水平2方向地震動を受ける鉄筋コンクリート橋脚の塑性変形と損傷 に関する検討

青戸拡起¹·牧原成樹²·吉川弘道³

¹株式会社 フォーラムエイト 大阪支社 (〒530-6013 大阪府大阪市北区天満橋 1-8-30 OAP タワー13F) ²武蔵工業大学大学院 工学研究科 都市基盤工学専攻 (〒158-8557 東京都世田谷区玉堤 1-28-1) ³武蔵工業大学 工学部 都市基盤工学科 教授 (〒158-8557 東京都世田谷区玉堤 1-28-1)

1. はじめに

地震動は多方向から作用し、その時、構造物は様々 な方向に振動する3次元的な複雑な挙動となる。橋 梁の場合、橋軸方向と橋軸直角方向に同時に地震動 が作用するため、橋脚などの柱部材は、本来、2軸 曲作用下の部材となる。しかし、現在実施される非 線形動的解析による橋梁の耐震性能照査は、そのほ とんどが1方向入力、すなわち、橋軸方向と橋軸直 角方向別々に地震動を作用させており¹⁾²⁾³、さらに 1 軸曲げ作用下の部材の性能と比較する事によりそ の耐震性能を評価している。

水平2方向荷重による2軸曲げ作用下の鉄筋コン クリート部材は、1方向荷重が作用する場合に比べ て、耐荷力が低下し破壊性状がより厳しくなること ⁽¹⁾⁵⁾、最大応答が増大する事⁶⁾⁷⁾が確認されている。 また、2軸曲げ作用下のRC柱の挙動について、ファ イバー要素を用いた解析が非常に有効な解析手法で ある事も確認されている⁸⁾⁹⁾¹⁰⁾。2軸曲げ作用下の 性能を把握し反映させることは、より現実の挙動を に評価出来るだけでなく、部材および構造系の崩壊 などに対する安全性をより正しく評価する事につな がるため、非常に重要なことと考える¹¹⁾。

そこで、本論では、実規模の鉄筋コンクリート単 柱橋脚を対象にして、実際の地震動と同様に水平2 方向(橋軸方向と橋軸直角方向)同時に地震動を入 力した動的非線形解析を、多数の観測波形により実 施する。そして、その最大応答値に着目し、1 方向 に地震動を入力する(橋軸方向と橋軸直角方向別々 に作用させる)場合と比較することにより、水平2 方向同時に地震動が作用する時の、鉄筋コンクリー ト橋脚の基本的な動的非線形応答特性について整理 する。さらに、水平2方向同時に地震動を入力する 場合について、その入力方向を様々変化させた感度 解析を行い、その時の最大応答値のばらつきについ ても検証している。

2. 解析手法の概要

(1)解析対象

図-1 に示す、円形断面を有する鉄筋コンクリート 単柱橋脚を解析対象とする。なお、レベル 2 地震動 に対し、道示 V¹⁾の地震時保有水平耐力法を満足する 様、断面寸法と配筋を決定している。

(2) 解析モデルと解析手法

図-2 に示す骨組みを用い、後述する材料非線形履 歴モデルを適用して、ファイバー要素を用いた非線 形動的解析を行う。柱基部に、断面高さ程度のファ イバー要素を設け、他の部材は剛あるいは弾性要素 とした。この時、支承位置にばね要素を設定し、橋 軸回りを固定、橋軸直角回りを自由(=ピン)とす ることで、橋軸方向と橋軸直角方向の、上部構造の 慣性力作用位置の違いを考慮している。張出梁部分 の回転慣性質量は無視した。支持条件は、フーチン グ底面において固定とする。動的解析に用いる数値 積分法は、Newmark- β 法(β =1/4)による。なお、解 析コードには、UC-win/FRAME(3D)¹²⁾¹³⁾を用いる。

