1			
					/確定 🕺	ă ? ∿⊮7℃⊞)		

	タイ	プI	タイ	プリ
	Y方向	X方向	Y方向	X方向
C2z•khco	1.2800	1.2800	1.2800	1.2800
khp	0.53	1.15	0.53	1.15
khg	0.00	0.00	0.00	0.00
橋脚の終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がない	大きな余裕がある
Wu(kN)	43674.00	43674.00	43674.00	43674.00
	Y方向	X方向	Rd(kN)	43674.00
C2z•khco	18.100	19.100	Wp(kN)	29480.40
			hp(m)	9.050

	Y方向	X方向	鉛直力算出用水位 (m)	0.720	
計算開始震度	0.00	0.00	上載土厚 (m)	2.000	
震度増分	0.01	0.01	Up (kN)	5781.95	
Hd (kN)	0.00	0.00	Ws (kN)	1633.10	
Md (kN•m)	0.00	0.00	Vo (kN)	69005.55	
			※水位は標高,上載土厚	」 は頂版天端からの厚さ	
				」 は頂版天端からの厚さ	

基本条件(ケーソン基礎)

「基本条件 (ケーソン基礎)」タブに切り替え、下表に従って値 を入力します。

鉛直力算出用水位(m)	0.720
上載土厚(m)	2.000
Up(kN)	5781.95
Ws(kN)	1633.10
Vo(kN)	69005.55

√ル2地震時基本条件						× М-Ф
基本条件(共通) 基本条件(ケ・	ーソン基礎)	<u>M- </u>	ŧ			「M-Φ」 タブに切り替えます。
		at.	算値	使	用値	
		橋軸方向	橋軸直角方向	橋軸方向	橋軸直角方向	
終局モーメント	Mu	913703	2832202	913695	2832221	
断面の降伏モーメント	My	761086	2011666	761092	2011666	
ひび割れモーメント	Mc	434957	1032425	434957	1032425	
終局時の曲率	φu	0.00839204	0.00223919	0.00839215	0.00223917	
断面の降伏曲率	¢γ	0.00040184	0.00011162	0.00040184	0.00011162	
ひび割れ時の曲率	φc	0.00003056	0.00000972	0.00003056	0.00000972	
田(七七-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	φ _u (m)				M- 4 計 <u>算</u>	「M-Ψ計算」 小ダノを押しま 9。
				✔ 確定	🗙 取消 🥊 ? ^	<u>?</u> ~⊮⊃′(<u>H</u>)

儿2地震時基本条件	×	可并未计
あ本条件(共通) 基本条件(ケーソン基礎) M − φ 「計算条件」		―――「計算条件」 タブに
部材の非線形の考慮方法		
○ 最終震度で判断 ○ 春震度ごとに判断		
設計水平震度の範囲内で終局状態が算出できない場合		
 最大震度時を終局状態とする 		
○ 終局時の水平変位を ♂u=200cm とする		
C 応答塑性率照査を行わない		
基礎に主たる塑性化を考慮する場合の設計		基礎に主たる塑性化
基礎に主たる塑性化を考慮するか(基礎が降伏に達したとき、応答塑性率の 橋脚の終局水平耐力に大きな余裕がある場合、または该状化の影響を考「	の照査を行うか否か)を指定します。 意するとき適用されます。	<橋脚に主たる塑性
□□ 橋脚に主たる塑性化が生じるとき、基礎に主たる塑性化を考慮しないユニ	□□□ 免疫橋のとき、基礎に主たる塑性化を考慮しない □	―― 虐」たいへのチェック
主たる塑性化が生じる部材は、次のように判断します。	免震構造とみなす方向 反 Y方向	慮しないとのアエア
khyF≧khp ··· 橋脚基部に主たる塑性化が生じる	☑ ×方向	
khyF <khp・・・ td="" 基礎~地盤糸に主たる塑性化が生じる<=""><td></td><td></td></khp・・・>		

計算条件

切り替えます。

を考慮する場合の設計 化が生じるとき、基礎に主たる塑性化を考 フを外し、「確定」ボタンを押します。

cline Cline	* 確認画面が表示されるので、「はい」を選択します。
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	

3-10 沈下計算

計算条件タブは初期値のまま、

基本条件タブに切り替え、拡大図に従って値を入力します。

基本条件

刃口裾付面(標高)	m	-8.327
施工時水位面(標高)	m	0.600
構築高さ-沈下高さ	m	0.500
沈下用中詰め材高	m	0.000
沈下用中詰め材単位重量	kN/mឺ	9.81
上載土厚	m	0.000

リフト数、シャフト孔データ

側壁部リフト数	1
橋脚部リフト数	1
中詰め材載荷開始リフト	2
シャフト孔数	3
孔径:頂版 (m)	1.20
孔径:作業室天井スラブ (m)	1.20

最後に「確定」ボタンを押します。

3-11 基礎ばね

算値 使用値 54836 54836		最後に「確定」ボタンを押します。
也盤反力係数 ks	単位: kN/m³	
算値 使用値	ſ l	
16451 16451		
	<u>算値 にたわれば</u> 54836 54836 <u>り</u> 盤反力係数 ks <u>算値 使用値</u> 16451 16451	算信 10,711 54836 54836 地盤反力係数 ks 算信 使用值 16451 16451

82

3-12 計算·結果確認

【安定計算】

常時、レベル1地震時

<計算ピッチ:0.2>と入力し、「計算実行」ボタンを押します。

予算 変位 価値力図 アボ向 10 荷重名称 (ma) (45/m²) (10/m²) H8 (0.0 m²) H8 (10/m²) H8 (10/m²) (10/m²) H8	o x
小市 大方向 No 荷重名林 (日、日本) (日 (日 (日 (日 (日 (日 (日 (日 (日 (日 (日 (日 (日 (
No 可能量化作 Callan Callan <thcallan< th=""> <thcallan< th=""></thcallan<></thcallan<>	
NO 01 25 25 45 (min) (12/17/42) (12/1/47) (12/17) (12/17) (12/17) 1	
1 2 2 地震時 17.3 794.0 512.3 10596.0 50.0 1456.0 33506.9 2 地震時 17.3 794.0 512.3 10596.0 50.0 2165.0 39678.0	
2 抱读時 17.3 794.0 512.3 10598.0 50.0 2185.0 39878.0	
1/1/2 maa n. 0.1 25-00 COP4	
HIMPER PRAIR CORE	
■山水切留 /3//185元	7 NK7*(H)

一覧表

入力の作用力において、指定した荷重ケースについて表示しま す。

変位・断面力図

入力の作用力において、指定した荷重ケースの変位図、前面 地盤反力度分布図、せん断力図、曲げモーメント図を描画しま す。各図のY軸の描画範囲は、頂版天端を0(m)とし、そこから 基礎長分の深度を表示しています。

レベル2地震時

<計算ピッチ:0.2>と入力し、「計算実行」 ボタンを押します。

女性 で考慮 (流動時) (本) (本) (本) (本) (本) (本) (本) (なの) 地震動タイプⅠ (○ タイプⅠ (○ タイプⅠ (○ タイプⅠ (○) (○)	C \$47	I				
(加速) ((加速) ((((v) (v) 位 計算値					
(ネマ) (型い物面) (水下を度てえば) (M- (次内) (X方向) よび時点(注付) (株式) (K- にび時点(注付) (株式) (K- (K- (K- (K- (K- (K- (K- (K- (K- (K-	(中) (位) 計算値					
(2)10 X2)面 最終震度 単 上部構造価性力作用位置水平空位 両面塑性率 気面浮き上がり率 縦大モーズント 以上のように、茎環は降伏に達しない。	位 計算値					_
最終震度 単 水平震度 ー 上部構造借住力作用位置水平变位 ー 両面塑性率 国 反面浮きとかり率 経 炭大モーメント 総 炭大モーメント 総 以上のように、基礎は降伏に違しない。	位 計算値					
取すそに及 水平雲度 上部構造情性力作用位置水平変位 前面望性率 気面浮き上がり率 最大モーメント 以上のように、萎鬱は降伏に違しない。	位 計算値					
水平貴皮 単 上部構造債性力作用位置水平変位 一 前面塑性率 成面浮き上がり率 製大モーメント 以上のように、萎縮は除伏に違しない。	位 計算値					
水平雲度 一 上部構造慣性力作用位置水平変位 n 前面塑性率 ! 底面浮き上がり率 ! 最大モーメント kN 以上のように、基礎は降伏に達しない。		制限値	判定			
上部構造僧性力作用位置水平変位 n 前面塑性率 5 底面浮き上がり率 5 最大モーメント kN 以上のように、茎礎は降伏に達しない。	- 0.530					
前面塑性率 底面浮き上がり率 最大モーメント 以上のように、基礎は降伏に達しない。	m 148.9					
版面浮き上かり率 最大モーメント kN 以上のように、基礎は降伏に達しない。	\$ 51.50	60.00	OK			
戦大モーメント KN 以上のように、茎礎は降伏に達しない。	\$ 0.00	60.00	OK	-		
以上のように、基礎は降伏に達しない。	·n /2/262.6	161092.0	UK	1		
					_	
単位糸切替 7ォント設定 印刷	-			(開じる(2)	3 1	€7°ED

【部材計算】

側壁水平方向

計留書	2017年1日本1日本1日本1日本1日本1日本1日本1日本1日本1日本1日本1日本1日本1											
i) mH	1 C VOUNE	I FRAME	16*						-			
≪— <u></u>	覧表≫											
		外側引張			内側引張		許容応	「力度				
case	M (kN·n)	σ _c (N/mm ²)	$\mathcal{O} \le (N/nn^2)$	M (kN-n)	0 c (N/un ²)	σ _s (N/nn ²)	σ _{ca} (N/nn²)	σ̃sa(N/nm²)				
1	-402.0	1.80	61.2	220.4	0.96	21.0	12.00	240.0				
2	-263.8	1.14	23.3	154.0	0.62	4.5	12.00	240.0				
3	-1160.3	5.16	154.4	624.9	2.64	41.3	12.00	240.0				
4	-915.8	4.08	121.9	493.2	2.08	32.6	8.00	160.0				
5	-1295.8	5.79	218.1	709.4	3.14	86.4	12.00	300.0				
6	-821.2	3.45	50.0	572.1	2.47	50.1	12.00	300.0				
Case	5	- ノノ回転利 含え時	对 (何度世纪	, д л п)								
case case case case	4 : 常崎 5 : 水平 6 : 水平 客値に対	F荷重作用 F荷重作用 して最も	時(橋軸方 時(橋軸直 厳しい紀 外側引引	向:地震 角方向: 课≫	時) 地震時) 内側引引	Ē						
Case Case Case Case	4 ::常聞 5 ::水平 6 ::水平 客値に対	中荷重作用 中荷重作用 して最も	時(橋軸方時 時(橋軸直 厳しい紀 外側引引	向:地震 角方向: 課果≫	時) 地震時) 内側引引 水平荷重作	長用時						
case case case case case	3 5 5 5 7 7 7 7 7 6 1 7 7 7 7 7 7 7 7 7 7 7 7 7	時 荷重作用 平荷重作用 して最も 単位 	時(橋軸方 時(橋軸直 厳しい紀 外側引引 常時	向:地震 角方向: 課≫ (福	時) 地震時) 内側引引 水平荷重作 新軸方向:#	長 用時 加震時)						
case case case case case case case case	3 ::常部 5 ::水 6 :: 水 客値に対 同 目 「ース ミーメント	荷重作用 単荷重作用 単位 KN·m	時(橋軸方 時(橋軸直 厳しい結 外側引閉 常時 -91	向:地震 角方向: 課 課 (福 5.8	時) 地震時) 内側引引 水平荷重作 5軸方向:ま	長 用時 地震時) 709.4						
case case case case case d 荷重り 曲げモ	4 : 常常 5 : 水平 客値に対 頁 目 ース ミーメント	時 一荷重作用 戸荷重作用 して最も 単位 kN·m	時(橋軸方 時(橋軸直 厳しい紀 外側引引 常時 -91	向:地震 角方向: 課果≫ (福 5.8	時) 地震時) 内側引引 水平荷重作 5軸方向:北	長 用時 抱雲時) 709.4 504.0			-			

部材計算の側壁水平方向の結果を表示・描画します。

曲げ照査

一覧表

変位·断面力図

水平震度~変位

M-D

曲げに対して最も厳しいケースを、全荷重ケース・全照査断面 から抽出し、上側引張/下側引張別に表示します。

基礎の設計に用いる設計水平震度に相当する荷重を作用させた場合の基礎の耐力および変位の照査結果を表示します。

変位図、前面地盤反力度分布図、せん断力図、曲げモーメント 図を描画します。各図のY軸の描画範囲は、頂版天端を0(m)と

軸力:N(kN)、横拘束筋の有効長d(cm)等の項目について、

し、そこから基礎長分の深度を表示しています。

降伏時のデータを使用し、表示します。

表示します。詳しくはヘルプを参考ください。

せん断照査

せん断に対して最も厳しいケースを、全荷重ケース・全照査断 面から抽出し、表示します。

FRAME結果

各荷重ケースごとに、FRAME解析結果の描画を行います。 描画したい荷重ケースを選択し、画面上部のボタンから、荷重 図・変位図・モーメント図・せん断力図を選択してください。ま た、詳細な数値の確認を行う場合、画面右上の「詳細表示」ボ タンを押し、FRAME解析結果表示画面を開いてください。

※左メニュー項目にNGマークが付きます。

側壁鉛直方向

側壁鉛直方向の許容応力度法による解析結果です。

曲げ照査

許容曲げ応力度に対して最も厳しいケースを、全荷重ケース・ 全照査断面から抽出し、照査方向別に表示します。

せん断照査

許容せん断応力度に対して最も厳しいケースを、全荷重ケース・ 全照査断面から抽出し、照査方向別に表示します。

※左メニュー項目にNGマークが付きます。

隔壁

🧱 隔壁結果確認						-	C		<
有効高	ca	90.0		 	 				-
鉄筋量	cm2/m	33,780							
鉄筋許容引張応力度	N/mm2	240.00							
許容等分布荷重強度	kN/m2	478.8							
許容水位差	m	48.81							
単位系変換 7ォント設定	Ē	印刷	-		開じる	<u>(C)</u>	?	∿#7°(<u>H</u>)	,

ニューマチックケーソンの施工時を対象として、許容できる水 位差を表示します。 隔壁がある場合に表示されます。

頂版

🌃 頂版 結果確認							×
許容応力度法保耐	法 剛	体判定					
施工時 完成後							
曲げ照査しせんり	(昭本)						1
							-111
項目	1	単位	Y方向	×方向			
曲けモーメン	/ h	kN m	606.8	0.0			
台)村村中国		cm	100.0	100.0			
部材向		cm	400.0	400.0			
2 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		omz	60.604	33.700			
化安麸加重	~	om4	0.02	0.00			
応力度	0.	N/mm2	20.2	0.00			
	0 s	N/mm2	12 12	0.0			
許容応力度	σ ca	N/mm2	240	.0			
単位系変換	フォント語会	Ē	ED局) 🗸		じる(©)	? 117	•(Ħ)

許容応力度法

頂版の許容応力度法による解析結果です。施工時と完成後の 2つの荷重状態について検討しています。

保有水平耐力法

頂版のレベル2地震時照査結果です。照査断面位置を固定端と した片持ち梁として断面力を照査します。安定計算:レベル2 地震時の計算が正常に終了した場合のみ表示します。 また、部材計算:使用するレベル2地震時照査結果において照 査しないとされた場合、表示されません。 液状化無視/液状化考慮,地震動タイプ1/タイプ1の複数 ケースが計算されている場合、画面上部のボタンにより、どの

ケースを表示するか選択してください。1ケースのみ計算している場合、現在表示しているケースがチェックされます。

剛体判定

頂版の剛体判定結果を表示します。

頂版支持部

許容応力度法 (Y方向 大方向) (Y方向: 橋軸方向)) 「荷重名称 Vp (xk) Np (xk**a) σ (x/xm2) σ bs (x/xm2) 1 常時 88055.5 0.0 1.02 7.20 2 地震時 82464.0 363080.0 3.32 10.80	頂版支	5持 結果確認				—	×
Y方向 大方向: 橋軸方向》 で方向:橋軸方向》 荷垂名称 Vp (x81) Mp (x81*m) 0" (N/mm2) 0" bs (N/mm2) 1 常時 88055.5 0.0 1.02 7.20 2 地震時 82464.0 363080.0 3.32 10.80	容応力	度法					
《Y方向:橋軸方向》 荷 <u>重名称</u> V _p (xk) M _p (kk'⋅m) σ (W/mm1) σ b ₀ (W/mm3) 1 常時 88055.5 0.0 1.02 7.20 2 地震時 82464.0 363080.0 3.32 10.80	方向	X方向					
荷重名称 Vp (kN) Mp (kN ⋅ n) σ (N / mail) σ b (N / mail) 1 常時 88055.5 0.0 1.02 7.20 2 地震時 82464.0 363080.0 3.32 10.80	«۲	方向:橋軸ス	方向》				
1 常時 88055.5 0.0 1.02 7.20 2 地震時 82484.0 363080.0 3.32 10.80		荷重名称	Vp (kN)	Mp (kN·m)	σ (N/mm2)	♂ba (N/mm2)	
2<地震時 82484.0 363080.0 3.32 10.80	1	常時	88055.5	0.0	1.02	7.20	
	2	地震時	82464.0	363080.0	3.32	10.80	
			L I	I			
		1		1.1			_

頂版支持部の許容応力度法による解析結果です。

頂版と側壁連結部

項版と側壁連結部 結	県確認	l				—	×
容応力度法(保耐法)							
曲げ照査 滑動照査							
		単位	Y方向	X方向			
荷重ケース			2	1			
曲げモーメント	M	kN 'm	363080	349670			
軸力	N	ĸN	82464	82464			- 1
应力度	σc	N/mm2	5.94	1.86			- 1
心力度	σs	N/mm2	303.5	-0.1			- 1
許应応力度	σoa	N/mm2	12.00	12.00			- 1
ar u 207732	σsa	N/mm2	300.0	300.0			- 1

作業室天井スラブ

作業室天井スラブ	結果確認	8						
容応力度法 10工時								
曲(-f昭李) / मन	17.atc]							
	en en el en							-1
Y方向 <u>X方向</u>								
《Y方向:	橋軸	方向》						
項	B	単位	下側引張	上側引張				
版			2	2				
荷重ケース			2	1				
曲げモーメン	ト	kN∘m.	441.9	-339.0				
部材幅		cm	100.0	100.0				
部材高		сm	170.0	170.0				
使用鉄筋量		cm2	13.240	13.240				
必要鉄筋量		cm2	12.07	9.20				
応力度	σ°	N/mm2	2.49	1.91				
-07752C	σs	N/mm2	219.3	168.2				
許容応力度	бca	N/mm2	12.00	12.00				
ar areastic	ɗsa	N/mm2	240.0	240.0				
応力度 許容応力度	σs σca σsa	N/mm2 N/mm2 N/mm2	219.3 12.00 240.0	168.2 12.00 240.0				
1								
				1				_
位系変換 7:	い酸定		印刷	- -	開じる((2	? ∿I/7	° (H)

吊桁

頂版と側壁連結部の許容応力度法による解析結果です。

曲げ照査 (浮き上りに対する照査)

頂版支持面を照査断面とし、頂版の計算で求めた作用力を用いて曲げ応力度の照査を行い、各方向ごとに最も厳しいケースの荷重ケースを抽出して表示します。 滑動照査

各荷重ケースごとに0.6・VpがHp以上であることを照査します。

Vp…頂版下面における軸力 (kN) Hp…頂版下面における水平力 (kN)

