基礎の設計・3D配筋 (部分係数法·H29道示対応)

Ver.9 upgrado

杭/鋼管矢板/ケーソン/地中連続壁/直接基礎 及び液状化に対応した耐震設計、図面作成

Advanced ¥517,000

(税抜¥470,000)

Standard ¥408,100

電子納品 (税抜¥371,000) l ite

¥264.000

(税抜 ¥240,000)

有償セミナ

サブスクリプション価格 p.163~164参照 UC-1エンジニアスイート p.18~19参照

Windows 11 対応

UC-1サポートAI

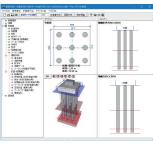
計算・CAD統合

3D配筋対応

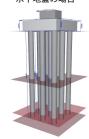
杭/鋼管矢板/ケーソン/地中連続壁/直接基礎、液状化に対応した耐 震設計、図面作成プログラムです。永続変動作用、偶発作用(レベル2地震 動) による計算、部材の設計をサポートし、詳細設計レベルで様々な基礎 形式・工法の検討が行えます。3面図表示によるデータ確認、図をまじえた 結果表示、基準値機能をサポートし、設計調書の出力が可能です。杭基礎 は、場所打ち杭を含む8種の杭種に対応、各種工法をサポートしています。

F8-AI UCサポート

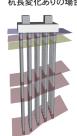
- 設計支援を目的としたAI機能を搭載
- 入力操作や計算理論の解説など、サポ -卜窓口へお問合せいただくことなく製 品内で解決可能な手段をご提供します
- 多言語、音声入力に対応しており、 外国人技術者でも母国語での入力が 可能です



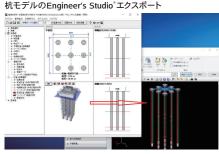
【杭基礎】


- 杭基礎設計便覧(令和2年9月)対応
- 永続変動作用及び偶発作用時の2次元解析/2.5次元解析安定計算
- 偶発作用時の立体解析による計算に対応(Advancedのみ)
- 地層傾斜対応
- 杭径·杭長変化対応
- ●場所打ち杭/鋼管杭/SC+PHC杭/鋼管ソイルセメント杭/PHC杭 /SC杭/マイクロパイル(ハイスペックマイクロパイル)に対応
- 打込み/中掘り(最終打撃)/プレボーリング/セメントミルク/コン クリート打設の施工工法に対応
- 杭頭接合部照査、PHC杭の杭頭カットオフ区間の照査に対応
- 落橋防止作動時照査における橋脚杭基礎/橋台杭基礎ごとの専用入 力画面を用意
- 群杭効果を考慮した計算に対応
- 地盤ばね算出対応(固有周期、EQ無し、EQ有り)
- 杭突出部の水平荷重、杭体水平荷重(杭部材)対応

- 任意荷重 (フーチング部材)対応
- フーチング形状、柱下端作用力からフーチング下面中心の作用力自 動計算に対応
- 杭体の複数断面の照査に対応
- フーチングの張出部および連続フーチング柱間の照査に対応
- 鉄筋かご無溶接工法対応
- 斜面の傾斜を考慮した地盤ばね低減の安定計算対応(橋台のみ)
- 薄層支持の先端支持力の自動算定対応
- 偶発作用時の水平押し抜きせん断照査対応
- 杭モデルのEngineer's Studio®エクスポート(Advancedのみ)
- 設計調書対応
- 3Dアトリビュート対応
- ●「橋脚の設計・3D配筋(部分係数法・H29道示対応)」「橋台の設計・ 3D配筋(部分係数法・H29道示対応)」「ラーメン式橋台の設計計算 (部分係数法・H29道示対応)」「箱式橋台の設計計算(部分係数法・ H29道示対応)」「二柱式橋脚の設計・3D配筋(部分係数法・H29道示 対応)」の連動に対応