図-2 解析モデル図

なお、用いる剛性マトリクスによって、部材軸方 向の曲率分布がいくつか仮定できる。本解析コード では、図-3 に示す(a)~(d)のモデルが利用出来る。 (a)は、部材両端で剛性を制御するもので、部材軸方 向に曲率が一定値を示す区間を 2 区間持ち、これが 部材中央で変化するモデルである¹¹⁾。道示 V におい て、塑性ヒンジ区間(=塑性ヒンジ長 L_p)では、『塑 性曲率は一定値を示すものと仮定』されており、(a) のモデルを用いるとこの仮定をよく表現出来る。よ って、本論では、(a)のモデルを利用した。このモデ ルによると、鉄筋コンクリート単柱の正負交番静的 載荷実験における荷重変位特性がよく表現できるこ と、また Takeda モデルによる 2 次元動的非線形解析 の結果とよく一致することを確認している¹³。

図-4 に、ファイバー要素に適用する材料非線形モ デルを示す。

コンクリートについて、圧縮領域は、その骨格特 性を道示 V10.4 に準じて設定し、徐荷履歴は 2 次曲 線、再載荷履歴は過去の最大圧縮ひずみ点を指向す る直線としている。引張領域は、ひびわれ発生後の 軟化を初期ヤング係数の 1/10 程度の直線とし、徐 荷・再載荷履歴は、初期ヤング係数の勾配をもつ直 線とする(図-4(a))。また、圧縮履歴が、その最大圧 縮応力点に達した後は引張応力が発生しない、経路 依存型の構成則となっている。引張から圧縮に向か う際の再接触、および付着応力の効果は考慮してい ない。かぶりコンクリートについては、横拘束効果 が及ばないもの(=横拘束筋量を 0)とし、その骨 格特性はコアコンクリートと区別している⁸⁾(図 -4(b))。この時の下降勾配 E_{des}は、RC 柱の実験との 比較をもとに 10000N/mm²としている¹³⁾。

鉄筋については、降伏後の剛性を Es/100 とした バイリニア型の骨格とし、Giuffre-Menegotto-Pinto モ デル¹⁴⁾によりバウシンガー効果を考慮している(図 -4(c))。なお、座屈や破断にともなう現象は考慮し ていない。

図−4 ファイバー要素に適用する材料履歴モデル

減衰マトリクスは要素別剛性比例を用いる。ただ し、コンクリートは十分な履歴減衰が発生する履歴 モデルであることから、コンクリート部分には粘性 減衰が作用しないものとした。一方、鋼材は線形域 でも減衰自由振動が認められることから、鉄筋には 粘性減衰定数を与え(ここでは 5%と仮定)、鉄筋分 のみの剛性に比例させるモデルとした。なお、断面 全体に対する鉄筋分の剛性は小さいため、ファイバ ー要素に作用する粘性減衰は非常に小さくなる。

(3)時刻歴解析に用いる地震動

非線形応答は、波形の位相特性により応答性状が 大きく変わるが、実態をより正確につかむために、 本論では観測波形を利用することにする。

No	発生年日	マク゛ ネチュ ート゛	地震名称	利用し た観測 点数
1	1995.1.17	7.2	兵庫県南部	1
2	1997.5.13	6.4	鹿児島県薩摩地方	2
3	2000.10.6	7.3	島根県東部	1
4	2001.3.24	6.7	安芸灘	2
5	2003.5.26	7.1	宮城県沖	3
6	2003.9.26	8.0	釧路沖	7
7	2003.9.26	7.1	十勝沖	1
8	2004.10.23	6.8	新潟県中越地方	5
9	2005.8.16	7.2	宮城県沖	1

表-1 解析に用いる地震動

図-5 解析に用いる地震動の震源と観測点

過去に震度 6 以上を記録した地震を対象に、最大 加速度で400Gal以上を観測したK-NET¹⁵⁾観測点の記 録と、兵庫県南部地震での記録を利用する。表-1 に 利用した地震と観測点数を、図-5 に利用した地震の 震源と観測点の位置を示す。なお、有感地震の検索 および地震名称は、気象庁の震度データベース検索 ¹⁶⁾を参照した。