※左メニュー項目にNGマークが付きます。

施工時

荷重水満載状態、水替状態のそれぞれのケースのとき、曲げ 応力度、せん断応力度照査を行い、最も厳しい条件(版、荷重 ケース)を表示します。

なお、表中の荷重ケースはそれぞれ、

1. 荷重水満載状態、2. 水替状態を示しています。

部材計算の吊桁の結果を表示します。

ニューマチックケーソンで吊桁が1方向にある場合に表示されます。

吊桁は、以下の項目に分かれています。

曲げ照査

1. ディープビーム 隔壁と平行な軸線幅の1/2 < 作業室天井スラブ+吊桁高 の場合、ディープビームとして求めた必要鉄筋量を表示しま す。

2. 曲げ照査

隔壁と平行な軸線幅の1/2 ≧ 作業室天井スラブ+吊桁高 の場合、曲げに対して最も厳しいケースを、全荷重ケース・全照 査断面から抽出し、表示します。

せん断照査

隔壁と平行な軸線幅/2 ≥ 作業室天井スラブ+吊桁高の場合、せん断に対して最も厳しいケースを、全荷重ケース・全照査断面から抽出し、表示します。

吊筋

必要吊筋量を表示します。 ※左メニュー項目に NGマークが付きます。 刃口

E	刃口 結果確認	8							-	۵	ב	×
Ħ	町「照査│せん断	(照査										
Г	曲げモーメン	/ -	kN:m	662.8								
	部材幅		om	100.0								- 1
	部材高		om	160.0								- 1
	使用鉄筋量		cm2	13.240								- 1
	中立軸		cm2	22.50								- 1
	応力度	σo	N/mm2	4.13								- 1
	~07715c	σs	N/mm2	351.3								- 1
	許容応力度	бca	N/mm2	12.00								- 1
	ar aronnac	σsa	N/mm2	240.0								- 1
3	単位系変換	フォント	設定	ÉDÆ	ı -			1U3(<u>C</u>		?	~µ7°	Œ

曲げ照査

基部の単位幅断面を用いて、曲げモーメントが作用する単鉄筋 矩形断面として算出した曲げ応力度が施工時の許容応力度以 内であるか照査した結果を表示します。

せん断照査

せん断照査位置のせん断力S,曲げモーメントM'を用いて、部 材の有効高の変化を考慮した計算を行なった結果を表示しま す。

※左メニュー項目に NGマークが付きます。

2次応力

	2 次応力 結果確認							×
無	筋コンクリート							
Г		単位	下側引張	上側引張				
	曲げモーメント	kN 'm	1594.8	4082.6				
Ш	引張応力度	N/mm2	0.327	0.394				
	許容応力度	N/mm2	0.450	0.450				
<u> </u>							 	
<u></u>	4位系変換 7x	小設定	印刷	•	(開C	3(<u>C</u>)	? NK	• (H)

無筋コンクリート断面として照査した結果を、上側引張/下側 引張ごとに表示します。

【沈下計算】

1	沈下計算 結果	県確認							
î	ホ下関係 沈下関	係図							
ſ	リフト	沈下力 (kN)	沈下抵抗力 (kN)	過不足荷重 ^(kN)					
I.	1	9278.7	20107.6	-10828.9					- 1
I.	2	9299.7	20126.8	-10827.1					
I.	3	34562.7	49055.9	-14493.2					- 1
I.	4	49322.2	59388.0	-10065.8					
I.	5	50835.2	62006.7	-11171.5					
I.									- 1
I.									- 1
I.									- 1
I.									
L									
	単位系変換	フォント設定	EDB		の設定	閉じる(0	? NK	7° (H)

沈下関係

リフトごとに沈下力, 沈下抵抗力と、「沈下力-沈下抵抗力」を 過不足荷重として表示します。

沈下関係図

リフトごとの沈下関係を図で表示します。

【基礎ばね計算】

	基礎ばね 結果	確認				—		×
đ	有周期算定							1
	項目	単位	Y方向	X 方向				
	Ho	kN	1.00	1.00				
	Mo	kN 'm	1.00	1.00				
	δон	m	1.1371E-007	6.7486E-008				
	θ _{оН}	rad	8.7386E-009	3.7920E-009				
	δом	m	8.7386E-009	3.7920E-009				
	<i>Ө</i> ом	rad	1.1879E-009	3.8944E-010				
	Ass	kN/m	2.0231E+007	3.2719E+007				
	Asr	kN/rad	-1.4883E+008	-3.1858E+008				
	År s	kN:m/m	-1.4883E+008	-3.1858E+008				
	Årr	kN·m/rad	1.9368E+009	5.6699E+009				
単	位系変換	7ォント設定	印刷	•	[閉じる(6)	? ^//7	, Ш

基礎ばねの計算を行います。 なお、本プログラムの基礎ばねは、基礎天端 (頂版天端)中心 における値を示しています。(突出している場合も同様)

基礎ばねの計算実行時、単位水平力または単位モーメントが 小さすぎるときに、「計算が正しく行なわれませんでした。」と メッセージが表示されます。その場合はメッセージの指示に 従って、単位荷重を入力し直して再計算してください。

3-13 基準値

「1-15 基準値」と同様です。

4 地中連続壁基礎

サンプルデータ「Renpeki_2.F1F」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

4-1 地層

記点(UC)開稿(m) 会し 00 全報 00 時 00 00 00 00	地層線 N道 土質一覧 計算条件 液状化 地層線 - 助計地盤面	(RURARN)	
5	10.00		
	該計地盤面(米特) 0.000		
	設計地設置(地震時) 0.000		
1	地盤面(常時) 0.000		
	1412000(142000) 0.000		
	水位(第時) 6.000		
	水位(地震時) 6.000		
	水位(施工時) 6.000		
2	中立点 0.000		
3			
	入力方法	·	
27 1 270 200 1 40 1 40 1 40 1 1 1 1 1 1 1 1 1 1 1	C 福浩人刀 C 眉阜人刀 C X方向	C Y方向 適用	
math and are local town in the	·		

下記に従って地層線、設計地盤面タブの値をそれぞれ入力し、
 「適用」ボタンを押します。

地層線

<地層数:3> <層No.1:10.000> <層No.2:12.000> <層No.3:3.000>と入力します。

設計地盤面

層名	標高 (m)
現地盤面	0.000
設計地盤面(常時)	0.000
設計地盤面(地震時)	0.000
地盤面(常時)	0.000
地盤面(地震時)	0.000
水位(常時)	6.000
水位(地震時)	6.000
水位(施工時)	6.000
中立点	0.000

25/07-2									×
中間点Uの間隔(m)	地層線]1	值 土質一	<u>K arren</u>	t jætt/te (ø	00/100				
始点し 0.0 全幅 0.0	+117-	- 900 +48*≓	-921+8	₩-931					1
0.0 0.0 0.0 0.0	地層の土	黄データ	20120	※液状化の単位	定です. 機質力	= 砂礫土と初	います		
5	層 No	ŧ	平均 N種	cz.*Eo 常時 (kN/m²)	a*E0 地間時 (kN/m ²)	γt (kN/m³)	Ƴ sat (k.N/m²)		
	1	2	1.0	2800	5610	16.00	17.00		
	2	1	18.0	58408	108800	18.00	19.00		
-5-	3	1	50.0	140010	281000	18.00	19.00		
10									
-10									
- 15									
-70									
2									
-25- 3									
-20									
-35-	rα•Ee(推定方法							
-10	· **	92800N, 地震	#寺5601N	0入力 (0入力(地震)	明は常時の2日	(平均)	値の算出	
	-2,7,63								
-45	○ 飽和	重量Yisət	○ 水中重	π γ'					
50	最大周围	峰接力推定方	r法(高耐力	MP/ねじ込み5	CMP/SPMP	こ法は悪効) 一			
Max 編小 STD 拡大 Auto 1cm 19cm 1m 2013	€ N⊞	C 秘密	the C	nin(N值, 粘若,	力の 「	「 N<51まcl住	から推定		
						👩 読込	🖌 職定	🗙 ЛЕЙ	? ~\$7°B

土質データ①

層No	土質	平均 N値	α・Eo 常時 (kN/㎡)	α・Eo 地震時 (kN/㎡)	γt (kN/mੈ)	γsat (kN/mੈ)
1	2	1.0	2800	5600	16.00	17.00
2	1	18.0	50400	100800	18.00	19.00
3	2	50.0	140000	280000	18.00	19.00

「土質一覧」タブに切り替え、拡大図に従って土質データ①~ ③タブの値をそれぞれ入力します。

土質データ②

層No	c (kN/mੈ)	Φ (度)	vD	Vsi (m/s)	ED (kN/m²)
1	16.0	0.00	0.50	100.00	31347
2	0.0	31.00	0.50	209.56	155017
3	0.0	40.00	0.50	294.72	306314

底面地盤の土質データ

支持盤	α・Eo 常時 (kN/㎡)	α・Eo 地震時 (kN/㎡)	γt (kN/mੈ)	γsat (kN/mੈ)	c (kN/㎡)	Φ (度)	cB (kN/m²)	ΦB (度)	qd (kN/㎡)
	140000	280000	18.00	19.00	0.0	40.00	0.0	26.67	3000

地眉宁一夕			×	計算条件
- 中国本(107)開発(m) 地点の「日本」 全部 [00 開新 日本	地理線 N版 土安一覧 計算条件 7 木の単位重量 9.81 「 流伏化の甲烷者行う	RRATE 16206/468 kN/m² ○≿ 100 ⊂⊞ 100		────「計算条件」タブに切り替え、水の単位重量の値を ──── <9.81>と入力し、最後に「確定」 ボタンを押します。
0 -5	地設種別 「直接指定」 の工種 の内部計算			
-16	 ・ ・ ・	の基盤面 C 自動利定 C 直接指定 0 C 直接指定 2 C 直接指定 3 C 同時利定 1		
-25-3	低減併散DE の入力値 の内部計算	○法執荷重q ○ 入力値 ● 内部計算		
-35-	-N値測定点の設置方法 の 地間境界 C 1000mビッチ	受働土圧係酸Kp の入力値の内部計算		
-40 -45	地層(解神句の液状化判定位置) C1 C2 F3 C4 C5	動約世人助建廃比Rの取扱い の最小値 の平均値		
 Max #84-h STD #27 Auto 1cm 10cm 1m 1978	E (87)	適用		
		K62	1462 🗙 現6清 🦻 167(円)	

4-2 基本条件

基本条件			×
対象構造物			
☞ 橋脚	○ 逆T式橋台	○ 重力式橋台	
使用性なったらい。	し記事上甘純神神府でしい	(h) (mm2)	
「文州政府のコンシリ		(N/mm-)	
J ULEXAR	C 21 C 24	617 630 630	
1819EEDP	0 21 (0 24	0 27 0 30 0 30	
使用鉄筋材質——			
主鉄筋	C SD295 @	SD345 C SD390 C SD490	
斜引張鉄筋	C SD295 @	SD345 C SD390 C SD490	
	Nthulitte		
一眼八地盛度/月度6			
 「● 前面地盤D 	2刀度のみ 〇	前背面地盤反刀度	
一部材計算の土圧を	15m以深で一定とする	5	
施工時	⊙ しない	○ する	
地震時	⊙ しない	○ する	
一侧壁水平方向针领	冬件		
軸力	↓ 不口	● 無視	
***/	 単鉄節 	○ 複鉄筋	
2. 0.000 10.000	4.2000		
常時,レベル1地調	雲時の基礎 ばね		
● 計算しない	 ご 計算する 	□ 低減係数DEを考慮する	
結果の出力方式-			
☞ 標高出力	○ 深度出力		
		🖌 確定 🛛 🗙 取消 🔶 ?	∿⊮7°(<u>H</u>)

 使用鉄筋材質の斜引張鉄筋の<SD345>にチェックを入れ、 「確定」ボタンを押します。

4-3 形状

形状		×
隔壁タイプ 形状寸法 その他		
平面図	形状寸法 維手部 その他	
]鄖版天端高〈標高:m〉 [0.000
	基礎幅(X) B	14.5000
	基礎幅(Y) L	6.2000
	隔壁位置 Xp1	
	隔壁位置 Xp2	
	隔壁位置 Yp1	
	隔壁位置 Yp2	
	側壁厚	1.5000
	· 福壁厚	1.5000
14500.0	頂版厚	4.0000
· · · · · · · · · · · · · · · · · · ·	側壁高	19.5000
	基礎長	23.5000
		単位: m
	視。	5.切替え 適用
		★ 耽请 🥊 ? ヘルフ℃目)

「形状寸法」タブに切り替え、下表に従って形状寸法、継手 部、その他タブの値をそれぞれ入力します。

_____ 形状寸法

頂版天端高(標高:m) <0.000>と入力します。

基礎幅(X) B	14.5000
基礎幅(Y) L	6.2000
隔壁位置 Xp1	
隔壁位置 Xp2	
隔壁位置 Yp1	
隔壁位置 Yp2	
側壁厚	1.5000
隔壁厚	1.5000
頂版厚	4.0000
側壁高	19.5000
基礎長	23.5000

継手部

L1	2.3000
L2	1.6000
L3	0.1000
L4	0.0000
L5	1.5500
LG	1.6000
L7	0.1000
L8	0.0000

4-4 予備計算

予備調	+算結果確認						×
地	2007係数	地盤反力度の	の上限値 地	盤反力度の	許容値		
k	v,ks kH	kSHD kS	SVB KSVD	1			
J	底面鉛直方向	」地盤反力係	敳 kv(kN/i	m ³)			
		計算	値	使月	月値		
		常時	地震時	常時	地震時		
	kv	41290	82580	41290	82580		
		- 14. e	EL . //	-			
,	医面水半方向	1地盤反刀係) ミヤ	钗 ks(kN/i t/mi	m ³) /#8	日(市		
		是.T5 本0246		1丈月	비민		
	ha	市时	地震時	市時	地震時		
	K5	12007	24///4	12007	24774		
_							
_							
				_	🗸 確定	🗙 取消	? ∿⊮७″(⊞)

基礎本体の地盤反力係数の計算、地盤反力度の上限値の計 算、地盤反力度の許容値の計算を行います。 既に予備計算を実行している場合、再計算を行うか確認のメッ セージが表示されます。 再計算を行う場合は[計算実行]を、行わない場合は[取消]を押 してください。 なお、データの修正を行った場合は、必ず実行してください。

※計算書の「予備計算」の出力は、詳細な計算過程を出力する ことを目的としており、常に計算値および計算過程を出力して います。使用値から逆算して計算過程を出力することはできま せんので、常に計算値を出力します。(使用値は、「設計条件」 で出力しています。)

最後に「確定」ボタンを押します。

4-5 作用力

case	参昭番号	荷垂名称	荷重酪称	割増係数	地盤ばわ	地绘耐力	- 側壁水平方向-
1	1	常時	常時	1.00	常時	常時	
2	7	地震時	地震時	1.50	地震時	地震時	五十万间/ Cm 查
3		and 7	and 1		and 1	Lines 1	 する荷重ケース 番号参入力して
4							
5							- 参照番号では
6							前手生に入意
7							2010 CO2
8							2 🕏
9							· · · · · · · · · · · · · · · · · · ·
10							
							-
	1	常時	常時	1.00	常時	常時	^
	2	常時+温度	常·温	1.15	常時	常時	
	3	常時+風荷重	常·風	1.25	常時	暴風時	
	4	常時+温度+風荷重	常·温·風	1.35	常時	暴風時	
	5	常時+制動荷重	常·制	1.25	常時	常時	1
	6	常時+衝突荷重	常·衝	1.50	常時	常時	1
	7	地震時	地震時	1.50	地震時	地霞時	1
	8	死荷重時	死荷重時	1.00	常時	常時	1
	9		常時(浮)	1.00	常時	常時	1
	10	常時+温度(注)	常・湯(堂)	1 15	常時	常時	

Y方向

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	地震耐力
1	1	常時	常時	1.00	常時	常時
2	7	地震時	地震時	1.50	地震時	地震時

X方向

case	参照番号	荷重名称	荷重略称	割増係数	地盤ばね	地震耐力
1	7	地震時	地震時	1.50	地震時	地震時

下表に従ってY方向、X方向の値をそれぞれ入力します。

側壁水平方向は<2>と入力します。

作用力			×
荷重ケースの設定 脚柱形状寸法 単位重量等 脚柱下端作用力	り 設計外力		1
	形状		
	○ 矩形		
¥ / D	○円形		
б <u>а</u>	 小判形 		
$\square \uparrow \backslash \square = \square$	()		
	a(m)	8.500	
	脚柱断面積(m ²)	23.569	
、 Y 古向	↓ 即柱断面積を柱	幅より算出する	
	-		
a(m): 0.000 ~ 100.000	🖌 確定	🔛 🗶 取消	? ~1/7 (H)

脚柱形状寸法

- 「脚柱形状寸法」に切り替え、下記に従って値を入力します。

<形状:小判型>を選択し、

<a(m):8.500> <b(m):3.000> <脚柱断面積(㎡):23.569>と入力します。

<脚柱断面積を柱幅より算出する>にチェックを入れます。

作用力				単位重量等	
荷重ケースの設定 脚柱形状*	寸法 単位	重量等 脚柱下端	端作用力 設計外力	———「単位重量等」	タブに切り替え、下記に従って値を入力しま
設計水平震度(基礎構造物)				す。	
Y方向		0.00		<上載土(湿潤)	kN/ mឺ:16.00>
×方向		0.00		<上載十(飽和)	kN/ mឺ:17.00>
単位重量				(10/H)	
上載土(記閣)	kN/m³	16.00			
上載土(飽和)	kN/m ³	17.00			
a(m): 0.	000 ~ 100.	000	【 ✔ 確定】 ★ 取消 ? ヘレフヾ出		

		140.114(00)	NUTTER	194 LE / J	V(KN)	HIGHL	IVIAKIN III/
1	常時	0.000	6.000	0	22896.0	0.0	0.0
2	地震時	0.000	6.000	0	18996.0	6611.0	64765.0
3							
4							
5							
6							
7							
8							
9							
10							
			上載土高速動	1 水位	高速動	I	V

Y方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN ⋅ m)
1	常時	0.000	6.000	0	22896.0	0.0	0.0
2	地震時	0.000	6.000	0	18996.0	6611.0	64765.0

X方向

case	荷重名称	上載土高(m)	水位高(m)	慣性力	V(kN)	H(kN)	M(kN ∙ m)
1	地震時	0.000	6.000	0	18996.0	4250.0	45540.0

	·		計算値			使用値	
ase	荷重名称	Vo(kN)	Ho(kN)	Mo(kN•m)	Vo(kN)	Ho(kN)	Mo(k.N•m)
1	常時	26791.3	0.0	0.0	26791.3	0.0	0.0
2	地震時	22891.8	6611.0	64765.0	22891.8	6611.0	64765.0
3							
4							
5							
6							
7							
8							
9							
10							

脚柱下端作用力

- 「脚柱下端作用力」タブに切り替え、下表に従ってY方向、X方 向の値をそれぞれ入力します。

設計外力

- 「設計外力」タブに切り替え、Y方向、X方向の値をそれぞれ確認し、「確定」ボタンを押します。

4-6 鉄筋

【側壁、隔壁】

則壁、隔壁	奮配筋デー						×
側壁水平	方向一	則壁鉛直方	向 隔壁鉛直·水平	2方向 側壁拘束筋			
							[
■側聲	■側壁水平方向						
標準	準ビッチ()	mm) 200					
		侄 (mm)	かぶり(一般部) (mm)	かぶり(維手部) (mm)	鉄筋量 (cm²/m)		
	外側	D29	150	250	32.120		
1	内側	D29	150	250	32.120		
■シア	' コネクタ	補錘鉄筋					
权	繁雄ビッチ	(mm)	200				
	径 (m	im)	D32				
ŝ	実筋量(の	:m²/m)	39.710				
						3	
					🗸 確定	🔰 🗡 取消	? ^#7(H)

「側壁水平方向タブ」を下記に従って値を入力します。

シアコネクタ補強鉄筋

<標準ピッチ(mm):200> <経(mm):D32> <鉄筋量(c㎡/m):39.710>

野水平方向 ■側壁鉛直2	侧壁鉛直 方向 方向	隔壁鉛直+7	k平方向 倒壁	拘束筋		
山 7下1則試大則	0 (mm)	かぶり (mm)	本数 (X軸平行)	本数 (Y軸平行)	鉄筋量 (cm²) 〈X軸平行〉	鉄筋量 (cm²) 〈Y軸平行〉
0	D25	150	36	26	182.412	131.742
0	D25	250	49		248.283	
	, (雅m)	ታካሪኛሁ] (mm)	本数 (X軸平行)	本数 (Y軸平行)	鉄筋量_(cm²) (X輔平行)	鉄筋量 (cm²) 〈Y軸平行〉
0	D25	150	38	18	192.546	91.206
0	D25	250	36		182.412	
					※本数,鉄筋量。	ともに、片側あたりです