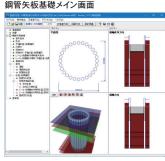

杭基礎メイン画面

杭径変化なし 水平地盤の場合

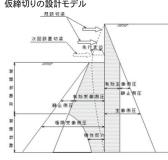


地層傾斜 杭長変化ありの場合

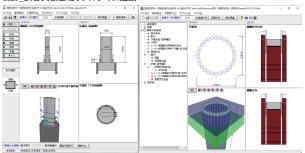
杭径変化



【鋼管矢板基礎】


- 鋼管矢板基礎設計施工便覧(令和5年)に対応
- 井筒型鋼管矢板に対応
- 仮締切兼用方式に対応
- 円形、小判形、矩形の平面形状に対応

- 打込み、中掘り(最終打撃)、セメントミルク、コンクリート打設の施工 工法に対応
- ●「橋脚の設計・3D配筋(部分係数法・H29道示対応)」との連動に対応
- 3Dアトリビュート対応


鋼管矢板基礎メイン画面

仮締切りの設計モデル

橋脚 鋼管矢板基礎リアルタイム連動

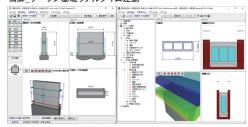
【ケーソン基礎】

- 設計例(日本圧気技術協会)に対応
- ニューマチック(止水壁方式/ピアケーソン)・オープン・充実断面の施 工方式対応
- 円形、小判形、矩形の平面形状に対応
- ●「橋脚の設計・3D配筋(部分係数法・H29道示対応)」との連動に対応
- 3Dアトリビュート対応

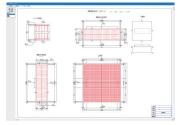
【図面作成:杭基礎(Lite以上)、直接基礎(Advanced)】

- 杭基礎:場所打ち杭、鋼管杭、鋼管ソイルセメント杭、PHC杭、SC杭、 SC+PHC杭
- 直接基礎:脚柱形状:矩形、円形、小判形
- 3D配筋:3DS、IFC形式のファイル出力対応
- 場所打ちコンクリート杭の鉄筋かご無溶接工法

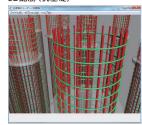
Ver.9 改訂内容


2025年7月31日リリース

- 1. 偶発作用時の立体骨組解析による計算
- 2. 橋脚杭基礎の落橋防止作動時照査対応
- 3. F8-AI UCサポート機能追加


適用基準

(公社)日本道路協会	道路橋示方書・同解説 I 共通編 平成29年11月 道路橋示方書・同解説 II コンクリート橋編 平成29年11月 道路橋示方書・同解説 IV 下部構造編 平成29年11月 道路橋示方書・同解説 V 前震設計編 平成29年11月 抗基礎設計便覧 令和2年9月 杭基礎設計便覧 平成27年3月 鋼管矢板基礎設計施工便覧 令和5年2月
国土交通省	3次元モデル成果物作成要領(案)令和3年3月


橋脚 ケーソン基礎リアルタイム連動

図面例(直接基礎)

3D配筋(杭基礎)

参考文献

(公社)日本道路協会	平成29年道路橋示方書に基づく道路橋の設計計算例 平成30 年6月 道路橋の耐震設計に関する資料 平成9年3月
(一社)日本基礎建設協会	場所打ちコンクリート杭の鉄筋かご無溶接工法 設計・施工に関するガイドライン 平成27年6月
(一財)先端建設 技術センター	先端建設技術・技術審査証明報告書 ハイスペックマイクロパイル工法 令和2年9月

基礎の設計・3D配筋 (旧基準) Ver.2

Advanced ¥408,100 (税抜¥371.000)

Standard ¥324,170 (税抜¥294,700)

Lite ¥218,680 (税抜¥198,800)

震度法、保有耐力法による計算、部材の設計をサポートし、詳細設計レベルで様々な基礎形式・工法の検討が行えます。地層・作用力データを共有し、3 面図表示によるデータ確認、図をまじえた結果表示、基準値機能をサポートし、各基礎工の設計調書、異種基礎の比較表の出力が可能です。杭基礎で は、鋼管ソイルセメント杭を含む13種の杭種に対応、各種工法をサポートし、補強設計(増し杭)にも対応しています。