図-6に、加速度波形の例として、兵庫県南部地震 において神戸海洋気象台で観測された波形を示す。 水平成分の観測は、一般に、南北(NS)方向と東西(EW) 方向の加速度波形が記録されており、本論では、こ れを水平2成分の地震動として利用する。鉛直動の 影響については無視した。

3. 水平2方向地震動の与え方に関する検討

(1)入力地震動の作用方法

軸方向 (a)1 方向入力

(b) 水平 2 方向同時入力 図-7 地震動の入力方向と方位

ここでは、図-7に示す2種類の入力方法の違いが、 鉄筋コンクリート単柱橋脚の最大応答に及ぼす影響 について、整理する。同図(a)の方法は、現在実施さ れる多くの動的解析の手法に従うもので、橋軸方向 と橋軸直角方向別々に地震動を作用させる方法であ る(これを水平1方向入力と呼ぶ)。同図(b)の方法 は、実際の地震の様に水平2方向の地震動を同時に 作用させる方法である(これを水平2方向同時入力 とよぶ)。なお、地震動の入力方向(=方位)によっ ても、最大応答が変化する事が予想されるが、ここ では、1方向入力と水平2方向同時入力の違いに着 目するため、EW方向は橋軸方向に、NS方向は橋軸 直角方向に、それぞれ一致させるものと仮定する。 入力方向が与える影響については、次章で検討する。

(2) 動的解析結果

図-8に、例として兵庫県南部地震の観測波形を作 用させた場合の解析結果を示す。同図(a)は橋脚天端 おける応答変位の軌跡、(b)は柱基部における橋軸回 りのM- φ履歴図である。橋軸直角方向に着目した 最大応答変位は、1方向入力時は179mm、水平2方 向入力時は287mmであった。よって、最大応答変位 の増大率は1.6倍となり、この地震においては、水 平2方向同時入力の影響、すなわち2軸曲げ作用に より最大応答変位が増大したことになる。同様に、 同図(b)からも、2軸曲げ作用により最大応答曲率が 増大したことがわかる。

図-8 時刻歴応答波形および履歴(兵庫県南部地震)

図-9 に、断面の各所に生じた最大圧縮ひずみの分 布を示す。ここでは、最大圧縮ひずみɛ'の大きさに 応じ、次式に示す 4 段階に区分して示している。 Level2 は道示 V におけるタイプ1 地震動用の終局ひ ずみを超えた事を表し、Level3 はタイプ 2 地震動用 の終局ひずみを超えた事を表す。Level4 は、コンク リートが圧縮応力に対し抵抗していない状態を表す。

Level1	ϵ'_{cc}	$>_{\mathfrak{S}}$ '		
Level2	ε' _{cu}	$>_{\mathfrak{s}}$ '	$\! \geqq \! \epsilon'_{cc}$	(1)
Level3	ε' _{ce}	$>_{\mathfrak{s}}$ '	$\! \geqq \! \epsilon'_{cu}$	
Level4	ε'	$\geq \epsilon'_{ce}$		

コアコンクリート内部に生じた損傷の Level を比較すると、1 方向入力時は橋軸直角方向への入力時に Level2(■) がわずかに認められる程度であるのに対し、水平2方向同時入力時は Level2(■)の領域が拡大するとともに Level3(■)に達していることが確認される。コアコンクリート最外縁における最大圧縮ひずみの値は、1 方向入力時は 5544 μ、水平2 方向入力時は 10259 μ となり、増大率は 1.85 となる。