口外側鉄筋

case	径 (mm)	かぶり (mm)	本数 (X軸平行)	本数 (Y軸平行)	鉄筋量 (cể) (X軸平行)	鉄筋量 (c㎡) (Y軸平行)
1	D25	150	36	26	182.412	131.742
2	D25	250	49		248.283	

口内側鉄筋

case	径 (mm)	かぶり (mm)	本数 (X軸平行)	本数 (Y軸平行)	鉄筋量 (c㎡) (X軸平行)	鉄筋量 (cể) (Y軸平行)
1	D25	150	38	18	192.546	91.206
2	D25	250	36		182.412	

____ 側壁鉛直方向

「側壁鉛直方向」タブに切り替え、拡大図に従って値を入力します。

側壁.	隔壁配筋デー	9						×
側聲	\$ 水平方向	則壁鉛直方向	隔壁鉛直·オ	(平方向 側壁	拘束筋			- 1
_	阿联约古士	5						
	標準ビッチ(mm) 200						
		径	かぶり	本数	本数	鉄筋量 (cm²)	鉄筋量 (cm²)	
		(mm)	(mm)	(X軸竿行)	(Y軸平行)	(X軸平行)	(竹軸平行)	
	0	D29	100		18		115.632	
	0	D29	200					
						· ※ 本数, 鉄筋量。	もに、片側あたりです	
	隔壁水平方	句						
	標準ビッチ(mm) 200						
	径	かぶり(一般	2部) かぶや	」(維手部)	鉄筋量			
	(mm)	(mm)		(mm)	(cm²/m)			
	D29	100		200	32.120			
				_	[1	_
						確定 🗡 耶	消 ? ヘルブ、	Ð

隔壁鉛直・水平方向

 「隔壁鉛直・水平方向」タブに切り替え、下記に従って値を入 力します。

隔壁鉛直方向

<標準ピッチ(mm):200> ①<径:D29><かぶり:100><本数(Y軸平行):18> ②<径:D29><かぶり:200>

隔壁水平方向

<標準ピッチ(mm):200> <径:D29><かぶり(一般部):100><かぶり(継手部):200> <鉄筋量(m²/m):32.120>

側壁,	隔壁配筋データ				
側壁	\$水平方向 側壁鉛直方向	同 隔壁鉛直・水平方向	自 側壁拘束筋		
	l側壁拘束筋				
	径 (mm)	D22			
	水平方向間隔(cm)	40.0			
	鉛直方向間隔 (cm)	40.0			
	有効長 (cm)	180.0			
	Ah (cm²)	3.871			
				_	
			🖌 確定 📃 🗡 取消 ? ヘルブヒ	Ð	

__ 側壁拘束筋タブに切り替え、下表に従って値を入力します。 最後に「確定」 ボタンを押します。

径 (mm)	D22
水平方向間隔(cm)	40.0
鉛直方向間隔(cm)	40.0
有効長 (cm)	180.0
Ah (cm²)	3.871

【頂版】

頂版配筋データ						×
橋脚躯体重量(kN) 8296.0 配筋 せん断補強鉄筋	_					1
標準ピッチ(mm) 200						
Y方向 X方向						
■上側鉄筋						—
	鉄筋配置段数 C 0.5段 C 2.0段	段	径 (mm)	力いごひ」 (mm)	As (cm²/m)	
	• 1.0£ € ○ 2.5£ € €	1	D29	150	32.120	
	C 1.549 C 3.049					
■下側結筋						_
- 1 1219-540	鉄筋配置段数		437	A. 200.1		
	○ 0.549 ○ 2.049	段	1主 (mm)	(mm)	As (cm²/m)	
	○ 1.04월 ○ 2.54월	1	D35	150	47.830	
	C 1.5£2 C 3.0£2					
			✔ 確定	🗙 取	淌 ?	∿⊮7"(<u>H</u>)

下記に従ってY方向、X方向タブの値をそれぞれ入力します。

<橋脚躯体重量(kN):8296.0> <mark>配筋タブ</mark> <標準ピッチ(mm):200>

Y方向タブ

上<mark>側鉄筋</mark> <鉄筋配置段数:1.0段> <径:D29><かぶり:150><As(cm²/m):32.120>

下側鉄筋

<鉄筋配置段数:1.0段> <径:D35><かぶり:150><As(cm²/m):47.830>

X方向タブ

上側鉄筋

<鉄筋配置段数:1.0段> <径:D29><かぶり:150><As(cm³/m):32.120>

下側鉄筋

<鉄筋配置段数:1.0段> <径:D35><かぶり:150><As(cm³/m):47.830>

見 服火目に 用力 データ		
橋脚躯(体重量(kN) 8296.0		
記録したも断編編件第一		
BCRD Crocking Group		
■せん断補強鉄筋		
侄 (mm)	D22	
×方向間隔 (cm)	30.0	
∀方向間隔 (cm)	30.0	
記節の考え方 © 1頁版中心を格子点とす	る C頂	50中心支格子点の中間とする 記跡不可領域 0.000 (m)

せん断補強鉄筋タブ

「せん断補強鉄筋タブ」に切り替え、 <径(mm):D22>と入力します。 <頂版せん断補強鉄筋のカウント方法:方法1>を選択し、最 後に「確定」ボタンを押します。

4-7 レベル2地震時基本条件

作用力を指定してレベ	ル2地震時照査を行う	C する	(⊂ しない		
計算方向	▼ Y方向	▼ X方向			
計算条件	 液状化無視/考/ 		意 国際調明の	応答塑性率照査を行う	
液状化	▶ 無視	□ 考慮	安全係数α	1.0	
地震動タイプ	▼ タイプ I	⊏ ≶∕∄≖			
	<u>غ</u> ر:	ĴI	হৈ হ	JI	
	Y方向	X方向	Y方向	X方向	
C2z•khco	1.0000	0.9500	0.0100	0.0100	
khp	0.62	2.18	0.01	0.01	
khg	0.00	0.00	0.00	0.00	
離しの終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がない	大きな余裕がある	
Wu (kN)	11800.00	7120.00	11800.00	7120.00	
	Y方向	X方向	Rd (kN)	10700.00	
hu (m)	13.000	15.500	Wp (kN)	8296.00	
			hn (m)	6.930	

地震動タイプの<タイプII>のチェックを外します。 下表に従って値を入力します。

	タイ	プI	タイプⅡ			
	Y方向	X方向	Y方向	X方向		
C2z•khco	1.0000	0.9500	0.0100	0.0100		
khp	0.62	2.18	0.01	0.01		
khg	0.00	0.00	0.00	0.00		
橋脚の終局水平耐力	大きな余裕がない	大きな余裕がある	大きな余裕がない	大きな余裕がある		
Wu(kN)	11800.00	7120.00	11800.00	7120.00		

	Y方向	X方向	Rd(kN)	10700.00
hu(m)	13.000	15.500	Wp(kN)	8296.00
			hp(m)	6.930

UNI	2地震時基本条件					×	基本条件(地中連続壁基礎)
基	「条件(共通) [基本]	\$件(地中連続壁表	₩ <u>2]</u> M – φ 8†3	[条件]			───「基本条件(地中連続壁基礎)」 タブに切り替えます。
_					1	-	
		Y方向	X方向	鉛直力算出用水位(m)	6.000		
	計算開始震度	0.00	0.00	上載土厚(m)	0.000		
	震度增分	0.01	0.01	Up (kN)	1387.27		
	Hd (kN)	0.00	0.00	Ws (kN)	0.00		
Г	Md (kN•m)	0.00	0.00	Vo (kN)	22891.25		
_				WF' (kN)	5282.52		「水位高連動」ボタン、「作用力連動」ボタンを押します。
				水位高速動	作用力計算		
				※水位は標高,上載土厚	は頂版天端からの厚さ		
					gerta Ministe	0.0000	
<u> </u>						(107B)	

ベル2地震時基本条件						×			
基本条件(共通) 基本条件(地中連续壁基础) [M									
		8+3	萑値	使	用値				
		橋軸方向	橋軸直角方向	橋軸方向 橋軸直角方向					
終局モーメント	Mu	299888	703852	299887	703860				
断面の降伏モーメント	My	251064	506756	251068	506741				
ひび割れモーメント	Mc	193945	871981	193945	871881				
終局時の曲率	¢u	0.00996898	0.00363698	0.00996902	0.00363693				
断面の降伏曲率	¢γ	0.00044133	0.00016071	0.00044133	0.00016071				
ひび寝れ時の曲率	¢с	0.00002964	0.00001267	0.00002964	0.00001267				
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $									
				✔ 確定	<mark>★</mark> 取消 4	? ~117(H)			

M-Φタブに切り替え、下表に従って使用値を入力します。

使用作	值
橋軸方向	橋軸直角方向
299887	703860
251068	506741
193945	371331
0.00996902	0.00363693
0.000441133	0.00016071
0.00002964	0.00001267

UI2地震時基本条件	×
基本条件(共通) 基本条件(地中連続壁基礎) M- φ [計算条件]	計算条件タブに切り替えます。
部材の非線形の考慮方法	
○ 最終震度で判断 (* 各震度ごとに判断	
基礎に主たる塑性化を考慮する場合の設計	
基礎に主たる塑性化を考慮するかく基礎が陥伏に通したとき、応答塑性率の照査を行うか否かりを指定します。 繊維の終星水平和力に大きな全談がある場合、またしば遊ば化の多様を考慮すると考慮用されます。	/ /
「「 播助」またる数体化が生いるとき、基礎にまたる数体化が多いなども認定することを出たれなり。	~ 「「「「「「」」」、「「」」、「」」、「」」、「」、「」、「」、「」、「」、「」
主たる塑性化が生じる部材は、次のように判断します。	慮しない>のチェックを外し、確定ボタンを押します。
khyF≧khp ・・・ 橋脚基的に主たる塑性化が生じる khyE< khn ・・・ 基礎〜神線系に主たる塑性化が生じる	
● 光展線のCEC 電磁 CEC SIE HE 2 5 ROOK () 免費構造とみなす方向	
終展エージル・1~ 0000000000 / 1200 / 1720 / 1720	
● 「「「「」」」」」」」」」」」」」」」」」」」」」	

4-8 基礎ばね

基礎	elt ta			×
븊	本条件 地盤ばね			
		橋軸方向	橋軸直角方向	
	単位水平力 (kN)	100.00	100.00	
	単位モーメント (kN・m)	1000.00	1000.00	
		▲ 確定	🗶 取消 🛛 🥐 🗤	"(Н)

基本条件タブを下表に従って値を入力します。

	橋軸方向	橋軸直角方向
単位水平力(kN)	100.00	100.00
単位モーメント(kN・m)	1000.00	1000.00

kv, ks	kH kSHD k	SVB KSVD						
底面鉛	這方向地盤反力的	系数 kv	単位: kN/m³					
No.	計算値	使用値						
kv	90340	90340						
底面水	平方向地盤反力係	费 ks	単位: kN/m³					
No.	計算値	使用値						
ks	27102	27102						
ks 27102 27102								
C (Dec) - L	A MARKEN CONTRACTOR	- Clar 1.10mg1 首1.523						

- 地盤ばねタブに切り替え、各値を確認します。

既に計算を実行している場合、再計算を行うか確認のメッセージが表示されます。再計算を行う場合は[計算実行]を、行わない場合は[取消]を押してください。なお、データの修正を行った場合は、必ず実行してください。

最後に「確定」 ボタンを押します。

4-9 計算・結果確認

【安定計算】

計算ピッチを<0.2>と入力し、「計算実行」 ボタンを押します。

🖥 安2	2計算 結果	電認								-		×
一覧表	変位·断面7	5図										
Y方向	×方向											
No	荷重名称	δ (mn)	q max (kN/n²)	qmin (kN/m²)	Rs (kN)	δa (nn)	(kN/n²)	Ha (kN)				
1	常時	0.0	596.6	596.6	0.0	50.0	1111.0	14561.0				
2	地震時	11.9	549.3	317.4	4262.5	50.0	1584.0	14243.5				
単位	系変換	フォント設定	定	ED.69					開じる(Ø	? NI	7°(H)
_												

一覧表

入力の作用力において、指定した荷重ケースについて表示しま す。

変位·断面力図

入力の作用力において、指定した荷重ケースの変位図、前面 地盤反力度分布図、せん断力図、曲げモーメント図を描画しま す。各図のY軸の描画範囲は、頂版天端を0(m)とし、そこから 基礎長分の深度を表示しています。

レベル2地震時

計算ピッチを<0.2>と入力し、「計算実行」 ボタンを押します。

降伏判定画面	伏判定画面 ×									
計算条件 ④ 液状化1	計算条件									
-隆伏判定─- -しべ11/2世営	▲伏判定 - レベル2地雷時計算結果に対して									
降伏判定	: Y方向	・ 降伏せず	○ 降伏(た	降伏水平	震度 khyF: Y	(方向 0.10			
	X方向 ・ 隆伏せず (降伏した X方向 0.10 目前算実行									
Contraction I access	< 1									
¥7510 X7	50						1			
日年年日	Ø									
水平	基礎		上部構造	前面	底面	_ 最大 _				
震度	δ (nm)	θ(mrad)	δ (nn)	型15半	浮上平 (%)	モーメ ント (kN・m)				
0.000	0.0	0.0000000	0.0	0.00	0.00	0.0				
0.010	0.3	0.0201371	0.6	0.00	0.00	3599.0				
0.020	0.6	0.0402761	1.1	0.00	0.00	7197.8				
0.030	0.9	0.0604185	1.7	0.00	0.00	10796.4				
0.040	1.2	0.0805657	2.3	0.00	0.00	14394.7				
0.050	1.5	0.1007179	2.8	0.00	0.00	17992.5				
0.060	1.8	0.1208889	3.4	0.00	0.00	21589.5				
0.070	2.1	0.1415043	4.0	0.00	0.00	25174.4				
0.080	2.5	0.1625912	4.6	0.00	0.00	28736.5				
0.090	2.8	0.1840760	5.2	0.00	0.00	32277.3				
0.100	3.1	0.2058770	5.8	0.00	0.00	35801.5				
0.110	3.5	0.2279473	6.4	0.00	0.00	39311.8				
0.120	3.8	0.2502413	7.1	0.00	0.00	42809.9				
0.130	4.2	0.2727198	7.7	0.00	0.00	46297.7				
0.140	4.6	0.2953564	8.4	0.00	0.00	49776.5	-			
			~ ·		0.00					
							田 全計算実行 ●			

学校計算(小人地送着等) 結果建築 一 〇 米 甘菜科 ・ 遠秋仁墨娟 ① 淡析作考慮 ○ 浅新作考慮 ・ 没有ブゴ ○ タイブゴ ○ タイブゴ ・ 兄素 | 其位 折面加回 | 水平表愛 - 実位 | M - ø | * 7方向 | 次方向 | ●</

降伏判定

降伏判定の内容を確認し、「終了」ボタンを押します

一覧表

基礎の設計に用いる設計水平震度に相当する荷重を作用させた場合の基礎の耐力および変位の照査結果を表示します。

変位·断面力図

変位図、前面地盤反力度分布図、せん断力図、曲げモーメント 図を描画します。各図のY軸の描画範囲は、頂版天端を0(m)と し、そこから基礎長分の深度を表示しています。

水平震度~変位

降伏時のデータを使用し、表示します。

M-Φ:軸力

N(kN)、横拘束筋の有効長d (cm)等の項目について、表示します。詳しくはヘルプを参考ください。

【部材計算】

側壁水平方向

曲げ照査

ー般部、継手部および外側引張、内側引張ごとに、曲げに対して(応力度/許容応力度)が最大となる結果を、全荷重ケース・全照査断面から抽出、表示します。

せん断照査

ー般部、継手部ごとに、せん断に対して(応力度/許容応力 度)が最大となる結果を、全荷重ケース・全照査断面から抽出、 表示します。

FRAME結果

検討ケースごとに、FRAME解析結果の描画を行います。描 画したい検討ケースを選択し、画面上部のボタンから、荷重 図・変位図・モーメント図・せん断力図を選択してください。ま た、詳細な数値の確認を行う場合、画面右上の「詳細表示」ボ タンを押し、FRAME解析結果表示画面を開いてください。

側壁鉛直方向

E	🗃 側離始直方向 結果確認 — 🗆 🗙								
許	許容応力度法 保耐法								
E	曲げ照査 せん断照査	1							
			単位	Y 方向	X 方向				
	荷重ケース			2	1				- 11
	曲げモーメント	M	kN m	111356	80181				- 11
	軸力	N	kN	27747	27740				- 11
	応力度	σc	N/nm2	2.74	0.95				- 11
		бs	N/nm2	97.5	0.2				- 11
	許容応力度	σoa	N/nm2	12.00	12.00				- 11
		σsa	N/nm2	300.0	300.0				- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
									- 11
Ľ.									
ġ	単位系変換 732/設定 印刷 - 開じる(の) ? 14/2*(円)								

曲げ、せん断に対して、(応力度/許容応力度)が最大となる結 果を抽出して表示します。

頂版

🔚 I	頁版 結果確認						-		×
許容	応力度法 保耐	法]剛	体判定						
施	施丁時一字成後								
đ	tu-fillation and the fill								
								-111	
	項 目 単位 Y方向 X方向								
	曲げモーメン	ノト	kN 'm	645.5	0.0				
	部材幅		cm	100.0	100.0				
	部材高		om	400.0	400.0				
	使用鉄筋量		cm2	47.830	47.830				
	必要鉄筋量		cm2	7.16	0.00				
	応力度	σc	N/mm2	0.53	0.00				
		σs	N/mm2	37.2	0.0				
	許容応力度	бoa	N/mm2	12.	00				
		бsa	N/mm2	240	.0				
1									
							-		
単位	立系変換 :	フォント設計	Ē	ED剧 👻		<u>開じる(C)</u>		? 1117	, Ш

頂版の許容応力度法による解析結果です。施工時と完成後の 2つの荷重状態について検討しています。

施工時

橋脚躯体重量および頂版自重が等分布に作用しているものと 考え、頂版支持部の中心線位置で支持された周辺単純支持の 矩形版として照査を行います。

完成後

橋脚下端外縁を固定端とする片持ち梁として照査を行いま す。

側壁と頂版との接合部

🚰 側壁と頂版との接合部 結果確認	-		×
Ls mm 781 d mm 1350 必要定看長 mm 2131			
単位系変換 73分設定 印刷 - 開じる(2	0	? NK	»° (<u>Н</u>)

側壁と頂版との結合部について、側壁鉛直鉄筋の頂版への必 要定着長を表示します。

【基礎ばね計算】

28 基礎はね 結果確認 - □ X								
đ	有周期算定							
Г	項目	単位	Y 方向	X 方向				-
	Ho	kN	100.00	100.00				
	Mo	kN 'm	1000.00	1000.00				
	δон	m	4.2310E-005	2.7924E-005				
	<i>Ө</i> он	rad	2.7839E-006	1.5403E-006				
	δом	m	2.7839E-005	1.5403E-005				
	<i>Ө</i> ом	rad	2.8228E-006	1.1720E-006				
	Ass	kN/m	6.7322E+006	1.3021E+007				
	Asr	kN/rad	-6.6395E+007	-1.7113E+008				
	Ars	kN:m/m	-6.6395E+007	-1.7113E+008				
	Arr	kN·m/rad	1.0091E+009	3.1022E+009				
単	, 単位系変換 74%設定 ED刷 ・ 開ごる(©) ? へルフ*(世)							

