

既設3径間連続トラス橋の動的非線形耐震補強検討

-制震ダンパー、制震ストッパーを用いた効果的制震対策の適用-

株式会社土木技研

概要

本橋は、供用後 40 年を経過した全長 434.10m の 3 径間連続鋼下路式ワーレン トラス橋 2 連である。近年の大型車交通量増加状況から、過年度には H24 道示に 準じ、各橋脚は単柱としての耐震補強対策が行われている。本検討では、橋梁全体 モデルでの3次元動的非線形解析を実行し、現況耐震性能照査、及び、制振ダンパ ー、制震ストッパーを採用しての効果的な L2 地震時での耐震補強対策案の検討を 行った。

▲現地写真

構造諸元

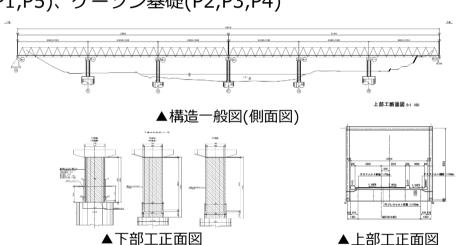
・上部構造: 3 径間連続鋼下路式ワーレントラス橋 2 連(橋長 434.10m, 支間長 72.00mx6 支間)

・下部構造:逆T式橋台、RC-T型単柱橋脚+井筒基礎(P1,P5)、ケーソン基礎(P2,P3,P4)

橋脚柱部は RC 巻立補強済

· 幅員構成: 10.250m

(有効幅員 車道 6.75m、歩道 2.00m)


·耐震性能:耐震性能 2

· 地盤種別: Ⅱ 種地盤

・支承条件:固定・可動(固定:P1,P5 橋脚)

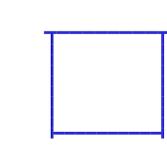
・耐震補強履歴: P1・P5: 鋼板併用 PP モルタル補強

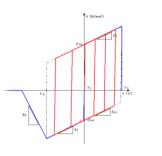
P2・P3・P4: RC 巻立補強

解析モデル

本橋は、P3 橋脚を中心に左右の構造体が対称構造のため、解析は A1 から P3 径間を対象とした。主要部材 は以下に示す要素を用いてモデル化を行った。

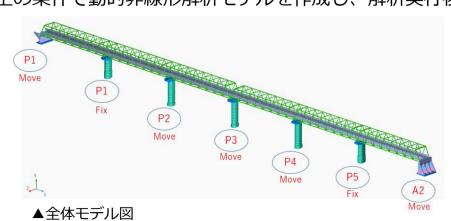
·床版:弾性梁要素

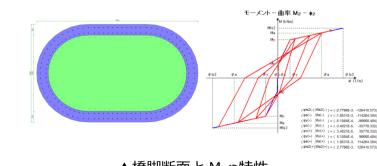

・上部工鋼部材:ファイバー要素


・支承:ばね要素 · 橋台: 弾性梁要素

・橋脚: M-φ要素(RC 巻立補強済)

・基礎:基礎ばね


▲P3 橋脚正面図



▲鋼材断面(ファイバー)とヒステリシス

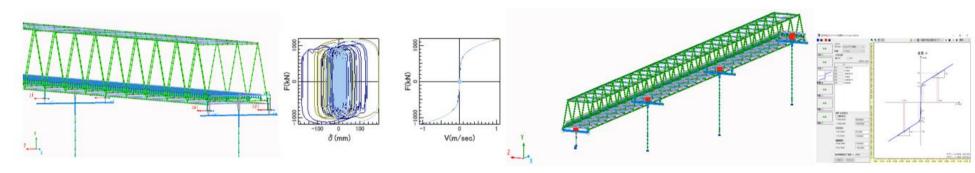
以上の条件で動的非線形解析モデルを作成し、解析実行後の応答値を取得した。

▲橋脚断面と M-φ特性

設計結果

【現況照査結果】

降伏ひずみ照査では、支承条件が固定である P1 橋脚付近の下弦材や斜材の応答値が、降伏ひずみを超過する結果と なった。また、曲げ耐力照査では、P1 橋脚の基部付近で応答値が曲げ耐力を超過する結果となった。