図-10 に、対象とした全ての地震動について、入 力地震動の最大加速度(P.G.A)と最大応答塑性率の関 係を整理した。水平2方向同時入力および1方向入 力いずれの場合においても、入力地震動の加速度が 構造物の応答変位と比例しない事が、改めて確認で きる。また、図-11 に、各観測点の計測震度と最大 応答塑性率の関係を整理した。計測震度が大きいほ ど、最大応答塑性率も大きくなる傾向にあるが、ば らつきは大きい。

図-11 計測震度と最大応答塑性率

図-12 に、1 方向入力時の最大応答塑性率µ_r⁽¹⁾と、 水平 2 方向同時入力時の最大応答塑性率µ_r⁽⁵⁾を整理 した。最大応答塑性率の大きい箇所でデータが少な いが、水平 2 方向同時入力時の最大応答の方が、1 方向入力時に比べて上回る丸傾向が見られる。

図-12 地震動入力方法と最大応答塑性率

ここで、最大応答塑性率の増大率を次の様に定義 する。

$$\zeta_{\mu}^{LG} = \mu_{r}^{LG(1)} / \mu_{r}^{LG(\mathscr{B})}$$
(2a)

$$\zeta_{\mu}^{IR} = \mu_r^{IR(1)} / \mu_r^{IR(\mathfrak{F})}$$
(2b)

- ζ^{LG}: 2 軸曲げ作用による最大応答塑性率の増大
 率
- ζ_μ^{TR}: 2 軸曲げ作用による最大応答塑性率の増大 率
- μr^{LG(1)}: 1 方向入力時の橋軸方向の最大応答塑性率
- μr^{TR(1)}: 1 方向入力時の直角方向の最大応答塑性率
- μr^{LG(多)}:水平2方向同時入力時の橋軸方向の最大応 答塑性率
- μr^{TR(多)}: 水平2方向同時入力時の直角方向の最大応
 答塑性率

塑性率を求める際に用いる降伏変位として、ここで は、1 方向入力時、すなわち 1 軸曲げ作用下での降 伏時の変位とする。水平 2 方向同時入力時は、部材 が降伏するときの方向は、地震動の入力方法や地震 動によって異なり、最大応答変位の発生する方向と も異なる。よって、通常用いる 1 軸曲げ作用下の部 材で利用する塑性率とは、やや定義が異なることに 注意しなければならない。ここでは、塑性化の度合 いとしてではなく、正規化した指標として、このよ うな塑性率を用いることとし、1 軸曲げ作用下での 降伏変位を利用して、2 軸曲げ作用下の塑性率を表 現する事にした。

図-13 に、対象とした全ての地震動について、最 大応答塑性率の増大率ζμを整理した。最大は 2.47、 平均値は 1.09 であったが、1 を下回るものもある。 よって、2 軸曲げ作用が必ずしも橋軸方向および橋 軸直角方向への最大応答変位を増大させる作用では ない事がわかる。

図-13 各地震による最大応答塑性率の増大率ζ_μ

ここで、最大圧縮ひずみの増大率を次の様に定義

する。

$$\zeta_{\varepsilon} = \varepsilon^{,(\$)} / \varepsilon^{,(1)} \tag{3}$$

ここで

- ζ_ε: 2 軸曲げ作用による最大圧縮ひずみの増
 大率
- $\epsilon^{,(1)} = MAX (\epsilon^{,LG}, \epsilon^{,TR})$
- ε'(多): 水平2方向同時入力時の最大圧縮ひずみ
- ε^{'(1)} : 1 方向入力時の最大圧縮ひずみ
- ε^{'LG}: 橋軸方向への1方向入力時の最大圧縮ひず
 み
- ε^{'TR}: 直角方向への1方向入力時の最大圧縮ひず
 み

図-14 に、対象地震動全てにおける最大圧縮ひず みの増大率 ζ_{ε} を整理した。これについては、ほぼ全 てのケースにおいて、1 を上回っている。すなわち、 2 軸曲げ作用により、最大圧縮ひずみが増加する(ζ_{ε} ≧ 1)ことを示している。なお、増大率は、最大で 1.85、平均は 1.18 であった。