基礎ばねの計算を行います。

基礎ばねの計算実行時、単位水平力または単位モーメントが 小さすぎるときに、「計算が正しく行なわれませんでした。」と メッセージが表示されます。その場合はメッセージの指示に 従って、単位荷重を入力し直して再計算してください。

4-10 基準値

「1-15 基準値」と同様です。

5 直接基礎

サンプルデータ「Stability_1.F1F」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

5-1 設計条件

†条件				× 下記に従ってチェックを入れます。
問項目 形状 土質				
設計対象				
☞ 新設・既設	○ 補強(フー	チング補強)		
検討項目				
☞ 水平地盤(道路橋示方	「書) 〇 水平地盤(設計要領) (○ 斜面上の基礎(設計要領)	
偏心方向				
• 1方向	○ 2方向	Г	滑動照査にも適用する	
基礎底面の形状				
 ● 長方形 (「帯状	○円形	○ 小判形	
設計要領				
	C H18年			
支持力係数の寸法効果				支持力係数の寸法効果
○ 考慮する	○ 考慮しなし	n (Sc=Sq=Sr	r = 1.0)	< 遠慮したい(Sc=Sg=Sy=1.0)
地震時の地盤反力度の照	5			
○ する	⊙ しねい			北西はの北船に上席の昭本
※支持層が砂れき,砂,米 定されていません。支持	は性土地盤の場合、地 専層が砂れき,砂,粘料	震時における最 生土地盤の場合	大地盤反力度の上限値は規 『しない』を指定してください。	地震時の地盤反力度の照査 くしない>
フーチングの照査				
許容応力度法照査	○ する	⊙ しない		
レベル2地震時照査	で する	C しない		<許容応力度照査:しない>
			✓ 確定 ¥ 取消	<レベル2地震時照査:する> ? ヘルブШ

5-2 底版形状

下表に従って値を入力ます。

「適用」ボタンを押すと左側の図面に反映されます。 最後に 「確定」 ボタンを押します。

-	記号	単位:(m)
底版上面寸法	L1	10.000
底版天端偏心量	еу	0.000
底版下面寸法	LY	10.000
底版上面寸法	B1	10.000
底版天端偏心量	ex	0.000
底版下面寸法	LX	10.000
上載土(レベル1用)	H1	0.000
底版ハンチ部の高さ	H2	0.000
底版下端部の高さ	H3	3.000

脚柱形状寸法

<柱本数:1>と入力し、 <矩形>を選択します。 下表に従って入力してください。

	柱寸	法(m)	柱位置(m)		
柱	а	b	х	у	
1	8.000	2.500 0.000			
2				0.000	
3					

5-3 作用力

_							
ase	参照番号	荷重ケース名	荷重略称	許容支持力	割增係数	^	
1	1	26 9	常時	常時	1.000	-	
2							
3							
4							
5							
6							
7							
8							
9							
10							
	,					÷	
Г	1	常時	常時	常時	1.000	^	
	2	常時+温度	常·温	常時	1.150		
	3	常時+風荷重	常·風	地震時	1.250		
	Ł	常時+温度+風荷重	常·温·風	地震時	1.350		
	5	常時+制動荷重	常·制	常時	1.250		
	6	常時+衝突荷重	常·衝	常時	1.500		
	7	地震時	地震時	地震時	1.500		
- E	8	死荷重時	死荷重時	常時	1.000		
- E	9	常時(注)	2634(注)	2630	1.000		

NBD X Sesare (nge/>-2.02802 (1987) (ng/) (x/) (x/) Y750 (ng/) (x/) (x/) 1 NH (x/) (x/) 1 NH (x/) (x/) 1 NH (x/) (x/) 2 (x/) (x/) (x/) 3 (x/) (x/) (x/) 4 (x/) (x/) (x/) 5 (x/) (x/) (x/) 6 (x/) (x/) (x/) 10 (x/) (x/) (x/)

5-4 レベル2地震時基本条件

レベル2地震時基本条件 ×								
基本条件(共通) 基本条件(基本条件(共通)基本条件(直接基礎)							
計算条件								
計算方向 地震動タイプ 水位 「	「Y方向 マ× 「タイプⅠ マタ 「浮力無視 マ 浮	方向 イブⅡ (力考慮		底版上の (死荷重 ⁸	任意荷重 特の鉛直荷	□ 載荷する 1重)		
慣性力の向き Y方向 X方向	● 正方向 ↑ ● 正方向 →	● 負方● 負方	后↓ 行 ←					
Y方向 X方向								
	正方	句↑			負方向	ā↓		
	タイプI	4	マイプロ	タイプ	I	タイプⅡ		
Cz*khco	1.0000	1.0000		1.0000		1.0000		
khG	0.75	0.75		0.75		0.75		
Wu (kN)	4740.00	4740.00		4740.00		4740.00		
hu (m)	12.200							
				1 With		🗙 取消 📔 🥐 ヘルブ()	Ы	
						···		
Y方向	Y方向 正方向↑							
	タイプト		タイ	プⅡ				
C2z•khco	1.0000		1.00	000				
khG 0.75			0.7	75				

4740.00

12.200

4740.00

Wu(kN)

hu(m)

荷重ケースの設定タブに切り替え、下記に従ってY方向の値を 入力します。

(X方向は今回入力しません。)

Y方向

<参照番号:1> <荷重ケース名:常時> <荷重略称:常時> <許容支持力:常時> <割増係数:1.000>

※柱下端の作用力を入力する場合 (Q5-2-1参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q5-2-1

作用力タブに切り替え、下記に従って値を入力します。 最後に「確定」 ボタンを押します。

Y方向

<水位(m):1.000> <最大地盤反力度(kN/㎡):400.00> <γ1(kN/㎡):10.000> <γ2(kN/㎡):15.200> <V(kN):980.70> <H(kN):100.00> <M(kN・m):980.70>

下記に従ってチェックを入れ、Y方向、X方向タブの値をそれぞれ入力します。

計算条件

<計算方向:Y方向> <地震動タイプ:タイプⅡ> <水位:浮力考慮> <慣性力の向きY方向:正向性↑> <慣性力の向きX方向:正向性→>

X方向	正方向→				
	タイプI	タイプⅡ			
C2z•khco	1.0000	1.0000			
khG	1.50	1.50			
Wu(kN)	6330.00	6330.00			
hu(m)	14.700				

٧Ň	ル2地震時基本条	件						×
첖	本条件(共通)	基本条	件(直接基礎					1
	Rd (kN) 71		710	0.00			浮力無視	浮力考慮
[Wp (kN) 88		339	3.00 鉛直力)]算出用水位高 (m)	1.000	1.000
	hp (m)		8.03	8.030		WF' (kN)	6350.00	6350.00
ľ	上載土厚(r	n)	2.00	0		√o (kN)	16843.00	16843.00
ľ	WF (kN)		785	0.00	- 上載-	+の増生力を考慮す;		
ľ	hF(m)		1.50	0	*WF':0	EUVIGE/12/58/251 産販およびと載土番組	副で浮力を考慮した値	1作用刀計算
			·9-	1冊2月		131	走街	1
Г					でたたの	/1//	· 7/版	
ŀ	Md (kNsm)		0.00		0.00	0.00	0.00	
L	114 (111 11)		0.00		0.00	0.00	0.00	
-								
						[「確定」	🗙 取消 🧳 🤨 🗤 🤊 🕻 田)

基本条件(直接基礎)

ー「基本条件(直接基礎)」タブに切り替え、下表に従って値を 入力し、「確定」ボタンを押します。

-	浮力無視	浮力考慮
鉛直力算出用水位高(m)	1.000	1.000
WF′(kN)	6350.00	6350.00
Vo(kN)	16843.00	16843.00

Rd(kN)	7100.00			
Wp(kN)	3393.00			
hp(m)	8.030			
上載土厚(m)	2.000			
WF(kN)	7350.00			
hF(m)	1.500			

5-5 底版設計

- 底版コングリートの設計基準強度 σ ck			使用部材		
○18 ○21 ○24 ○27 ○30 ○38 ○その他				● 一般音時村	
版の鉄筋材質					C 水中部材
主鉄筋 ○ SD295 @ SD345 ○ SD390	C SD490	C SR235	○ その他		
叫引張鉄筋 ○ SD295 ④ SD345 ○ SD390	C SD490	C SR235	○ その他		
レクリートの設計基準確度	σck	N/mm ²	30.00		
〃 許容曲げ圧縮応力度	σca	N/mm ²			
〃 許容せん断応力度	τal	N/mm ²			
"許容せん断応力度(斜引張鉄筋と共同)	τa2	N/mm ²			
〃 平均せん断応力度	το	N/mm ²			
〃 ヤング係数	Ec	N/mm ²		(×104)	
三鉄筋の隆伏点	σsy	N/mm ²	345.00		
〃 許容引張応力度	σsa	N/mm ²			
" 地震時の許容引張応力度の基本値	σsa	N/mm ²			
将「張鉄筋の降伏点	σsy	N/mm ²	345.00		
〃 許容引張応力度	σsa	N/mm ²			
# 按照时小时交引建度力度小基大值	σsa	N/mm ²			

____ <mark>底版コンクリートの設計基準強度</mark>を<30>にチェックを入れま す。
医板設計								
材料特性	直 配筋 🕂	計算条件						
Y方向						II / UPABBece ***		
土鉄用	<i>*</i>	かぶり (mm)	径	ピッチ (mm)	^	でんめが開始また用め	D22	
	1段目	200	D25	150			6.000	
上傳	2段目				~	間高 (cm)	15.00	
T.0	1段目	210	D32	100	^			
L18	2段目				~			
大方向	小ピッチ (mn	n) 100		□ 中心に鉄	筋を	記書する		
王跃月	*	かぶり (mm)	径	ピッチ (mm)	^	せん町補殖鉄助 径	D35	
	1段目	100	D32	100			5.000	
19	2段目				~	間隔(cm)	10.00	
50	1段目	110	D32	150	^			
1.16	2段目				v			
(1)6	動かぶ可 (mr	n) 100		配筋バターン				
	小ビッチ (mn	n) 100		□ 中心に鉄	筋を	記置する		
							X 103 1	N17*(<u>H</u>)

配筋タブの「Y方向」「X方向」を下記に従って値を入力しま す。

Y方向

主鉄筋

上段1段目<かぶり:200><径:D25><ピッチ:150> 上段2段目は入力しません。 下段1段目<かぶり:210><径:D32><ピッチ:100> 下段2段目は入力しません。 せん断補強鉄筋 <径:D22>

<幅1(m)当たりの本数:6.000> <間隔(cm):15.00>

X方向 主鉄筋

上段1段目<かぶり:100><径:D32><ピッチ:100> 上段2段目は入力しません。 下段1段目<かぶり:110><径:D32><ピッチ:150> 下段2段目は入力しません。 せん断補強鉄筋

<径:D35> <幅1(m)当たりの本数:5.000> <間隔(cm):10.00>

計算条件タブに切り替えます。 レベル2地震時タブを選択し、底版釣合鉄筋量算出時の鉄筋 の取り扱いをく複鉄筋>にチェックを入れ、「確定」ボタンを

の取り扱いを<複鉄筋>にチェックを入れ、「確定」ボタンを 押します。

5-6 基礎ばね

基礎ばね			×
底面地盤			
地盤の種類		1	
平均N値		10.0	
γt	kN∕m³	19.0	
νD		0.50	
Vs	m/s	172.35	
ED	kN∕m²	110574	
∝・Eo (常時)	kN∕m²	-	
∝・Eo (地震時)	kN∕m²	-	
λ		0.333	
ku	LNI/m3	26560	[
ka	LNI/m3	20303	
KS	KIN/ mª	8047	1
□ 鉛直方向ばねを計算す	3 🗆	常時、レベル1地震時の想	基礎はねを計算する
地盤の種類:1:砂質土,	2滞指性土	🗸 確定 🔰	【取消 🤦 ヘルフ℃円)

固有周期算定用の地盤ばね定数を算出します。 今回は初期値から変更はありませんのでそのまま「確定」ボタ ンを押します。

※直接基礎の常時ばね値の算出機能

(Q5-1-1参照)

https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q5-1-1

5-7 計算・結果確認

【支持力計算】

安定計	算 結果	確認									
査結果	支持力的	闕									
方向											
	転倒	(n)	滑	動	地盤反力	度 (kN/m2)	я́	這支持力	(kN)		
case	е	е а	fs	fa	q max	93	v	Q,	Q。 (参考)		
1	1.000	1.667	5.884	1.500	15.69	400.00	980.70	40716.26	40716.26		

<mark>照査結果</mark> 照査結果を表示します。

支持力係数

支持力係数グラフを描画します。

【底版照査(レベル2)】

底版レベル2地震	時照査 結果	産認				-	×
計算条件(震動タイプ― C タイプ I (・	タイプⅡ	■ 水位 ○ 浮力無許	● 浮力考慮			
活表 \/方向)	×方向 抽出結	果]					
					 		 _
Y方向							
地震動タイプ	,水位	曲げ照査	せん断照査				
I	浮力無視						
I	浮力考慮						
Π	浮力無視						
П	浮力考慮	<u>OK</u>	<u>OK</u>				
地震動タイプ	۶ 水位	曲げ照査	せん断照査				
I	浮力無視						
I	浮力考慮						
Π	浮力無視						
Π	浮力考慮	<u>OK</u>					

曲げ照査、せん断照査の結果を表示します。

総括表

各検討ケースごとの判定結果を表示します。OK、OUTの詳細 は下記説明を参照してください。 OK、OUTをクリックすると、該当検討ケースの結果画面を開 きます。

Y方向/X方向 各照査方向ごとの耐力照査結果を表示します。

結果抽出 曲げ照査、せん断照査ごとに、全検討ケースから耐力に対して 最も厳しいケースを抽出し、表示します。

【基礎ばね計算】

1	基礎は	ね 結果確認	2				-		×
6	首日	前位	播軸方向	播軸直角方向	 				_
	A	kN/m	8.847000E+005	8.847000E+005					
	Asr	kN/rad	0.000000E+000	0.000000E+000					
	Ars	kN•m/m	0.000000E+000	0.000000E+000					
	Arr	kN•m/rad	2.214083E+007	2.214083E+007					
1									
						· · · · · · · · · · · · · · · · · · ·		-	
	回杀窦	四 _ 2	17/1802E	1189		2)をご開		Y NU7°	(II)

固有周期算出用の地盤ばね定数を算出します。

5-8 基準値

「1-15 基準値」と同様です。

6 液状化の判定

サンプルデータ「Liquid_1.F1F」を例題として作成します。 各入力項目の詳細については製品の【ヘルプ】をご覧ください。

- 液状化の判定を選択し、「確定」 ボタンを押します。

※完成時が切土の場合や盛土となる場合の入力方法 (Q6-2-3参照) https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q6-2-3

6-1 設計条件

下記に従ってチェックを入れます。

設計条件タブの

「<層ごとの土質定数の低減係数を算定する>にチェックを入れ、動的せん断強度比Rの取り扱い<平均値>にチェックを入れます。

設訂	+条件					
I	全日 (171)	で等しその他				<u>水位等</u> タブに切り替え、下記に従って値を入力し、「確定」 ボタ
				単位:m		ンを押します。
	検討位置	水際線からの距離	水位深さ	水底との高低差		<水際線からの距離:50 000>
	1	50.000	1.500	6.000		<水位深さ:1.500>
						<水底との高低差:6.000>
				The second second second second second second second second second second second second second second second se		
				雌定 🕺 取消	<u>7</u> ∧µ,⁊"(⊞)	

6-2 検討位置

	層種	層厚 (m)	γt1 (kN/m³)	γt2 (kN/m³)	γt2' (kN/m³)	Kp	一軸 (kN/m ²)	þ	Fc (%)	D50 (nm)	D10 (nn)	SW	l
1	1	1.000	19.000	19.800	10.000	2.000	0.00	10.0	35.0	0.08000	0.04000	1	
2	3	1.500	18.000	18.800	9.000	2.000	23.00	10.0	20.0	0.01000	0.00500	0	
3	1	5.000	17.000	17.800	8.000	2.000	0.00	10.0	45.0	0.03000	0.02000	1	
4	1	2.000	18.000	18.800	9.000	2.000	0.00	10.0	60.0	0.50000	0.03000	1	
5	1	2.500	19.000	19.800	10.000	2.000	0.00	10.0	80.0	0.80000	0.50000	1	
6	1	8.500	19.000	19.800	10.000	2.000	0.00	10.0	80.0	0.80000	0.50000	1	
7													
8]												I
9													ł
10													ł
11													ł
12	1												ł
地 3 1	表面の(完成時の 標準貫入	立置(入力:)地表面の 、試験時の	地層上面か 位置 地表面の位	らの距離)- AL:「 置 BL:「	0.000	(m) (m)	完成時が切 ④ 自動語 〇 直接指	土の場合 定 定 切	の σ vc 土の上朝日	Εσνα 📘	10.000	(kN/m	12
-													

下表に従って値を入力します。

―― 入力が完了したら右下の<N値測定ボタン>を押します。

検討位置1

	層種	層厚 (m)	γt1 (kN/mੈ)	γt2 (kN/mੈ)	γt2′ (kN/m³)	Кр	一軸 (kN/㎡)	lp	Fc (%)	D50 (mm)	D10 (mm)	SW
1	1	1.000	19.000	19.800	10.000	2.000	0.00	10.0	35.0	0.08000	0.04000	1
2	3	1.500	18.000	18.800	9.000	2.000	23.00	10.0	20.0	0.01000	0.00500	0
3	1	5.000	17.000	17.800	8.000	2.000	0.00	10.0	45.0	0.03000	0.02000	1
4	1	2.000	18.000	18.800	9.000	2.000	0.00	10.0	60.0	0.50000	0.03000	1
5	1	2.500	19.000	19.800	10.000	2.000	0.00	10.0	80.0	0.80000	0.50000	1
6	1	8.500	19.000	19.800	10.000	2.000	0.00	10.0	80.0	0.80000	0.50000	1

N 値測定)	á.							×
測定点() 規則 です です	の自動セット 冒ごとにビッチで 冒全体をビッチで	セットする Pセットする	オフセット 0.00 ビッチ 0.00	10	地層界を測定。	えとする		
N値測版	ŧچ.							
No	深さ (m)	N値	礒質土のNa	Þ	Fc (%)	D50 (mn)	D10 (mm)	^
1	1.000	2.0						
2	2.000	8.0						
3	3.000	2.0						
4	4.000	5.0						
5	5.000	10.0						
6	6.000	2.0						
7	7.000	1.0						
8	8.000	3.0						
9	9.000	4.0						
10	10.000	8.0						
11	11.000	7.0						
12	12.000	8.0						
18	13.000	9.0						~
※深さ	的は標準貫入試験	き時の地表面を(ことしたときの深度					
				ソート	· · · · · · · · · · · · · · · · · · ·	定 🗙 取	消 ? ヘルフ℃	Э

N值測定点

下表に従って値を入力し、「確定ボタン」を押します。

No	深さ (m)	N値
1	1.000	2.0
2	2.000	3.0
3	3.000	2.0
4	4.000	5.0
5	5.000	10.0
6	6.000	2.0
7	7.000	1.0
8	8.000	3.0
9	9.000	4.0
10	10.000	8.0
11	11.000	7.0
12	12.000	8.0
13	13.000	9.0
14	14.000	10.0
15	15.000	12.0
16	16.000	8.0
17	17.000	9.0
18	18.000	10.0

せんき	所 単性波速度					下表に	従って値を	λ
03	実測値を設定	● 平均	N値より内部計:	Ĩ.		Y方向		
No	層種	層厚 (m)	平均N値	^		No	属性	1
1	1	1.000	2.0					IJ
2	2	1.500	2.0			1	1	l
3	1	5.000	4.0					2
4	1	2.000	3.5			2	2	l
5	1	2.500	7.7				-	ł
6	1	8.500	11.6			3	1	l
7							-	ñ
8						4	1	l
9								ñ
10						5	1	
11					層種,層厚連動	0		Î
12					平均N値の質出	6	1	H

条件

て「確定」ボタンを2回押します。

No	属性	層厚 (m)	平均N値
1	1	1.000	2.0
2	2	1.500	2.0
3	1	5.000	4.0
4	1	2.000	3.5
5	1	2.500	7.7
6	1	8.500	11.6