【補強検討】

現況照査結果で確認された制限値超過対策のため、以下の方法を組み合わせて最適な種類と規格を検討した。

補強 1: P2・P3 橋脚橋軸方向側面に制震ダンパーを設置(橋軸方向対策)

補強2:各下部工橋座面位置に制震ストッパーを設置(直角方向対策)

補強3:上部鋼部材で降伏している部材に当て板を設置

▲対策 1:制震ダンパー設置位置と速度依存型ダンパーの結果

▲対策 2:制震ストッパー設置位置とばね特性

▲対策 3: 当板補強

【補強照査結果】

・上部工主構造については、5年に1回の定期点検による維持管理状況かつ緊急時の交通環境 確保の観点から、主構造である上・下弦材や橋門構、上横支材等は降伏に達していない事を 確認し、桁下の2次部材は塑性を許容する方針とした。

・下部構造についても、耐震性能が確保されていることを確認した。

圧縮ひずみ照査											
上部工降伏照查		①ε最小値 (μ)	②圧縮降伏 ひずみ (µ)	比率 ①/②	状態	④ε最大値 (μ)	⑤引張降伏 ひずみ (μ)	比率 ④/⑤	状態	鋼材	
上弦材	橋軸タイプⅡ				OK				OK	SM490Y	
	直角タイプⅡ				OK				OK	SM490Y	曲率
上横梁	橋軸タイプⅡ				OK				OK	SS400	
	直角タイプⅡ	-1090	1175	0.928	OK		-		OK	SS400	
斜材	橋軸タイプⅡ	-811	1175	0.690	OK	837	1175	0.712	OK	SS400	
	直角タイプⅡ	-1120	1175	0.953	OK	1080	1175	0.919	OK	SS400	11
下弦材	橋軸タイプⅡ	-1100	1175	0.936	ОК	1160	1175	0.987	ОК	SS400	tt/
	直角タイプⅡ				OK				OK	SM490Y	
縦桁	橋軸タイプⅡ	-1100	1175	0.936	OK	621	1175	0.529	OK	SS400	ا
	直角タイプⅡ	-1190	1175	1.013	圧縮降伏				OK	SM490Y	íL
横桁	橋軸タイプⅡ	-9650	1175	8.213	圧縮降伏	9370	1175	7.974	引張降伏	SS400	
	直角タイプⅡ	-5750	1175	4.894	圧縮降伏	5370	1175	4.570	引張降伏	SS400	

	■下部傳	造照査結	未一員							
\prod	L2地震時タイプ2				P	1	P2		P3	
Ш					橋軸方向	直角方向	橋軸方向	直角方向	橋軸方向	直角方向
II.		段落部	фу	応答値	2.17E-04	1.31E-04	4.68E-04	3.03E-04	3.62E-04	3.30E-04
				制限値	4.29E-04	2.60E-04	5.83E-04	3.61E-04	5.75E-04	3.56E-04
1	曲率照査			比率	0.51	0.50	0.80	0.84	0.63	0.93
-11	四十派且	柱基部	фа	応答値	5.46E-04	2.93E-04	9.66E-04	6.05E-04	4.72E-04	8.60E-04
ᅦ				制限値	1.88E-03	1.19E-03	1.74E-03	1.69E-03	1.73E-03	1.68E-03
11				比率	0.29	0.25	0.55	0.36	0.27	0.51
Į[応答値	14560	18917	15867	18305	13740	17565
╢	せん断而	せん断耐力照査		制限値	43211	68880	37234	52946	22885	31076
4				比率	0.34	0.27	0.43	0.35	0.60	0.57

まとめ

H24 道示に準じ、単柱扱いとして補強対策済の RC 下部構造を有する 3 径間連続鋼下路式ワーレントラス橋 2 連を、 橋梁全体の3次元モデルとして動的非線形解析を行い、上・下部工に発生する応力度・耐力の状況を確認し、制限値超 過対策のため、目的に応じた補強案を適用しての検討を行った。

- ①支承形式や条件の変更、制震デバイスの適用を検討し最終案を決定した。
- ②検討結果より、可動橋脚への応力分担を行い、橋脚耐力の制限値内、かつ、上部工の慣性力低減を図ることができた。 ③上部工、支承等の L2 地震時対応が図られ、橋梁全体としての耐震性能向上を実現することができた。