【杭基礎】

- 安定計算(常時、レベル1・レベル2地震時)で、2次元解析、2.5次元解 析が可能
- 地層の傾斜を考慮。傾斜方向はX方向(橋軸直角方向)、Y方向(橋軸 方向)のうち1方向、地層線の3D表示も可能
- 杭種:鋼管杭、RC杭、PC杭、PHC杭、SC杭、場所打ち杭、任意杭、鋼 管ソイルセメント杭、SC杭+PHC杭、マイクロパイル、H形鋼杭、回転杭、 内面リブ付鋼管巻き場所打ち杭を用意、増し杭工法による補強設計
- 杭軸方向の断面変化に対応、杭径・杭長が異なる杭が混在した計算
- レベル2地震時照査:橋脚、橋台、水門(中央堰柱/端堰柱)の検討
- 橋脚の底版許容応力度法、橋脚,逆T式橋台のレベル2地震時照査
- 連続フーチング(2,3柱式橋脚)の照査
- 橋台特殊設計として、側方移動/盛りこぼし橋台に対応(設計要領)
- 杭突出部に流水圧、動水圧、慣性力の水平荷重を考慮可能
- 杭体に作用する任意荷重(水平方向の分布荷重,集中荷重)を考慮可能
- 杭頭と底版の接合部の計算、負の周面摩擦力に対する検討
- 固有周期算定に用いる地盤ばね定数の算出
- 水平変位の制限を緩和する杭基礎の設計(杭基礎便覧)
- 斜杭を考慮可能、圧密沈下時の斜杭の検討

【直接基礎】

- ●「道路橋示方書 IV」、「設計要領第二集」に準拠した直接基礎の支持 力計算
- フーチング前面の抵抗を考慮した作用力の算定(設計要領)
- 荷重の偏心傾斜を考慮した許容鉛直支持力の算出(荷重の方向が1 方向(道示Ⅳ・設計要領)、荷重の方向が2方向(道示Ⅳ))
- 安定計算滑動、転倒、地盤反力度の照査(道示IV・設計要領)
- フーチングの補強設計に対応
- 橋脚底版の許容応力度法およびレベル2地震時照査対応
- 斜面の影響、荷重の偏心を考慮した許容鉛直支持力の算出・段差が ある基礎の安定計算 滑動、転倒、地盤反力度の照査(設計要領)

【鋼管矢板基礎】

平面形状:円形、小判形、矩形、矩形面取り

- 施工方法:仮締切り兼用方式、立上り方式、締切り方式
- ◉ 基礎本体、頂版/頂版と鋼管矢板との接合部の地震時保有水平耐力 法による照査、支保工の検討、根入れ長の検討も可能
- ◉ 鋼管矢板、鋼管杭:外周矢板、隔壁矢板、中打ち単独杭ごとに鋼管径、 断面変化(板厚、材質)を指定。断面ごとの杭径変化対応
- 鋼管矢板の施工方法:打込み工法、中堀り工法(最終打撃、セメントミ ルク噴出攪拌、コンクリート打設)、負の周面摩擦力に対する検討可能

【地中連続壁基礎】

- 平面形状は矩形に対応。常時、レベル1地震時、暴風時許容応力度法
- 地震時保有水平耐力法によるレベル2地震時の耐震設計、耐力照査
- 付属設計:頂版の計算、頂版と鋼管矢板との接合部の計算
- 杭頭接合部の計算(本体データの連動も可能)

【ケーソン基礎】

- 施工法はニューマチックケーソン(止水壁ケーソン方式、ピアケーソン 方式)オープンケーソン(止水壁方式)に対応。根入れの浅いケーソン 基礎の設計も可能
- 充実断面:オープン、ニューマチック、平面形状は円形、小判形、矩形
- 常時、レベル1地震時、暴風時許容応力度法、沈下計算に対応
- ◉ 地震時保有水平耐力法によるレベル2地震時の耐震設計、耐力照査

【液状化の判定】

土質定数の低減係数の計算、流動化が生じる場合の流動力の計算

適田其準

2027		
(公社)日本道路協会	道路橋示方書・同解説 共通編 平成24年3月 道路橋示方書・同解説 コンクリート橋編 平成24年3月 道路橋示方書・同解説 下部構造編 平成24年3月 道路橋示方書・同解説 下部構造編 平成24年3月 抗基礎設計便覧 平成27年3月 抗基礎設計便覧 平成19年1月 抗基礎設計便覧 平成4年10月 鋼管矢板基礎設計施工便覧 平成9年12月	
東·中·西日本高速道路(株)	設計要領 第2集 1章 計画、4章 基礎構造、5章 下部構造 平成 18年4月	