6-3 計算・結果確認

計算実行を行うには、次の2方法があります。

①ツリービューの項目をダブルクリックする。未計算の場合、計算を実行してその結果を表示します。計算済みの場合、計算 結果を表しします。

②ツリービューの項目を右クリックすると[計算実行]メニューが表示され、[計算実行]を選択すると計算を実行してその結果 を表示します。

「計算・結果確認」ボタンをダブルクリック、もしくは右クリッ クして「計算実行」をクリックします。

検討位置1~10ボタ	2
------------	---

結果を確認したい位置のボタンを選択することにより、下記に 選択された検討位置の結果を表示します。

液状化の判定

レベル1地震動、レベル2地震動タイプ1・11の液状化判定結果 をN値測定点ごとに表示します。

判定が「―」の場合、「検討位置」 画面で『SW=0』(液状化 の判定を行わない)が指定されている、または、道示V8.2.2 (地表面から3m以内の粘性土で一軸圧縮強度が20kN/mのと き)に該当するときを示します。

土質定数の低減係数

土質定数の低減係数をN値測定点ごと及び指定により層ごと に表示します。

流動力

流動力結果を表示します。

×

液状化の判定、土質定数の低減係数、流動力の結果を図で表 示します。また、レベル1地震動、レベル2地震動タイプ1、11の 切り替えが行えます。

00000112	e T W	JE BX071	EWNER HERE	<1 mmans n 1							
地盤種り	別= Ⅱ	種									
2000 0000			-	-		Locula	地帯動	L	レベル3	2地震動	
深度 (n)	Ν値	Ιp	F C (N)	U 50 (mm)	D 10	0.001	10 10 20	タイ:	ブI	タイ:	プⅡ
()			(4)	(4111)	(uni)	FL	判定	FL	判定	FL	判定
1.000	2.0	-	-	-	-	-	-	-	-	-	-
2.000	3.0	-	-	-	-	-	-	-	-	-	-
3.000	2.0	10.0	45.0	0.03000	0.02000	0.930	0	0.310	0	0.252	0
4.000	5.0	10.0	45.0	0.03000	0.02000	1.200	×	0.400	0	0.388	0
5.000	10.0	10.0	45.0	0.03000	0.02000	1.821	×	0.607	0	0.781	0
6.000	2.0	10.0	45.0	0.03000	0.02000	0.737	0	0.246	0	0.194	0
7.000	1.0	10.0	45.0	0.03000	0.02000	0.577	0	0.192	0	0.138	0
8.000	3.0	10.0	60.0	0.50000	0.03000	0.887	0	0.296	0	0.258	0
9.000	4.0	10.0	60.0	0.50000	0.03000	0.965	0	0.322	0	0.293	0
10.000	8.0	10.0	80.0	0.80000	0.50000	2.478	×	0.826	0	1.062	Х
11.000	7.0	10.0	80.0	0.80000	0.50000	1.617	×	0.539	0	0.660	0
12.000	8.0	10.0	80.0	0.80000	0.50000	1.885	×	0.628	0	0.808	0
13.000	9.0	10.0	80.0	0.80000	0.50000	2.248	×	0.749	0	0.962	0
14.000	10.0	10.0	80.0	0.80000	0.50000	2.711	×	0.904	0	1.162	×
15.000	12.0	10.0	80.0	0.80000	0.50000	4.766	×	1.589	×	2.043	X
16.000	8.0	10.0	80.0	0.80000	0.50000	1.531	×	0.510	0	0.577	0
17.000	9.0	10.0	80.0	0.80000	0.50000	1.683	×	0.561	0	0.666	0
18.000	10.0	10.0	80.0	0.80000	0.50000	1.881	×	0.627	0	0.790	0
位系変換		カント設分	Ē	ED周	-				[開しる(<u>c)</u>

月

検討位置1

地盤種別=Ⅱ種

液状化の判定 | 土質定数の低減係数 | 流動力 | 図 |

7 計算書作成

全基礎共通です。サンプル画面は杭基礎のものです。

力項目の設定/選択 設計条件 「 データファイル名 「 タイトル 「 コメント 結果一覧出力の設定 結果詳細出力の設定 | 安定計算 (安定計算)
 (大学校)
 < 結果一覧の出力 ▶ 常時,暴風時,レベル1地震時 断面計算 ▼ レベル2地震時の照査 断面力図 杭伸断面力 全選択・解除 🛛 プレビュー 出力ケース
杭指定 結果詳細の出力 杭体応力度 上部出力ピッチ(m) 0.5
 上部出力ビッチ(m)
 05

 下部出力ビッチ(m)
 10
 設定
 就指指定

 出力行数
 52
 全

 </ ▼ 設計条件
▼ 安定計算 ☞ 断面計算 ☞ 基礎枕計算結果一覧表 ☞ 予備計算 ☑ 杭頭接合計算 ☞ 底版許容応力度法照査 ▶ レベル2地震時の照査 ☑ 基礎ばね計算 -レベル2地震時の照査--出力名称一 Lベル2地震時の無査
 Lガンド
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 Lガン
 □ ねじ継手 全選択・解除 🔍 ブレビュー 出力方向の順番 出力方向の順番 ○ Y→X方向 C X→Y方向 🎆 書式設定 🖌 確定 🗶 取消 🎅 へルフ(H) 上メニュー「計算書作成」をクリックします。

出力項目の選択、出力条件の設定、および印刷プレビュー画面 の表示を行います。 最後に「確定」ボタンを押します。

※プレビュー画面

8 図面作成

直接基礎

- 下記条件のとき、図面作成を行うことはできません。
- •支持力計算が未計算
- ・底版形状に段差がある場合
- ・底版形状が円形、小判形の場合

杭基礎

- 下記条件のとき、図面作成を行うことはできません。
- ・検討対象が杭基礎以外
- ・杭体応力度が未計算
- ・既設/新設杭,増し杭ともに、任意杭,マイクロパイル,回転杭
- ・杭体断面数>3
- ・斜杭あり
- ・地層傾斜あり(*)
- ・杭径・杭長変化あり(*)
- (*)場所打ち杭で「全杭,全断面一括計算」の場合は可。

よって、本操作ガイダンスにて作成可能な杭基礎を例とします。

8-1 基本条件

基本条件	ŧ		×
		新設・既設杭	増し杭
杭種	なし 場所打ち杭 鋼管ソイルセメント杭 PHC杭 PC杭 SC杭 SC杭+PHC杭 RC杭 H形鋼杭	000000000	«
結合プ	方法・配置方向	○ 方法A ⑥ 方法B	
作図 方向	縦書き1(側面左・縦断面右) 縦書き2(側面右・縦断面左) 横書き1(側面下・縦断面上) 横書き2(側面上・縦断面下)	0000	
杭形物	犬娄女	1	1
- 杭配證 ○ な ○ X朝 ○ Y朝	置図に作図する軸名称 し 加橋軸直角方向 加橋軸方向	林配置図の作図方 © 回転なし ○ 反時計回り90 ○ 時計回り90月 - 柱状図作図 © なし	法)度回転 [回転 C あり
	【詳細設定】自	動設定 🛛 🗙 取	肖 _ ? ヘルプ(且)

作図方向

作図方向(縦書き・横書き)と側面・縦断面の作図位置(左・右 あるいは上・下)を指定します。

杭配置図に作図する軸名称

杭配置図に作図する軸名称を(作図なし、X方向名称、Y方向 名称)から指定します。

杭配置図の作図方法

杭配置図の作図方向を指定します。

柱状図作図

「柱状図」を作図するかしないかを指定します。

「詳細設定」ボタン

「断面位置」、「かぶり」や「鉄筋」に関する情報などを確認・ 修正する場合にクリックします。「形状」・「かぶり」・「鉄筋」 のボタン有効となりますので、各ボタンクリック後に表示され る各項目画面を入力・修正してください。すべてのボタンの左 側が「緑」に変わった(入力済みとなった)段階で図面生成が 行えます。

「自動設定」ボタン

設計計算が終了した直後の条件で図面生成を行う場合にク リックします。本ボタンがクリックされると鉄筋情報生成・図 面生成・図面確認の起動までを自動で行います。

8-2 形状

左メニュー「形状」をクリックし、右側「杭情報」をクリックし ます。

杭情報

作図する杭の配置や形状寸法などに関する情報の表示および 作図に必要な情報の指定を行います。 各寸法を指定してください。

※グレー表示の情報については、「入力モード」にて入力してく ださい。

8-3 かぶり

左メニュー「かぶり」をクリックし、右側「かぶり」 をクリックし ます。

主鉄筋かぶり

主鉄筋かぶりおよび底面鉄筋かぶりを「外形から鉄筋中心ま での距離(単位:mm)」で指定します。ガイド図を参考に入力 してください。

なお、「新設・既設杭」と「増し杭」の内容は同じですが、「場 所打ち杭」と「場所打ち杭以外」で設定内容が異なりますので ご注意ください。

※新規で図面作成モードに入った場合と、「入力」→「杭基礎」 →「断面計算」→「場所打ち杭配筋」画面でかぶりが変更され た場合、「入力」→「杭基礎」→「断面計算」→「場所打ち杭配 筋」画面のかぶりを自動で設定します。

8-4 鉄筋

左メニュー「鉄筋」をクリックし、右側「主鉄筋」をクリックし ます。

1段主鉄筋									×
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		鉄筋調 「 」 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 「 「 「 」 「 」 「 「 」 「 」 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 「 」 」	2号先頭 1 経 形 で 丁 丁 て 25 25	文字 F 下 本数 24 12	2段 フッジ のな 曲 出 11458.0 25100.0	□ 3 gg 満長 TL 7 1 げ位置 L 1 げ位置 L 1 げ生径 F 縦ぎ手 長さ 790.0	a) 直角 ((nm) (nm) 3(nm) 下端位置 12246.0	1131.3 2 半円 1131.3 10.0 鉄筋長 13377.3 13644.0	
• 28/mar.五 〇 交五配畫	参考寸法(1段) 配筋位置の円周掛 第1層の主鉄筋間	冕 282 降風 117	7.4	鉄筋祥 □ 最 プ 最 プ	証 大筋長指定 て長(nn) 、長(nn)	12000 3500	□ 機械 □ 定尺 	継手 (500nmヒ°っ 補正 ↑	¥)
				iund	🖌 確定] _;	🗙 取消	? N	7°(<u>H</u>)

1段主鉄筋

主鉄筋の情報を指定します。 なお、「新設・既設杭」と「増し杭」の内容は同じですが、「場 所打ち杭」と「場所打ち杭以外」で設定内容が異なりますので ご注意ください。

【帯筋筋】

帯鉄筋

帯鉄筋情報を設定します。

なお、「新設・既設杭」と「増し杭」の内容は同じですが、「場 所打ち杭」と「場所打ち杭以外」で設定内容が異なりますので ご注意ください。

また、「場所打ち杭」の場合、組立筋は、「その他の鉄筋」で入 力してください。 【その他】

その他の鉄筋

主鉄筋・帯鉄筋以外の鉄筋情報を設定します。 なお、「新設・既設杭」と「増し杭」の内容は同じですが、「場 所打ち杭」と「鋼管杭・鋼管ソイルセメント杭」で設定内容が 異なりますのでご注意ください(「PHC杭・PC杭・SC杭・ SC杭+PHC杭・RC杭」については本画面は表示されませ ん)。

8-5 図面生成・確認、鉄筋生成

「図面生成」をクリックすると鉄筋情報生成・図面生成が実行 され図面確認画面が起動します。

「図面確認機能」の主な機能は、以下の通りです。

表示機能

編集機能 図形・寸法線・引出線の移動が行えます。

図面の全体表示や拡大表示が行えます。

出力機能

SXFファイル・DWGファイル・DXFファイル・JWWファイ ル・JWCファイルへの出力、および、プリンタやプロッタへの 印刷が行えます。

8-6 鉄筋情報

鉄筋情報

「新設・既設杭」・「増し杭」の各鉄筋情報の確認・修正を行 います。

「対象杭選択画面」が表示されますので、「新設・既設杭」と 「増し杭」のいずれかを選択後、鉄筋情報表示を行う杭を指定 (左クリックによる反転表示状態)し、「確認・修正」ボタンを クリックしてください。

「鉄筋選択画面」が表示されます。

鉄筋選択画面	×
 鉄筋グルーブ名称一覧 主鉄筋 帯鉄筋 組立筋 スペーサー 庚面鉄筋 	鉄筋一覧 「1段主鉄筋 (連続) 1 通加
	編集 削除 閉じる(<u>C</u>)

鉄筋選択画面

各鉄筋の詳細鉄筋情報を指定するためのウィンドウで、鉄筋一 覧に表示されている鉄筋が配筋図に作図されます

8-7 鉄筋一覧

鉄筋一覧

配筋される鉄筋の記号・径の一覧表示を行います。「対象杭選 択画面」が表示されますので、「新設・既設杭」と「増し杭」の いずれかを選択後、鉄筋一覧表示を行う杭を指定(左クリック による反転表示状態)し、「確認・修正」ボタンをクリックして ください。

「鉄筋一覧画面」が表示されます。

9 設計調書

※「調表出力ライブラリ Ver.2」 は当製品と別にインストールする必要があります。 本プログラムのみでは動作いたしません。 杭基礎の設計を例題として作成します。

上メニュー「設計調書」をクリックします。

「調表出力ライブラリ」が表示されます。テンプレートは「調表 ライブラリ」の[スタイル設定]にて選択できます(調表ライブラ リVer2.00.00以降)。

常時,レベル1地震時照査 抽出する杭体応力度 ○ 第1時面 ○ 最も厳し 尚面	
- 抽出する杭体応力度 で 第1時面	
出力方向の順番(※全書式共通) ④ Y→X方向	

計算項目の出力設定

抽出する杭体応力度を選択し、「確定」ボタンを押します。

※設計調書出力時、数種類の杭を1つの比較表にまとめる方法 (Q1-21-1参照)

https://www.forum8.co.jp/faq/win/foundation-tqa. htm#q1-21-1

- スタイル設定

出力するテンプレートが登録されているテンプレートリスト名 の選択と、印刷時の各種設定を行います。 テンプレートを選択するにはテンプレートリストの中から、出 力するテンプレートが登録されているテンプレートリスト名称 をクリックします。

テンプレートリスト

現在登録されているテンプレートリスト名称を表示します。 名称をダブルクリックすることで、テンプレート確認画面を表 示します。

テンプレート確認

現在選択されているテンプレートリスト内のテンプレートのイ メージをリストで表示します。

用紙方向

印刷の向きを設定します。「プリンタ選択」 ボタンで表示される 「印刷の向き」 ででも設定できます。

マージン

印刷の余白の余白をmm単位で設定します。

用紙サイズに合わせて印刷

このチェックボックスをチェックすると、現在の用紙サイズに合わせて調表のサイズが調整されます。

プリンタ選択

印刷に使用するプリンタの設定画面を開きます。

※テンプレート確認ボタンを押すと、選択しているテンプレー
 トのイメージを左図のようにリストで表示します。

10 データ保存

🌃 名前を付けて伊	采存					
保存する場所((I): SampleData		- + 🗈 💣			
-1	名前	^	更新日時	種類	サイズ	^
	Caisson 1.F1F		2015/11/05 15:21	F1F ファイル	342 KB	
クイック アクセス	Caisson 2.F1F		2015/11/05 15:21	F1F ファイル	362 KB	
	Koukan_1.F1F		2015/11/05 15:21	F1F ファイル	659 KB	
ボフクトップ	Koukan_2.F1F		2015/11/05 15:21	F1F ファイル	1,005 KB	
7,71-97	Kui_1.F1F		2015/11/05 15:15	F1F ファイル	626 KB	
-	Kui_2.F1F		2015/11/05 15:15	F1F ファイル	1,636 KB	
ライブラリ	🔚 Kui_3.F1F		2015/11/05 15:16	F1F ファイル	636 KB	-
	🔚 Kui_4.F1F		2015/11/05 15:16	F1F ファイル	617 KB	
	Kui_5.F1F		2015/11/05 15:16	F1F ファイル	718 KB	
PC	Kui_6.F1F		2015/11/05 15:16	F1F ファイル	610 KB	
<u></u>	Kui_7.F1F		2015/11/05 15:17	F1F ファイル	619 KB	
_	Kui_8.F1F		2015/11/05 15:17	F1F ファイル	612 KB	
ネットワーク	Kui_9.F1F		2015/11/05 15:17	F1F ファイル	612 KB	
	🔚 Kui_10.F1F		2015/11/05 15:18	F1F ファイル	614 KB	
	🔚 Kui_11.F1F		2015/11/05 15:18	F1F ファイル	922 KB	~
	<				>	
	ファイル名(N):	Kui_1.F1F		-	保存(S)	
	ファイルの種類(T):	基礎の設計・3D配筋 XML形式	t(*.F1F)	•	キャンセル	
ラライル情報一						
製品名:	基礎の設計・3D配筋 Ve	er.2				-
製品が-デョン:	2.0.0.0					-
794651-91a2:	13.0.6.0					-
作 成 日:	2016/11/04					-
会 社 名:						-
部署名:						-
作成者名:						-
コメント:	杭基礎:場所打ち杭 2.	5次元解析				-
· · · · · ·						
						/

「ファイル」-「名前を付けて保存」からデータを保存します。 既存のデータに上書きする場合は「ファイル」-「上書き保存」 を選択します。

保存を行わずにプログラムを終了させようとした場合、左図の ような確認メッセージが表示されます。

保存する場合は「はい」を選択し、保存場所・ファイル名を指定 します。

「いいえ」を選択すると、データは保存されずに終了しますの でご注意ください。

第3章 Q&A

0全般

Q0-1 「基礎の設計計算」で作成したデータファイル (*.F8F) を「基礎の設計」で読み込むことはできるか

A0-1 「基礎の設計」起動後、「ファイル」-「開く」画面でファイルの種類を「基礎の設計計算(杭基礎の設計)旧XML形式 (*.F8F)」へ変更し、該当ファイルを指定後に「開く」を実行すれば、「基礎の設計計算」で作成されたデータを読み込むこ とができます。

Q0-2 「基礎の設計」と「基礎の設計・3D配筋」は同じ製品か

A0-2 基本的に同じ製品となります。Ver.1.2.2から製品名を「基礎の設計」→「基礎の設計・3D配筋」に変更し、CIMを意識した製品名称に変更いたしました。 詳細は「製品名称変更のお知らせ」をご確認ください。

Q0-3 「基礎の設計・3D配筋」の設計調書の作成ができない。何か原因はあるか。

- A0-3 エラーメッセージ"制御ファイルのアクセス中にエラーが発生しました。"が表示される場合は、「調表出力ライブラリ Ver.2」で使用する「基礎の設計・3D配筋」の制御ファイルが見つからない場合に発生するものです。 以下のような場合、エラーが発生する可能性が考えられます。
 - ・レジストリの破損
 - ・「基礎の設計・3D配筋」の制御ファイル保存フォルダがない
 - ※「基礎の設計・3D配筋」 インストールフォルダ内の「Database」 が、そのフォルダとなります。
 - ・「基礎の設計・3D配筋」の制御ファイルが欠落している
 - 本件は何らかの影響で上記のいずれかが発生していることが考えられます。

「基礎の設計・3D配筋」Ver.2のレジストリ情報を初回インストール時の設定に変更するためのレジストリ保守ツールがあります。

下記の操作手順に従い、動作をご確認くださいますようお願いいたします。なお、このツールは管理者権限のあるユー ザーで実行してください。

※「基礎の設計・3D配筋」Ver.2専用のレジストリ保守ツールは、開発サポートに問い合わせ頂くと入手可能です。

【操作手順】

1.「基礎の設計・3D配筋」 Ver.2のインストールフォルダ内に必要なデータファイルがある場合は、そちらを全て他のフォルダへ退避させます。

- 2.コントロールパネルの「プログラムと機能」にて、「基礎の設計・3D配筋」 Ver.2をアンインストールします。
- 3. 「F8RegTool.exe」を起動します。
- 4.画面上部「動作モードの選択」より「レジストリ操作」をクリックします。
- 5.画面中央の説明文をお読みになり「上記内容を承諾し、操作スクリプトを実行」をクリックします。
- 6. 「FoundationCAD2.rts」ファイルを選択しますと、レジストリ変更を開始します。
- 7.再度「基礎の設計・3D配筋」 Ver.2をインストールします。

Q0-4 「基礎の設計計算,杭基礎の設計(カスタマイズ版)」のデータ(*.F3F)を本製品で読み込むことは可能か。

A0-4 「基礎の設計・3D配筋」 Ver.2.2.7以降で、カスタマイズ版で作成したデータ(*.F3F)読込に対応しました。 「ファイルを開く」画面のファイルの種類で、基礎の設計(カスタマイズ版)旧XML形式(*.F3F)を選択して頂き、該当ファ イルを読み込むことが可能です。

Q0-5 既存の荷重ケースを削除するには?