以上より、最大応答変位と最大圧縮ひずみについ て、2 軸曲げ作用により増大する可能性が改めて確 認できた。その増大率は、地震動よって大きくばら ついたが、平均的には、最大応答塑性率で10%程度、 最大圧縮ひずみで20%程度であった。よって、現在 よく実施される1方向入力による動的非線形解析で 得られる最大応答よりも、実際の地震時には、より 大きな応答が発生する可能性があることになる。水 平2方向同時入力により、非線形応答を検討するこ との重要性を示すものと考える。

4. 水平2方向地震動の入力方向に関する検討

(1)入力地震動の作用方法

水平 2 方向同時入力による検討においては、その 入力方向が問題となる。ここでは、水平 2 方向同時 入力において、図-15 に示すように、構造物に対す る地震動の入力方向を変化させ、鉄筋コンクリート 橋脚の最大応答に及ぼす影響を検討するものである。 なお、0°の時、EW 方向を橋軸方向に一致させ、入 力角度を 5°刻みで変化させる。90°の時、EW 方向 は橋軸直角方向に一致する。

図-15 入力方向の変化

(2)動的解析の結果

図-16 に、兵庫県南部地震の観測波形を用いた場 合について、各入力方向における橋脚天端の応答変 位の軌跡図を示す。地震動の入力方向(=方位)の 回転に追従して、応答変位の軌跡の主要振動方向も 変化するが、軌跡の形状は大きく変化し、最大応答 変位も大きく変化することがわかる。

図-17 に、兵庫県南部地震の観測波形を用いた場 合について、各入力方向における最大圧縮ひずみの 分布図を示す。地震動の入力方向(=方位)の回転 に追従して、損傷が集中する方向や領域が変化して いる事がわかる。

図-18 に、兵庫県南部地震の観測波形を用いた場 合について、入力方向と最大応答塑性率μrの関係を 示す。入力方向により、最大応答塑性率が連続的に 変化し、応答が最小となる方向、あるいは最大とな る方向が存在する事がわかる。変動の大きい、橋軸 方向に着目すると、最大応答塑性率に関する変動係 数νμは 0.34、最大値と最小値の比αμをとると 2.93 と なった。

図-19 に、対象とした全ての地震動について、入 力方向の違いで生じた最大応答塑性率の、最大値と 最小値の比α_μを整理した。最小で1.17、最大で4.92、 平均は1.88となった。すなわち、入力方向を限定し て検討した場合には、平均的にその2倍程度の大き な応答が発生する可能性を考慮しなければならない 事になる。入力方向を限定して検討することが、不 十分であることを示すものと考える。

図-17 各入力角度における最大圧縮ひずみの分布 (兵庫県南部地震)

図-20 に、コアコンクリート最外縁に生じた圧縮 ひずみについて、最大値と最小値の比α_εを整理した。 最小で 1.05、最大で 1.54、平均は 1.29 となった。

以上より、水平2方向同時に地震動を作用させる 場合には、その入力方向が構造物の応答、ここでは 最大応答塑性率と最大圧縮ひずみに対して、影響を 及ぼす事が多数の地震動において確認された。すな わち、水平2方向同時入力による動的解析において 観測波形を入力地震動として用いた場合には、1つ の入力方向だけで地震時の安全性を検討することの 危険性を示すものと考える。これらの現象について、 地震動の特性との関連性などには全く触れていない が、これについては今後の課題としたい。