A0-5 「作用力」-「荷重ケースの設定」画面の参照番号のセルにカーソルを合わせて、Deleteキーを押して下さい。 Y方向 No2.の荷重ケース名「地震時」を削除する場合の例

No	参照 番号	荷重ケース名	書印曾任系数	地翻ばね	許容支持力	底版前面 抵抗	
1	1	常時	1.000	常時	常時	常時	1
2	7	地震時	1.500	地震時	地震時	地震時	
3	4						
4	1201-07-07-	-\///#@thttT_Deleted	ーを描す				
5	Civility	STREETSE CT Deleter	- cirr				
6	and the second se						

Q0-6 拡張子F8F以外に作成されるファイル「F8F~とTSD」はどのような役割があるのか。

A0-6 •TSD

図面生成で作られた鉄筋表を「UC-Draw」のオプション機能「鉄筋表生成」で編集するために使用するデータファイルです。

不要な場合はチェックを外してください。

Q0-7 各方向の名称を変更できるか。

A0-7 計算書等に用いている各方向の名称は、「基準値」-「荷重ケース」画面の方向名称で変更できます。

Q0-8 H29道示からH24道示に変換することは可能でしょうか。

A0-8 現時点では対応しておりません。 「基礎の設計・3D配筋(旧基準)」で作成または保存されたデータファイル(*.F1F)を「基礎の設計・3D配筋(部分係数法・ H29道示対応)」で読み込み、保存(*.PFJ形式)することはできますが、「基礎の設計・3D配筋(部分係数法・H29道示対 応)」で作成または保存したファイルを「基礎の設計・3D配筋(旧基準)」で読み込み、保存(*.F1F形式)することはできませ ん。

Q0-9 共有サーバに保存した特定ファイルのみが開けないケースがあるのはなぜか?

A0-9 要因として共有サーバフォルダ名称(特定ファイルを含める)が長いことが考えられます。 該当ファイル及び共有サーバフォルダ名を短くして再度試してください。(※最大長目安:半角260)

Q0-10 「橋脚連動用XMLファイル」がグレー表示で機能しません。ラインセンス (Lite/Standard/Advanced) が関係しますか?

A0-10 3種類のライセンス (Lite/Standard/Advanced) のいずれのライセンスでも、この機能は利用することはできます。 まず、基礎選択画面の「杭基礎/直接基礎/ケーソン基礎/鋼管矢板基礎/地中連続壁基礎」を選択し、基礎形式を確定して ください。その後に、メニュー「ファイル」ー「橋脚連動用XMLファイル」を実行をお試しください。

1 杭基礎

1-1 適用範囲・準拠基準等

Q1-1-1 フーチングの剛性評価は出来るか

A1-1-1 杭基礎,直接基礎でフーチングの許容力度照査を行う場合、あわせて、フーチングの剛体判定を行っています。
 ただし、連続フーチングの場合は2柱式のみを対象としています。
 3柱式の場合を対象としていないのは、「杭基礎設計便覧」の記述によるものです。
 H27.3版では、P.354に、β・λによる合成評価方法は3柱式以上の連続フーチングには適用できない旨が記述されています。

Q1-1-2 「既設フーチング下面よりも下まで補強フーチング+増杭」という補強に対応しているか。

A1-1-2 「基礎の設計・3D配筋」では対応しておりません。 増し杭工法での増設フーチング下面は、既設フーチング下面と同じ高さの場合にのみ対応しております。

Q1-1-3 動的解析に用いる基礎ばね(固有周期算出用)を算出する場合、基礎の設計・3D配筋側で、2.5次元解析を選択している 場合、このばねを算出することは可能か。

A1-1-3 可能です。動的解析には固有周期算出用の基礎ばねを用いてください。 ※計算書の「基礎ばねの計算」-「地盤ばね定数」-「固有周期算定用」 動的解析に用いるばねの場合、H24道示V7.3.2(P.123)に、「基礎の抵抗を表すばね定数は、式(解6.2.1)及び式(解6.2.2) による地盤反力係数の基準値を用いて計算する。」とあります。この式は固有周期算定用の式ですので、動的解析には、 動的変形係数EDを用いて計算した地盤ばね値を適用してください。

Q1-1-4 基礎部の補強設計において、増し杭無しでフーチング厚のみ増し厚の設計は可能か。

A1-1-4 「基礎の設計・3D配筋」の増し杭工法では、フーチング増厚のみ(増し杭なし)の検討を行うことはできません。ご了承く ださい。 「橋脚の設計・3D配筋」との連動時には、フーチング上面のみに増厚する形の補強に対応しておりますが、このとき「基礎の設計・3D配筋」の照査対象は「既設・新設」として連動されます。

Q1-1-5 断面変化を杭1本ごとに別々に設定可能ですか?

A1-1-5 杭を配置する全杭で、断面変化数は共通の設定です。 新設既設杭の場合は断面数を2とした場合、杭全ての断面数が2となります。 増し杭の場合は既設杭と増し杭は別々の断面数、異種杭混在の場合は杭1と杭2は別々の断面数で検討が可能です。

Q1-1-6 杭体の断面力結果 (例えばモーメントM) が通常とは異なる描画になっているのは何故か?

A1-1-6 2.5次元解析のときの曲げモーメント図は、M = (My^2+Mx^2)^(1/2) ("^"はべき乗を示しています) により、図化していま す。

Y,X両方向に曲げモーメントが生じるケースを考えると、合成された曲げモーメントの方向は深度とともに変化し一定しないため、2.5次元解析時には、上記のように出力しております。 そのため、モーメントは常に正値となり、途中で折れ点が生じることがあります。せん断力,水平変位についても同様です。

1-2 解析方法、設計の基本的な考え方

Q1-2-1 突出杭の設定方法は?

A1-2-1 本プログラムでは、設計地盤面が基礎天端(フーチング底面)よりも下方に定義された場合、突出杭と判断しております。
 具体的には、「地層」-「地層線」-「設計地盤面」画面の『設計地盤面(常時)』,『設計地盤面(地震時)』(①)の入力が、
 「杭配置」-「基礎天端」画面の『基礎天端標高』(②)より下方となる場合に突出杭と判断されます。
 (②-①が突出長(水平方向地盤反力係数を0.0とする区間)となります。)
 完全な突出杭であれば、①を『現地盤面』として設定してください。

Q1-2-2 杭先端条件の固定/ヒンジ/自由/ばねの4種類があるが、使い分けはどのようにすればよいか。

- A1-2-2 H24道示IV12.6.2(p.410)において、「一般的には、良質な支持層に杭径程度の根入れが確保されれば、先端ヒンジと考えてよい」と記載されていますのでご参照ください。
 - 他の文献等における杭先端条件の記載については情報を持っておりません。
 - なお、杭先端条件は、次のように取り扱って、杭軸直角方向バネ定数K1~K4を算出しています。 ・固定
 - 水平,回転ともに拘束されている(杭先端で水平,回転変位が生じない)ものとして計算します。
 - ・自由
 - 水平,回転ともに拘束されていないものとして計算します。
 - ・ヒンジ
 - 水平方向が拘束され、回転は拘束されていないものとして計算します。
 - ・バネ
 - 杭先端が次の関係となるものとして計算します。
 - せん断力=せん断バネ×水平変位
 - 曲げモーメント=回転バネ×回転変位

Q1-2-3 対象基礎が斜面で杭長が異なるため、各方向の基礎ばねを出すためにデータを対称で2つ作成した。その結果が両方同じ 結果になった。なぜか。

A1-2-3 本プログラムでは、ヘルプの「Q&A」-「杭基礎」-「Q3-2」に記載しておりますように、杭中心で地層と交差する点を 求め、この交点間の深さ方向の距離を地層厚としており、前背面で層厚を変えること、地盤反力係数を変えることはでき ません。よって、傾斜の方向を対称にしたモデルを作成しても、両データでは同じ基礎ばねとなります。

Q1-2-4 基礎の安定計算(レベル1地震時)解析は、変位法で計算されているのか。

A1-2-4 「基礎の設計・3D配筋」(H24年度版ソフト)における、レベル1地震時の解析は変位法で計算しています。

Q1-2-5 鋼管ソイルセメント杭の場合の設計杭長(杭の先端)は?

A1-2-5 鋼管ソイルセメント杭のとき、「杭配置」-「杭データ」画面の設計杭長(杭先端)は、鋼管の先端位置を入力して頂くことを想定しております。
 鋼管長(フーチング下面から杭先端までの鋼管部の長さ)を入力してください。

1-3 地層・土質定数

- Q1-3-1 「計算条件」-「基本条件」 画面の常時,レベル1地震時の「液状化の影響」のスイッチが選択できない。
- A1-3-1 「地層」-「低減係数」画面のDE (レベル1)の低減係数が全て1.0になっている場合は、選択できません。 該当画面の低減係数が1.0以外で地層画面を確定すると、本スイッチを選択できることが確認できます。

Q1-3-2 「地層」-「低減係数」画面の耐震設計上の地盤面(A/B/C)の設定はどれを選択すればよいか。

A1-3-2 設計地盤面の設定につきましては、H24道示V4.6解説文(p.34)において、「耐震設計においては、一般に、その面より上方の土層については地盤抵抗を考慮しないが・・・」とあります。 上記のように、耐震設計上の地盤面より上の層の地盤抵抗を考慮しない場合は、「耐震設計上の地盤面」の選択をCとしてください。 このとき、耐震設計上の地盤面より上の層にDE>0の層が存在しても、その層の水平方向地盤反力係数は0として扱います。

Q1-3-3 「N<5はc値から推定」の対象は?

A1-3-3 Ver.2.2.0より前のバージョン及び旧製品(H.8.12, H14.3道示対応版)を含め、本プログラムでは上記の「軟弱層」を粘性 土だけではなく緩い砂質土も含むものとして扱っています。 Ver.2.2.0では、「地層」画面に「N<5の砂質土はN値から推定する」を用意しており、チェックがあるときは砂質土に対し てN値から推定できるようにしました。

Q1-3-4 周面摩擦力を直接指定する場合はどのようにすればよいか?

- A1-3-4 「地層」-「土質一覧」-「土質データ②」画面で、 周面摩擦力の選択を「入力」に切り替えて、最大周面摩擦力度fを直接変更してください。
- Q1-3-5 「地層」-「地層線」-「設計地盤面」の水位の入力があるが、設計上、この水位を考慮しないようにするにはどうすれば よいか?
- A1-3-5 「設計地盤面」画面の水位(常時)及び水位(地震時)の設定を最小値-999.00、杭が配置されても問題ない標高に設定して 頂く事で、水位は考慮されません。

1-4支持力・周面摩擦力

- Q1-4-1 杭の周面摩擦力度の計算について、N値が5未満の軟弱層の最大周面摩擦力度は0とするとなってるが、この5未満の規定 は道路橋示方書のどこに規定されているか。
- A1-4-1 最大周面摩擦力度について、基準類には次のように記述されています。

◆H.8.12道示IV

「N値が2以下の軟弱層では、粘着力をN値により推定することは信頼性が乏しいのでN値により最大周面摩擦力度を推定してはならない。しかしながら、N値は小さくても粘着力cが大きく周面摩擦力が期待できる場合もあるので、別途土 質試験により粘着力を求め、これにより最大周面摩擦力度を推定してよい。」

◆H.14.3道示IV

「N値が2以下の軟弱層では、粘着力をN値により推定することは信頼性が乏しいのでN値により最大周面摩擦力度を推定してはならない。しかしながら、N値は小さくても粘着力cが大きく周面摩擦力が期待できる場合もあるので、別途土質試験により粘着力を求め、これにより最大周面摩擦力度を推定するのがよい。」

◆H.24.3道示Ⅳ

「2章の示されているように、N値が5未満の軟弱層では粘着力をN値によって推定することは困難なため、別途土質試験により粘着力を求め最大周面摩擦力度を推定するのがよい。」

◆H.27.3杭基礎設計便覧

「なお、N値が5未満の軟弱層では粘着力をN値によって推定することは精度が悪いため、別途土質試験より粘着力を求め最大周面摩擦力度を推定するのがよい。」

上記を踏まえまして、旧製品 (H.8.12, H14.3道示対応版) を含め、本プログラムでは上記の「軟弱層」 を粘性土だけでは なく緩い砂質土も含むものとして扱っています。

道示IV(H24.3)(P.140)で、N値が5未満となる軟弱層においては「標準貫入試験の結果からせん断強度を推定するのは適 当でない」との記載があり、そのような場合はP.394より粘着力から推定することができます。

本プログラムでは「N<5はc値から推定」のチェックを用意していますが、砂質土の場合は、粘性土における粘着力のようなN値代わりの指標となるものがなく、また前述のように軟弱地盤は砂質土も含むものとして考えておりますので、N値が5未満の場合には最大周面摩擦力を0として設定しております。

現状においては「周面摩擦力」のコンボボックスより「入力」を選択し直接値を設定して頂くことで対応ください。

- Q1-4-2 負の周面摩擦検討を有効にしても計算結果の負の周面摩擦力は0と出力される。設定が不足しているのか。
- A1-4-2 負の周面摩擦力の設定が必要が箇所は、以下のとおりです。
 - ・「計算条件」-「設計条件」-「既設・新設」-「その他条件」の負の周面摩擦力のスイッチを有効にする
 - 「作用力」 –「荷重ケースの設定」で負の周面摩擦力で検討したい荷重ケースを指定する(荷重ケース番号の指定)
 - ・「地層」-「地層線」-「設計地盤面」-「中立点」
 - ・「地層」--「土質一覧」--「土質データ②」--「fn」
- Q1-4-3 押込み力の周面摩擦は杭先端から任意の範囲を控除できますが、引抜き力は杭先端まで周面摩擦力を考慮しています。 引抜き力照査で周面摩擦力を控除できないようにしている理由は?
- A1-4-3 H24道示IV P.394の「押込み力のみに対して周面摩擦力を考慮する範囲となる」の記述から押込み力に対して、「計算条件-押込力・引抜力」画面の押込支持力の周面摩擦力の控除範囲で指定して頂くようにしています。 押込力及び引抜力を含めて支持層の最大周面摩擦力度fを考慮しない場合は、「土質データ②」の周面摩擦力で『入力』とし、該当する層のf=0にする方法で対処する事ができます。
- Q1-4-4 回転杭の閉端/開口タイプの入力はどうすればよいか?
- A1-4-4 以下のように設定をお願いします。 ・閉端タイプは、「杭配置」-「杭データ」画面の羽根内径Dwi=0 ・開口タイプは、「杭配置」-「杭データ」画面の羽根内径Dwi≠0
- 1-5 地盤反力係数、杭軸方向のバネ定数

1-6 杭配置・作用力

- Q1-6-1 杭配置画面の確定時に「杭縁端距離に誤りがある」のメッセージが出るのはどうしてですか?
- A1-6-1 H24道示IV編12.3(P.381)の「最外周の杭とフーチング縁端との距離(縁端距離)は、・・・標準的には杭径の1.0倍とすれ ばよい。」を参照し、入力された杭縁端距離が杭径の1.0倍より小さくなるとき警告の意味で表示しておりますが、杭縁端 距離は杭基礎の安定計算には影響しないことから、[強行]でそのまま計算できるようにしています。ただし、この結果の 適用の是非につきましては、道示の記述をご参照いただいた上で、最終的には設計者の方のご判断により決定してくださ いますようお願いいたします。

1-7 突出部の水平荷重

1-8 底面前面水平抵抗

129

1-9 安定計算(杭反力・変位)

- Q1-9-1 常時、暴風時及びレベル1地震時の安定計算において、ある特定ケースで、変位が15mmを超えているのに、画面上には 「---」表示になるのなぜか。
- A1-9-1 本プログラムは、「作用力」-「荷重ケースごとの設定」画面の「安定照査をする」の設定により、荷重ケースごとに基礎の 安定性の照査を行うか否かを指定できるようにしております。この設定を一度、ご確認ください。

Q1-9-2 単杭(剛結結果)で杭頭モーメントが発生しないのはなぜか?

A1-9-2
 杭頭反力については、以下の力の釣合いから作用力と杭頭反力との関係から求めます。
 V=Σ(PNi)
 H=Σ(PHi)
 M=Σ(PNi・xi+Mti)
 V, H, M:作用力
 PNi:鉛直反力
 PHi:水平反力
 Mti:杭頭モーメント
 xi:杭頭座標
 単杭の場合(フーチング中心と一致)では、xiは0となり、M:作用力を入れないとMti:杭頭モーメントは発生しません。

Q1-9-3 杭基礎の段差フーチング計算はどの基準を参考に計算していますか?

A1-9-3 基礎の設計・3D配筋(旧基準)は、段差フーチングに対応しております。

本プログラムでは、道示IV12.7(P.412)に記載されている、フーチングを剛体と仮定し杭基礎全体の変位を杭頭部のバネマトリクスを介して杭基礎全体に作用する水平力,鉛直力,回転モーメントにつり合わせた式を解く方法にて計算しています。

①各杭の杭軸方向バネ定数Kvを算出する
②各杭の水平方向地盤反力係数kH分布を算出する
③②および杭体の曲げ剛性を用いて、各杭の杭軸直角方向バネ定数K1~K4を算出する
④①および杭頭座標,斜角を用いて道示IV12.7(P.414)(解12.7.2)のフーチング下面中心におけるバネマトリックスを作成する
⑤作用力と④を用いて道示IV(解12.7.1)により原点変位を算出する
⑥道示IV(解12.7.4)により各杭の杭頭の杭軸方向変位,杭軸直角方向変位を求める
⑦道示IV(解12.7.3)により各杭の杭頭反力を求める
⑥杭1本の弾性床上梁モデルに杭頭の軸直角方向反力および曲げモーメントを載荷し、伝達マトリクス法により各杭の状態量分布(杭体の変位,曲げモーメント,せん断力分布)を求める

- 1-10 断面変化の扱い
- -
- 1-11 杭体断面力・断面計算
- 1-12 杭体応力度計算
- Q1-12-1 PHC杭の許容曲げ圧縮応力度について、割増1.5の時の40.0と基準値の表示があるが、根拠は?
- A1-12-1 杭基礎設計便覧(H27.3)の表-III.2.13 (P.247) において、許容曲げ圧縮応力度σcaの地震時は、27×1.5=40.5(N/mm2)ではなく丸め処理した40(N/mm2)が記載されております。よって、本プログラムも同様に、割増係数1.5に対するσcaの初期値は40(N/mm2)としております。なお、常時の27(N/mm2)は設計基準強度σck(=80(N/mm2))の1/3を丸めたもので、地震時は常時の丸め前の値に1.5倍したもの(σck×1/3×3/2)となり、σckの1/2(=40(N/mm2))としています。
- Q1-12-2 杭体照査において、レベル1地震時の許容曲げモーメントー軸力相関図による照査やレベル2地震時の終局曲げモーメントー軸力相関図による照査を行っているか。
- A1-12-2 杭体照査は行っておりますが、常時・レベル1地震時については、発生応力度が許容応力度以下であることを照査しており、また、レベル2地震時における杭体降伏判定においては、降伏曲げモーメントに達したか否かで判定しています

1-13 結果一覧表

1-14 出力

- 1-15 杭頭結合照査
- Q1-15-1 「設計要領第二集 4章 基礎構造」に記載されているフーチング下面鉄筋の効果を期待する水平方向押抜きせん断応力度の照査が可能か。
- A1-15-1 フーチング下面鉄筋の効果を期待する水平方向押抜きせん断応力度の照査にはレベル2地震時のみ対応しています。 「底版設計」画面の「計算条件」-「レベル2地震時」タブにある「底版下面鉄筋を考慮した水平方向押抜きせん断照 査」を「する」としてください。 また、「レベル2地震時照査-水平方向押し抜きせん断照査」画面で、計算に使用する鉄筋量を入力してください。

Q1-15-2 杭頭補強鉄筋の必要鉄筋量はどのようにしているか。

- A1-15-2 杭頭補強鉄筋の必要鉄筋量算出は、以下のように行っています。
 ・断面:「杭頭結合計算」-「杭頭補強鉄筋」画面で入力された『直径Do』の円形断面
 ・軸力:「杭頭結合計算」-「杭頭作用力」画面で設定された鉛直最大反力,鉛直最小反力
 ・曲げモーメント:「杭頭結合計算」-「杭頭作用力」画面で設定されたモーメント
 ・許容応力度:「杭頭結合計算」-「底版許容値」画面で設定されたてのa, σsa
 以上のデータを用いて、荷重ケースごとに
 (1)のc=のcaとなるときの鉄筋量
 (2)のs=のsaとなるときの鉄筋量
 を算出し、最大となる鉄筋量を必要鉄筋量としています。
 なお、必要鉄筋量が0と表示される場合は、微小な鉄筋量で許容応力度を満足していることを表しております。
- Q1-15-3 場所打ち杭の場合、H27杭基礎便覧P.370~373の記述により、下記(1)(2)の設定を行うにはどのようにすればよいか? (1)L1の杭とフーチング結合部の照査(仮想RC断面照査を除く)は必要 (2)L2の杭頭部と杭体の降伏曲げの比較は必要ない
- A1-15-3 L1の杭頭接合部のコンクリート断面の照査のみ行いたい場合は、以下のように設定してご検討ください。

 ・「計算条件」画面「基本条件」タブにおいて、
 常時レベル1地震時-杭頭接合計算の「する」のチェックを付ける。
 常時レベル1地震時-杭頭接合計算の「□コンクリート照査を省略する (B法のみ)」のチェックを外す。
 ・「杭頭接合計算」画面において、「杭頭補強鉄筋=しない」を選択する。
- 1-16 杭頭補強鉄筋照查
- 1-17 杭頭カットオフ照査
- 1-18他「UC-1シリーズ」との関連
- Q1-18-1 擁壁基礎連動を用いて、保耐法によるL2基礎照査まで行うには、どの製品を連動させればよいか
- A1-18-1 この場合、最新版「基礎の設計・3D配筋 Ver.2」と連動するのではなく、H14年度道示対応の最新版「基礎の設計計算、 杭基礎の設計 Ver.9」をご利用ください。 擁壁基礎連動は、「土木研究所資料 地震時保有水平耐力法に基づく水門・堰の耐震性照査に関する計算例」の計算方法 を用いるためH14年版基準の「基礎の設計計算、杭基礎の設計 Ver.9」が必要となります。

- Q1-18-2 橋脚の設計の「基準値」→「計算用設定」→「荷重」の水の単位重量を γ w=9.8に設定しているが、UC-1連動基礎連動の場合、基礎の設計では γ w=10.0となっているのはなぜか。
- A1-18-2 お問い合わせの状況より、何らかの原因で、橋脚側と基礎側で水の単位重量の整合が取れていない状態となっています。 大変お手数ですが、下記の手順によりデータの更新を行うことでご対応くださいますようお願いいたします。

1.「橋脚の設計」側の「基準値|計算用設定」画面を開き、「荷重|単位重量|水γw」を「10.0」に変更し「確定」します。 2.再度上記の項目を開き、「水γw」を「9.8」に戻し「確定」します。

- ※この間、「基礎の設計」側の「地層」画面は閉じた状態としてください。
- 3.「基礎の設計」側の「地層」画面にて、単位重量が「9.8」に更新されていることをご確認ください。

なお、「基礎の設計」側の「地層」画面を開いた状態でデータ連動後、「地層」画面を確定する等の操作を行った場合、更 新前の基礎側の設定が上書きされることがあります。 このようなケースで、再度同様の現象が発生した場合、お手数ですが、上記「1~3」の手順にてデータの更新を行ってくだ さいますようお願いいたします。

1-19 その他

Q1-19-1 PC杭の諸元を変更して検討できるか。

A1-19-1 本プログラムでは、PC杭の諸元を固定しており変更することはできません。PHC杭として入力,計算していただくしか方 法がございません。

参考までに、PC杭をPHC杭として入力する手順をご案内いたします。

但し、使用方法や詳細な計算方法等把握されていない状態でのご利用は混乱の元となりますためお勧めはしておりません。

1)「基準値」--「杭基礎」--「杭体データ」-「PHC杭」画面の表の最下行に、杭径、厚さ等諸元を入力する。

- 2)「杭配置」--「杭データ」画面の「杭径D(mm)・厚さt(mm)」は、一覧の最下行を選択する。
- 3)「許容値」画面において、降伏応力度 σy, ヤング係数, 許容値にPC杭の値を直接入力する。

4) レベル2地震時照査を行う場合、PC杭、PHC杭で設計基準強度が異なるため、「杭本体」-「 $M-\varphi$ 」の $M-\varphi$ 関係は、別途算出した値を直接入力する。

5) 4) と同様、設計基準強度が異なるため、「杭本体」-「その他」画面の杭体から決まる押込み支持力の上限値が異なります。押し込み支持力の上限値が杭体から決まる押込み支持力の上限値から決定される場合、別途算出した値を直接入力してください。

6) 杭体のせん断耐力照査に用いる軸方向圧縮力による補正係数CNが異なるため、別途算出を行う。

Q1-19-2 PHC杭のJIS強化杭の設定はどこでするのか。

A1-19-2 下記設定を用意しています。

■常時,レベル1地震時

■ FR1, レイレーを展示 「基本条件」 – 「設計条件」 – 「既設・新設」 – 「応力度照査」 – 「PHC 杭のスパイラル鉄筋」を考慮する/しない 「杭配置」 画面で断面変化を設定する 「断面計算」 – スパイラル鉄筋σsa, σsa (基本値), 配置区間

■レベル2地震時

「レベル2地震時」--「基本条件」--「計算条件①」画面でスパイラル鉄筋を考慮する、せん断照査方法=杭体のせん断力 ≦杭体のせん断耐力を選択します。 「レベル2地震時」--「杭本体」--「杭種別データ」-スパイラル鉄筋(有効長、降伏強度、配置区間、断面積、間隔)

Q1-19-3 橋台と基礎を連動して使用している。基礎側の計算書において、橋軸方向と橋軸直角方向の名称が反対になっている。対 処方法はあるか。

A1-19-3 「基準値」画面の荷重ケースの項目において、方向名称の指定があります。 橋台と連動した際のX方向を「橋軸方向」、Y方向を「橋軸直角方向」へ変更して再度ご検討ください。

Q1-19-4 鉄筋かご無溶接工法の吊り荷重(鉄筋かご総重量W)の自動計算に対応していますか? またどのような重量を設定するのですか?

A1-19-4 自動計算には対応していません。 例えば、鉄筋かごを吊り下げながら設置すると考えたとき、吊り下げ時の全荷重(杭鉄筋、補強リング等、想定される鉄筋 かごの総重量)を入力致します。

Q1-19-5 フーチング補強の設計において、既設上面の鉄筋を変更(増減)しても結果が変わらないのはなぜか?

A1-19-5 「底版設計」-「計算条件」-「共通」画面の「補強時の既設底版上面鉄筋」の設定をご確認ください。 考慮しない場合は、既設上面の鉄筋を変更しても計算には考慮されません。

1-20段落し自動配筋

-

1-21 設計調書

- Q1-21-1 設計調書出力時、数種類の杭を1つの比較表にまとめる手順は?
- A1-21-1 比較表等で複数の設計調書データを使用される場合は、ファイルをBTDTファイルで保存していただき、それを使用して 設計調書の出力を行ってください。

(1)安定計算,杭体応力度計算が終了している状態にします。
(2)杭基礎側の[ファイル]メニューの[設計調書データの保存]を選択します。
(3)任意の名前を設定し保存します(拡張子*.BTDT のファイルが保存されます) ⇒比較表を作成したい杭基礎データそれぞれについてBTDTデータの保存を上記手順で行ってください。
(4)[設計調書]をクリックします。
(5)「設計調書の出力設定」画面で「確定」-「閉じる」ボタンを押し、「調表出力ライブラリ」画面まで進みます。
(6)調表出力ライブラリ画面上の左から2番目の[調表作成実行]ボタンよりデータファイル選択画面が開きますので、(3)で 作成した設計調書用データファイル(*.BTDT)を指定してください。
(7)同様の手順で設計調書用データファイル(*.BTDT)を選択してください。
(8)対象とするファイルの指定が終わったら、「確定」ボタンで画面を閉じます。
(9)画面下に表示されている調表シートを選択(ダブルクリック)すると、先ほど選択したデータの調表を表示します。

1-22 地震時保有水平耐力

- Q1-22-1 鋼管系の杭で、「レベル2地震時照査」-「杭本体」-「M-φ」の降伏曲げモーメントMyが0となり、計算が実行できな い。どのように対処すればよいか。
- A1-22-1 H24道示IV P437の記載の方法で降伏曲げモーメントは算出していますが、断面に対して軸力が異常に大きい場合や断面 積が小さくなる場合、降伏曲げモーメントMyを求める事ができません。軸力や断面(鋼管厚)の設定を見直しても問題が ない場合、降伏曲げモーメントMy=0では 計算を進める事はできませんので、「計算条件」-「入力条件」-「レベル2地震時」の「M-φ」を直接指定に変更し、別 途求めた値を「レベル2地震時照査」-「杭本体」-「M-φ」に指定する事で対処可能となります。 <u>Q1-12-1.PHC杭の許容曲げ圧縮応力度について、割増1.5の時の40.0と基準値の表示があるが、根拠は?</u>
- Q1-22-2 レベル2地震時照査において、鋼管杭のM-φ算出時のAやIでの腐食代の扱い方は常に考慮しているか。
- A1-22-2 鋼管杭及び鋼管ソイルセメント杭の曲げモーメント〜曲率の関係は、道示IV12.10.4(P.433)(解12.10.12)(解12.10.9)を用 い、断面積A等の計算時には、常に腐食代を考慮した計算を行っています。

Q1-22-3 レベル2地震時の2.5次元解析時において、杭本体画面の区間の分割が考えていたものと異なる。

- A1-22-3 断面計算画面で杭毎のデータが正しく適用されていない可能性があります。
 下記の手順で再度、杭の断面データを設定してください。
 1.「断面計算」画面を開く
 2.「データ確認」を選択し1行1列目の杭を選択する。次に「入力」へ変更後、1行目の杭をすべて選択し共通データで適用を押下する。
 同様に使用鉄筋についても1行目の杭を選択し適用を押下する。
 3. 2~n行目の杭について、2と同様の手順を行う。
- Q1-22-4 レベル2地震時の2.5次元解析時において、作用力直接指定の場合に作用力をどのように入力すればよいのか。
- A1-22-4 レベル2地震時の慣性力の向きは、計算方向(Y方向またはX方向)に固定しますので、計算方向の作用力を全作用力に 入力します。また、計算方向と直交する方向の作用力は、初期作用力の死荷重時水平力,モーメントに入力します。

- Q1-22-5 杭基礎のレベル2地震時照査において、水平震度~変位曲線を算出する際に「基礎の降伏」と「断面照査時」と出力される ケースがある。「断面照査時」とはどのような状態か。
- A1-22-5 道路橋示方書IV下部構造編12.10.5(P.440~)に記述されている部材の照査を行う状態を示しており (1)基礎が降伏に達しなかったとき:最終震度時 (2)基礎が降伏に達して応答塑性率照査を行わないとき:基礎降伏時 (3)基礎が降伏に達して応答塑性率照査を行ったとき:応答変位時 質問のケースは、この(3)に該当します。
- Q1-22-6 杭基礎レベル2地震時:仮想鉄筋コンクリート断面の照査において、杭タイプが2つあり、(1)杭、(2)杭のうち、 a) (1)杭と(2)杭がそれぞれで分かれて判定(出力)されるケース b) (1)杭と(2)杭をまとめて判定(出力)されるケース があるのはなぜか。

レベル地震時照査「基本条件」-「計算条件③」の杭頭仮想鉄筋コンクリート断面の照査の選択による判定の違いがあり A1-22-6 ます。 「一列(本)ごとに照査」を選択するとa)判定方法 「全列(杭)で照査」を選択するとb)判定方法

Q1-22-7 「基礎の設計・3D配筋」で流動力を考慮した計算はどうすればよいか。

- A1-22-7 サンプルデータの「Kui_4.F1F」が流動化検討例となっています。
 - (1)「地層」 入力
 - ・「低減係数」タブで流動荷重強度qLを設定してください。

・「計算条件」タブで「液状化の判定を行う」,「流動化の判定を行う」をチェックして、本画面,「液状化」タブで、判定, 計算に必要なデータを入力された場合、計算値を「低減係数」タブに設定します。

- (2)「レベル2地震時基本条件」入力
- ・「基本条件(共通)」タブで「計算条件:流動化」をチェックしてください。
- ・(1)のqLが設定されている場合に上記のスイッチが有効になります。(※作用力を指定してレベル2地震時照査を行わない条件に限る)
- (3)「流動荷重」入力
- ・底版下面以上に作用する流動荷重データを設定してください。
- ・(2)で流動化がチェックされたときに本画面が有効になります。

Q1-22-8 応答塑性照査に用いる許容塑性率の値は変更できるか。

- A1-22-8 「レベル2地震時照査」-「基本条件(共通)」画面で「既設/補強時の応答塑性率照査を行う」をチェックされている場合、同画面で任意の許容塑性率を入力していただくようにしております。 一方、「既設/補強時の応答塑性率照査を行う」がチェックされない場合、「基準値」画面「杭基礎 | その他」タブの「レベル2地震時照査の制限値」を参照しており、この値は変更可能です。 各状態の初期値は次のとおりです。
 - 橋脚基礎
 - ・通常時:4.000
 - ・斜杭の場合:3.000
 - ・場所打ち杭でSD390, SD490の場合:2.000
 - 橋台基礎
 - ・通常時:3.000
 - ・斜杭の場合:2.000
 - ・場所打ち杭でSD390, SD490の場合:1.000

Q1-22-9 レベル2水平力に対して押抜きせん断照査をする場合、どこで設定するのか。

- A1-22-9 水平方向押抜きせん断照査は下記の手順で検討することができます。
 - 1.「底版設計」-「計算条件」-「レベル2地震時」-「底版下面鉄筋を考慮した水平方向押抜きせん断照査」において「する」を選択する。
 - 2.「レベル2地震時」-「水平方向押抜きせん断照査」 画面で鉄筋断面積Asを設定する。
 - 3.レベル2地震時を計算を実行する。
 - 4.「底版設計(レベル2)」-「Y方向(X方向)」-「水平方向押抜きせん断照査」の抽出対象にチェックを付ける。
 - 上記手順にて、計算結果及び計算書のレベル2地震時の照査に結果が表示されますのでご確認ください。

Q1-22-10 基礎応答塑性率の制限値(橋台=3、橋脚=4)は、道示のどの項に記載されていますか?

A1-22-10 平成24年道路橋示方書V P.248 12.5 橋脚基礎の塑性率及び許容変位 P.258 13.4 橋台基礎の塑性率 に記載があります。

Q1-22-11 「レベル2地震時結果の総括表」画面において、判定OK時の許容比率(計算値/制限値)を表示する」を選択した時、 「杭体」が最大比率を表示していないのはどうしてですか?

A1-22-11 「総括表」画面における「判定OK時の許容比率(計算値/制限値)を表示する」を選択したとき、制限値以下となる部材 にのみ着目して、最大許容比率ではなく最小許容比率を表示するようにしています。 杭体の降伏による降伏の目安は、全ての杭体が降伏する場合ですので、100本の杭があり99本が降伏していても残り1本 が降伏していなければ、基礎は降伏しているとはみなされません。 言い換えますと、残り1本の発生曲げモーメントが降伏曲げモーメント未満(100%未満)であればよいということになりま す。 既に降伏に達した残りの杭はいくら(発生曲げモーメント)/(降伏曲げモーメント)の比率が大きくても関係ありません。 従いまして抽出する杭としましては、(発生曲げモーメント)/(降伏曲げモーメント)の比率が最も小さい杭となります。 これは、本抽出の目的が「基礎が降伏しているか否か」を判定するためであるからです。

Q1-22-12 杭基礎のL2照査におけるMy算出式は道示のどこに記載がありますか?

A1-22-12 全杭種でMy算定式が掲載されているわけではありませんが、H24道示IV P.437~P.439をご確認ください。

Q1-22-13 khpは杭基礎計算にどのように反映されますか?

A1-22-13 本プログラムは杭基礎のレベル2地震時照査を荷重増分法により行っており、水平震度0.0から最終水平震度Cz・khcoまでを入力された「分割数」で分割して計算しています。 最終震度Cz・khoが上限になりますが、Cz・kho>khpの場合はkhpが上限となります。

> 荷重増分法では、前ステップまでの状態における杭前面地盤の弾塑性状態、杭体の曲げ剛性等を用いて作成した計算モ デル(杭基礎の剛性行列)に、前ステップからの荷重増分を載荷して得られた変位、反力、断面力等の状態量を、前ステッ プまでの累計値に加算していきます。 つまり、ステップごとに上記の計算を行って、原点変位の増分,各杭の杭頭反力の増分,各杭の状態量分布の増分を算出 し、累計しています。 具体的には、ステップごとに前ステップまでの累計値を用いて次のように計算しています。 (1)各杭の杭軸方向ばね定数Kvを設定 押込み・引抜きの上限値に達した杭はKv=0.0とします。 (2)各杭の地盤反力係数kHE分布を設定 水平地盤反力度の上限値に達した部材はkHE=0.0とします。 (3)(2)と杭体曲げ剛性を用いて各杭の杭軸直角方向ばね定数K1~K4を算出 杭頭モーメントが全塑性モーメントに達した杭は杭頭ヒンジとします。 (4)(解12.7.1), (解12.7.2)の三元連立方程式を作成 (5)(4)の三元連立方程式を解いて原点変位を算出 (6)(解12.7.4)より、各杭の杭頭変位を算出 (7)(5), (6)を用いて(解12.7.3)より、各杭の杭頭反力を算出 (8)(7), (2)と杭体の曲げ剛性を用いて各杭の状態量(断面力,変位)分布を算出 例えば、橋脚基礎の場合、水平震度khiのとき底版下面中心での作用力は、次式で求めています。 鉛直力 V=Vo (1)0.0≦khi≦khpのとき $H = (Wu + Wp) \cdot khi + WF \cdot khG \cdot (khi / Cz \cdot khco) + Hd$ 水平力 モーメント $M = (Wu \cdot hu + Wp \cdot hp) \cdot khi + WF \cdot hF \cdot khG \cdot (khi / Cz \cdot khco) + Md$ (2)khp<khi≦Cz・khcoのとき

(z)Mip < King < Z Kindov Z Z 水平力 H = (Wu+Wp)・khp+WF・khG・(khi/Cz・khco) + Hd モーメント M = (Wu・hu+Wp・hp)・khp+WF・hF・khG・(khi/Cz・khco) + Md

以上のような箇所で、khpは計算に使用されています。

- Q1-22-14 「レベル2地震時照査」-「基本条件」-「基本条件(共通)」画面でkhgを範囲内で入力したのに、Khgは0.0100~ 10.0000の範囲で入力してください。のメッセージが表示されるのはなぜか?
- A1-22-14 「レベル2地震時照査」-「基本条件」-「基本条件(共通)」画面内に、Y方向とX方向タブごとにkhgの設定があります。 両方向のkhgを設定する必要があります。

Q1-22-15 「計算条件① | 杭体から決まる引抜き支持力の上限値」の選択の出典元は?