5. まとめ

以上の検討から、水平2方向同時入力により非線 形応答を評価する事の重要性を確認する事ができた。 加えて、次の結果が得られた。

- 現状よく用いられる地震動の作用方法(=1方向 入力)と比べ、実際の地震と同様に水平2方向同 時に地震動を作用させた場合、最大応答塑性率、 最大圧縮ひずみは増加する傾向にある。すなわち 損傷状態がより厳しく評価される。多数の地震動 で検討した結果、最大応答塑性率は最大で2倍程 度、平均で1.1倍程、増大する結果となった。
- 2)実際の地震動と同じように、水平2方向同時に地 震動を作用させた場合に、その入力方向によって 最大応答が大きく変動する。多数の地震動で検討 した結果、入力方向の違いによって最大応答塑性 率は平均で2倍程度の差が生じる結果となった。

なお、今回は円形断面を有する橋脚を用いた検討の みとなったが、矩形断面を有する橋脚についても、 同様の検討を進めたいと考えている。

謝辞:防災科学技術研究所 K-NET の観測記録を使わせて頂きました。関係諸氏に感謝いたします。

参考文献

- 日本道路協会:道路橋示方書V耐震設計編 平成14年 3月
- (社)日本道路協会:道路橋の耐震設計に関する資料 平成9年3月,1997.3.
- (社)日本道路協会::道路橋の耐震設計に関する資料
 平成10年1月,1998.3
- 4) 早川涼二,川島一彦,渡邊学歩:水平2方向地震力を受ける単柱式 RC 橋脚の耐震性,土木学会論文集, No.759/I-67, pp.79-98,2004.4
- 5) 益子直人, 睦好宏史, Willam Tanzo, 町田篤彦:仮動的実 験を用いた 2 方向地震力を受ける RC 橋脚の弾塑性応 答性状に関する研究,コンクリート工学年次論文報告集, Vol.16, No.2, 1994
- 6) 土屋智史, 福浦尚之, 前川宏一:Fiber Model を用いた 3 次元有限要素動的解析による水平 2 方向入力を受ける RC橋脚の応答,「塑性域の繰り返し劣化性状」に関する シンポジウム, 日本コンクリート工学協会, pp.359-368, 1998.8
- 7) 青戸拡起,大江亮二,吉川弘道:2 方向地震力を受ける RC単柱橋脚のせん断強度劣化,第3回地震時保有耐力

法に基づく橋梁の耐震設計に関するシンポジウム講演 論文集,1999.12

- 8) 萩本英典,川島一彦,渡邊学歩,永田聖二:ファイバー 要素解析に基づく2方向地震力を同時に受ける RC 単 柱式橋脚の耐震性,第8回地震時保有耐力法に基づく 橋梁構造の耐震設計に関するシンポジウム,2005.2
- 9) 永田聖二,川島一彦,渡邊学歩:RC 逆L 字型橋脚の模型実験に対するファイバー要素解析,第8回地震時保有耐力法に基づく橋梁等構造の耐震設計に関するシンポジウム講演論文集,2005.2
- 10) 芳村 学,青山 博之,川村 満:2 方向外力を受ける鉄筋
 コンクリート構造物の解析 その 1.2 軸曲げを受ける
 RC 柱の解析,日本建築学会論文報告集,第 298 号
 pp.31-41,1980.12
- 11) COMITE EURO-INTERNATIONAL DU BETON:RC FRAMES UNDER EARTHQUAKE LOADING -STATE OF THE ART REPORT-, Tohmas telford, 1996
- 12) 株式会社フォーラムエイト: UC-win/FRAME(3D)電子 マニュアル, 2005.10
- 13) 高梨和光,青戸拡起:3次元動的解析法を用いた耐震性 能照査方法に関する考察,第8回地震時保有耐力法に 基づく橋梁等構造の耐震設計に関するシンポジウム講 演論文集,2005.2
- 14) Rajesh Prasad Dhakal, Koichi Maekawa:Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling, Engineering Structures 24, pp1383-1396, 2002
- 15) 防災科学技術研究所ホームページ:強震ネットワーク K-NET, http://www.k-net.bosai.go.jp/k-net/
- 16) 気象庁ホームページ:震度データベース検索, http://www.seisvol.kishou.go.jp/eq/shindo_db/shindo_index .html