- A1-22-15 杭体の鋼材と杭頭補強鉄筋の小さい方より算出する選択は「道路橋の耐震設計に関する資料(平成9年3月)」P.4-31を参考にしています。
- Q1-22-16 「地層」-「低減係数」画面の地震動タイプ2 (タイプ1/II)低減係数DEで、入力 (液状化判定による計算値)以外の値が 安定計算に反映されているのはなぜか?
- A1-22-16 「地層」-「低減係数」画面の設定「耐震設計上の地盤面」は、レベル2地震時に影響する設定です。

【Aが指定された場合】

地盤反力が期待できる土層の層厚に関わらず、地盤反力が期待できる土層の最上面を耐震設計上の地盤面とします。

【Bが指定された場合】

土質定数を零としない(地盤反力が期待できる土層)層厚3.0m未満の中間層がある場合、道示V3.5により、耐震設計上の地盤面を層厚3.0m以上の土質定数を零としない(DE(レベル2)0.0)層の上面に設定します。

【Cが指定された場合】

Bと同じ耐震設計上の地盤面を設定し、それより上方の土層に対しては、低減係数がDE>0.0であっても、地盤反力係数,地盤反力度の上限値を0.0としてレベル2地震時の計算を行います。

Cを選択している場合は、耐震設計上の地盤面からその上方の土層の低減係数が0.0となり、お考えの低減係数DEと異なる場合があります。

Q1-22-17 レベル2地震時照査(2.5次元解析)において、集計表のPHxと断面力結果の杭頭せん断力が一致しないのはなぜか?

A1-22-17 2.5次元解析では、X,Y両方向の作用力を考慮した計算を行うため、各杭ごとに、 PN:杭頭杭軸方向反力(kN) PHx:X方向の杭頭水平反力(kN) PHy:Y方向の杭頭水平反力(kN) MTy:Y軸回りの杭頭モーメント(kN·m) MTx:X軸回りの杭頭モーメント(kN·m) のように、両方向の杭頭反力が算出されます。地中部も同様に両方向の杭体断面力が算出されます。 このとき、杭体設計時の杭体モーメントおよびせん断力については、 $M=\sqrt{(My2+Mx2)}$ $S=\sqrt{(Sx2+Sy2)}$ として合成しています。 例えば、 PHx = 1108.096(kN) PHy = -49.967(kN) の場合だと、杭頭せん断力S = $\sqrt{(1108.0962+(-49.967)2)} = 1109.222(kN)$ となります。

Q1-22-18 レベル2地震時照査を計算を実行したとき、杭前面地盤がすべて塑性化し(水平地盤反力度が水平地盤反力度の上限に達し)、水平方向地盤反力係数を考慮する範囲がなくなった杭が発生しました。 のメッセージが表示される場合がある。計算書はどこをみれば、その判断が可能ですか?

A1-22-18 計算結果につきましては、計算書の「レベル2地震時の照査」-「液状化**・地震動タイプ**・浮力**」の「前面地盤状態」 をご確認ください。 本出力の「死荷重時」で地盤反力係数>0.0,「設計荷重時」で地盤反力係数=0.0と出力している範囲は、地盤抵抗を考 慮した結果、設計荷重時には地盤反力度が上限値に達し塑性状態にあることを示しています。 また、「死荷重時」,「設計荷重時」ともに地盤反力係数>0.0と出力している範囲は、設計荷重時においても地盤反力度 が上限値に達しておらず、弾性状態にあることを示しています。

1-23 基礎ばね

- Q1-23-1 増し杭工法の場合、基礎ばね値はどの位置の結果になるのか。
- A1-23-1 基礎ばね値は、杭頭座標原点における値を算出,出力しており、増し杭工法の場合、既設底版下面中心における値となります。

Q1-23-2 「常時,レベル1地震時の基礎ばね」を算出できるか。

A1-23-2 可能です。 「基本条件」-「設計条件」-「その他の条件」-「常時,レベル1地震時の基礎ばね」を計算するに変更すると、「固有周 期」「常時」「レベル1地震時」の基礎ばねを計算します。 但し、常時,レベル1地震時の計算方法が2次元解析の場合に限ります。2.5次元解析の場合は、この選択は無効になりま す。

2 鋼管矢板基礎

2-1 適用範囲

2-2 基本条件

- 2-3 地層、形状
- Q2-3-1 「形状」-「形状入力」画面で隔壁を設けると自動的に中央配置になるが、「形状」-「頂版・矢板」画面では、隔壁が中 央からずれた図になっていた。ずれた位置で計算を行っているのか。
- A2-3-1 画面上の図では、隔壁を左寄りに固定して描画しておりますが、計算等には影響はありません。
- 2-4 地盤バネ

-

2

- 2-5 支持力・周面摩擦力
- 2-6 設計外力(単位重量・慣性力等)
- 2-7 基礎本体(弾性床上の有限梁)の計算
- -
- 2-8 基礎本体(仮想井筒梁)の計算
- Q2-8-1 鋼管矢板基礎には、本体計算が2つありました。どういう違いがありますか?
- A2-8-1 鋼管矢板基礎の本体計算、仮想井筒梁の本体計算の2つがあります。 前者はせん断ずれ変形を考慮しない弾性床上の有限長梁 後者はせん断ずれを考慮した仮想井筒ばりによる解析 の違いがあります。

2-9 仮締切り

- Q2-9-1 火打ち梁の検討において、取り付け角度は45°以外指定できるか。
- A2-9-1 火打ち取り付け角は45°固定で計算しており、変更はできません。

Q2-9-2 仮締切り予備計算のところで「有効受働側圧が0になる土層があります」というメッセージがでる。対策は?

 A2-9-2 仮締切り計算は、「計算理論及び照査の方法」-「鋼管矢板基礎」-「仮締切り部の計算」-「■計算方法」のように、 背面側から有効主働側圧が作用し、掘削面側(受働側)の支保工,底盤コンクリートおよび地盤で支持された梁として、 弾塑性解析法によって計算を行っています。
 掘削面側の地盤(及び水圧)の抵抗は、有効受働側圧により表され、受働側圧と静止側圧から有効受働側圧=受働側圧 -静止側圧で求まります。
 ただし、掘削面以深の地層の条件によっては、静止側圧≧受働側圧の関係となり、有効受働側圧が0となる層が生じる場合があります。
 このような場合に本メッセージを表示しており、解析時、該当地層の地盤抵抗がないものとして計算します。
 ただし、解析上問題があるわけではありません。矢板先端の地層の有効受働側圧が0となったとき、矢板先端に大きな 変位が生じるような実状と合わない結果が生じることがあるため、このようなケースとなる可能性があることを警告しているものです。
 なお、本プログラムでは、地層データ入力において、各地層ごとに有効受働側圧値に関わらず、常に弾性地盤として計算す るという指定ができるようにしています。
 該当地層の取扱いについては、設計者の判断でご利用下さい。

Q2-9-3 「仮締切り予備計算・結果確認」ー別途計算した値を計算に反映するにはどうすればよいか。

- A2-9-3 以下の手順で操作を行ってください。
 - (1) 「仮締切り 予備計算・結果確認」 画面を開きます。
 - 既に計算されています。再計算しますか? 「計算実行」ボタンを押下します。 (2)「仮締切り予備計算・結果確認」画面の使用値部分の数値を変更します。
 - 例えば、「側圧」-「使用値」タブの主働側圧、受働側圧の数値を変更します。
 - (3)確定ボタンを押下します。
 - ※注意点として、確定ボタン後に、「仮締切り予備計算・結果確認」画面を開いた直後(1)の手順時に計算実行ボタンを 押下してしまうと、上記(2)の数値はクリアされてしまいます。
 - そのため、再度、使用値部分の数値を変更するには、(1)の手順で「取消」ボタンを押下してください。

2-10 合成応力度

2-11 保耐法照查

- Q2-11-1 流動化の検討のみを行うことができるか。
- A2-11-1 流動化のみ検討する場合は、「レベル2地震動作用時基本条件」画面の流動化考慮を選択後、液状化の「無視」と「考慮」のチェックを外してご検討ください。

2-12 基礎バネ

- Q2-12-1 本体計算で鋼管矢板のみの結果を参照するにはどうすればよいか。
- A2-12-1 「着目鋼管矢板」 画面で該当鋼管矢板のみを選択し、計算を行ってください。

2-13 付属設計

2-14 その他

- Q2-14-1 鋼管矢板基礎の仮締切部分の計算データを土留めの計算にコンバートは可能か。
- A2-14-1 「基礎の設計・3D配筋」から、「土留め工の設計・3DCAD」で読み込み可能なデータを保存することはできません。
- Q2-14-2 鋼管矢板基礎の許容応力度で思ったような割増係数を考慮した結果になっていないケースがあるのはなぜか。 例:割増1.15の場合、160(140×1.15=161)
- A2-14-2 鋼管矢板基礎では、鋼管杭協会様のご指導をいただき、割増後の許容応力度を5.0(N/mm2)単位に丸める機能を設けて います。このスイッチにより、お考えの数値とならない場合があります。 「基準値」-「鋼管矢板」-「その他」画面に、の許容応力度の割増方法(丸めない・丸める)

3 ケーソン基礎

Q3-1 ケーソン基礎と杭基礎(場所打ち杭)の降伏曲げモーメントMyが一致しないのはなぜか

A3-1 円形断面のケーソン基礎の降伏については、H24年道示IV P.366の1)i)に記載されておりますように90°の円弧内に含ま れるすべての軸方向鉄筋が降伏すると記載があります。 杭基礎(場所打ち杭)については、最外縁の軸方向鉄筋となりますのでケーソン基礎と杭基礎では結果が異なります。

Q3-2 「橋脚の設計(ケーソン基礎)」の設計において、基礎バネの連携方法は?

A3-2 「基礎の設計」「基礎の設計計算、杭基礎の設計」では、ケーソン基礎や鋼管矢板基礎としての下部工連動に対応しておりません。

本件につきましては、「橋脚の設計」において、基礎設計に必要なデータをXML形式でファイル保存する機能を設けており、このデータファイルを「基礎の設計」「基礎の設計計算」で読込むことにより、ケーソン基礎、鋼管矢板基礎の検討を行うことが可能です(ただし、基礎側から橋脚へ反力等を反映することはできません)。 具体的な手順につきましては、「橋脚の設計」ヘルプの「Q&A|設計計算に関するQ&A|連動 Q15-5」をご覧ください。

また、「震度算出(支承設計)」との連携を行う場合は、下記手順のように便宜上「直接基礎」としてご検討ください。 1.「橋脚の設計」側の「初期入力」画面で「直接基礎」、「フーチング無し」としてデータを作成します。

2.基礎連動用XMLファイルを利用し「橋脚の設計」→「基礎の設計」または「基礎の設計計算」へデータを連動します。
 3.「基礎の設計」または「基礎の設計計算」側で求まった基礎バネを「橋脚の設計」側の「基礎」画面で入力します。
 ※具体的な入力方法につきましては、「橋脚の設計」ヘルプの「Q&A|設計計算に関するQ&A|連動 Q15-7」をご覧ください。

4.上記で作成した「橋脚の設計」(直接基礎)のデータ用いて「震度算出(支承設計)」との連携を行います。

Q3-3 ケーソン基礎の増し杭補強について、対応は可能か。また、不可の場合に、ケーソン基礎を別の杭種(場所打ち杭など)に仮 定して計算することは出来るか

A3-3 ケーソン基礎の補強設計には対応しておりません。

また、ケーソン基礎と杭基礎とでは、設計方法が異なるため、ケーソン本体を杭に置き換えてモデル化することはできま せん。

Q3-4 円形充実断面の鉄筋はどのように入力すればよいか。

A3-4 水平方向の鉄筋は、場所打ち杭における帯鉄筋に相当し、『標準ピッチ』は鉛直方向の間隔になります。この鉄筋は側壁 鉛直方向の計算において斜引張鉄筋として考慮されます。

一方、鉛直方向の鉄筋は、場所打ち杭における軸方向の鉄筋に相当します。 拘束筋の水平方向間隔は、側壁水平方向計算における斜引張鉄筋量算出に用いていますが、充実断面の場合、側壁水平 方向の計算は行いませんので計算結果に影響しません。鉛直方向間隔、有効長、Ahは基礎本体のM-φ算出に用いてい ます。

Q3-5 ケーソン基礎を連動させる手順は?

A3-5 橋脚と基礎との連動は杭基礎に限定しており、ケーソン基礎との連動には対応しておりません。

よって、ケーソン基礎の場合、基礎単独にて設計していただく必要があります。

ただし、「基礎の設計・3D配筋(旧基準)」には、基礎設計に必要なデータを「橋脚の設計・3D配筋(旧基準)」から取り込む機能があり、本機能を用いることにより、設計の省力化を図ることができます。

恐れ入りますが、下記手順にてデータの取り込みを行い、ケーソン基礎の設計を行っていただきますようお願いいたします。

1.「橋脚の設計・3D配筋(旧基準)」側で計算確認を実行します。

2.「橋脚の設計・3D配筋(旧基準)」 側の「ファイル | XMLファイル」で「エクスポート」を選択し、名前を付けて保存します。

3.「基礎の設計・3D配筋(旧基準)」を単独で起動し、「地層」,「基本条件」,「形状」,「予備計算」までを設定します(既 に設定済みの場合は次の手順へお進みください)。

4.「基礎の設計・3D配筋」側の「ファイル|橋脚連動用XMLファイル」で「インポート」を選択し、上記2.で保存したファイルを読み込みます(柱形状、設計水平震度等が反映されます)。

※合わせて、「基礎の設計・3D配筋(旧基準)」ヘルプ「操作方法」-「UC-1連動」-「橋脚連動用XMLファイル」の説明をご参照ください。

Q3-6 ケーソン基礎の基礎ばね算出で, 鉛直方向のばね値の出力がないのは?

A3-6 本プログラムのケーソン基礎の基礎バネ(固有周期算定用地盤バネ定数)は、H24道示V6.2.3(P.64~),及び「道路橋の 耐震設計に関する資料(平成9年3月)社団法人日本道路協会」(7-40)を参照し計算しておりますが、両文献において、鉛 直方向に関するバネ値の記述はなく、具体的な算出方法が不明なため、本プログラムでは水平,回転に関するバネ値のみ を算出しております。

> なお、「道路橋の耐震設計に関する資料」の固有周期算定例(杭基礎)では、水平,回転に関するバネ値のみを考慮してモ デル化しております。

> 資料に明記されておりませんので、鉛直方向に関連する支持条件は判りませんが、本例では鉛直方向を固定,鉛直と水平 および回転の連成バネは0.0として取り扱っているのではないかと思われます。

Q3-7 パラペット部材の必要鉄筋量結果が極端に大きい数値になるのはどうしてか

A3-7 断面厚(パラペット)に対して荷重が大きいと、抵抗することが困難となり、極端に大きな必要鉄筋量が算出されるケース があります。 パラペット厚を増やすこともご検討ください。

4 地中連続壁

-

5 直接基礎

5-1 設計方法

Q5-1-1 直接基礎の常時ばね値の算出機能はあるか

- A5-1-1 Ver.2.3.0以降のバージョンでは、常時およびレベル1地震時の基礎ばねを算出することが可能です。 「基礎ばね」画面の「□常時、レベル1地震時の基礎ばねを計算する」にチェックを入れて、α・E0を入力してください。 Ver.2.3.0未満のバージョンでは、「基礎ばね」画面の「ED」に、常時の地盤の変形係数α・Eoを入力し、計算,出力を 行ってください。
- 5-2 入力方法
- Q5-2-1 柱下端の作用力を入力するには、どうすればよいか。
- A5-2-1 作用力」画面において、作用力の入力方法を自動計算としてください。

6 液状化の判定

6-1 設計方法

- 6-2 入力方法
- Q6-2-1 「河川構造物の耐震性能照査指針・解説-II.堤防編(平成28年3月)」および「土木研究所資料 河川堤防の液状化対策 の手引き(平成28年3月)」に記載されている液状化の判定に対応ししているか。
- A6-2-1 河川構造物の耐震性能照査指針・解説-II.堤防編(平成28年3月)」および「土木研究所資料 河川堤防の液状化対策の 手引き(平成28年3月)」に記載の液状化の判定については、H24道示Vと異なる部分があり、本プログラムでは対応して おりません。

上記基準とH24道示Vの液状化の判定では、Na(粒度の影響を考慮した補正N値)及びNa<14の場合のRL(繰り返し三 軸強度比)の算出式が異なります。

「基礎の設計・3D配筋」では、「設計条件」画面において「礫質土の粒度の影響を考慮した補正N値」を「設定する」にすると、「検討位置-N値測定点」画面において、礫質土のNaを直接指定することが可能です。

また、「設計条件」 画面の 「動的せん断強度比R、繰返し三軸強度比RLの取り扱い」を「RLを入力する」 とすることで、N 値測定点の入力画面でRLを直接指定することが可能です。

RLを入力する場合は、礫質土のNaの入力は不要となります。

- Q6-2-2 「設計条件」画面の「層ごとの土質定数の低減係数を算定する」の中で、「[xx]m以下の層は低減しない」設定はどういう時に使うのか。
- A6-2-2 この設定は、H24道示Vp.140に記載されている「ただし、液状化の判定は、一般に、層厚が1m程度以上の連続した土層 を対象に行えばよい」に基づき、層厚が小さい層について土質定数の低減を行わない場合に指定する項目です。 このとき、ここで指定された層厚以下の層については土質定数の低減を行いません。 従いまして、設定する場合には、通常[0.999]m以下と指定してください。

- Q6-2-3 完成時が切土の場合や盛土となる場合の入力方法は?
- A6-2-3 製品ヘルプ「操作方法」-「メニューの操作」-「入力」-「液状化の判定」-「検討位置」の説明に入力イメージを掲載しているので、一度、その入力方法をご確認ください。

6-3 計算結果

Q6-3-1 液状化の判定結果で、「-」で出力される項目があるのはなぜか。

A6-3-1 H24道示V8.2.3 (P.134) において、以下の条件すべてに該当する場合は液状化の判定を行う必要があると記載されてい ます。 本プログラムは土質種類に関わらず、「層No」の『SW=1』が入力され、下記条件を満たす場合、液状化の判定を行うよ うになっております。 1)地下水位が地表面から10m以内にあり、かつ地表面から20m以内の深さに存在する飽和土層。 2)細粒分含有率FCが35%以下の土層、またはFCが35%をこえても塑性指数IPが15以下の土層。 3)50%粒径D50が10mm以下で、かつ10%粒径D10が1mm以下である土層。 上記を満たしていない場合は、「-」の出力になります。該当しないかを再度ご確認ください。

Q6-3-2 粘性土層の判定を行っていないにも関わらず、低減係数が『0.0』と表示されるのはなぜか。

A6-3-2 本プログラムでは、3m以内にある粘性土層で一軸圧縮強度が20(kN/m2)以下の土層は、耐震設計上ごく軟弱な土層とみなし、SWの設定にかかわらず低減係数を0.000とします。これに該当しないかをご確認ください。

※Q&Aはホームページ (https://www.forum8.co.jp/faq/win/foundation-tqa.htm) にも掲載しております。

基礎の設計・3D配筋(旧基準) Ver.2操作ガイダンス

2022年6月 第12版

発行元 株式会社フォーラムエイト 〒108-6021 東京都港区港南2-15-1 品川インターシティA棟21F TEL 03-6894-1888

禁複製

お問い合わせについて

本製品及び本書について、ご不明な点がございましたら、弊社、「サポート窓口」へお問い合わせ下さい。 なお、ホームページでは、Q&Aを掲載しております。こちらもご利用下さい。

> ホームページ www.forum8.co.jp サポート窓口 ic@forum8.co.jp FAX 0985-55-3027

基礎の設計・3D配筋(旧基準) Ver.2 操作ガイダンス

