	管種	地震動による								傾斜地	硬軟		液状化		
対象管きょ		マンホールと 管きょの接続部		管きょと管きょの 継手部		鉛直断面の強度		管軸方向の強度		永久 ひずみ	急変化	液状化 の判定 (FL値)	永久 ひずみ	地盤沈下	
		屈曲角	抜出し量	屈曲角	抜出し量	耐荷力	応力度	管体 ひずみ	応力度	抜出し 量	抜出し 量	抜出し	抜出し 量	屈曲角	抜出し 量
継手管きょ	遠心力鉄筋コンクリート管 (開削工法用)	Lv1·2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	-	-	-	Lv2	Lv1•2 (*)	Lv2	Lv2	Lv2	Lv2
	遠心力鉄筋コンクリート管 (推進工法用)	Lv1•2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	Lv1•2 (+)	-	-	-	Lv2	Lv1•2 (*)	Lv2	Lv2	Lv2	Lv2
	陶管 (開削工法用)	Lv1•2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	-	-	-	Lv2	Lv1•2 (*)	Lv2	Lv2	Lv2	Lv2
	硬質塩化ビニル管 (ゴム輪接合)	Lv1•2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	-	-	-	Lv1•2 (+)	Lv2	Lv1•2 (*)	Lv2	Lv2	Lv2	Lv2
	強化プラスチック複合管	Lv1•2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	-	Lv1·2 (+) (近似式)	-	-	Lv2	Lv1·2 (*)	Lv2	Lv2	Lv2	Lv2
	ダクタイル鋳鉄管 (自然流下管)	Lv1•2 (+)	Lv1·2 (+)	Lv1·2 (+)	Lv1•2 (+)	-	Lv1·2 (+) (近似式)	-	-	Lv2	Lv1•2 (*)	Lv2	Lv2	Lv2	Lv2
一体構造	硬質塩化ビニル管 (接着接合)	Lv1·2	Lv1·2	-	-	-	-	-	Lv1·2	-	-	Lv2	Lv2	-	Lv2
	ダクタイル鋳鉄管 (圧送管)	-	-	Lv1·2	Lv1·2	-	-	-	Lv1·2	-	-	Lv2	-	-	-
	鋼管	-	-	Lv1·2	Lv1·2	-	-	Lv1·2	Lv1·2	-	-	Lv2	-	-	-
	ポリエチレン管	-	-	-	-	-	-	Lv1·2	Lv1·2	-	-	Lv2	-	-	-

Lv1・2: レベル1地震動、レベル2地震動で検討する項目、Lv2: レベル2地震動で検討する項目、- : 耐震検討を必要としない項目

	週用基华					
	(公社)日本下水道協会	下水道施設の耐震対策指針と解説 -2014年版- 下水道施設の耐震対策指針と解説 -2006年版- 下水道施設耐震計算例 -管路施設編- 前編 2015年版 下水道施設耐震計算例 -管路施設編- 前編 2001年版				
	(公社)日本水道協会	水道施設耐震工法指針·解説 2009年版 I 総論 水道施設耐震工法指針·解説 2009年版 設計事例集 水道施設耐震工法指針·解説 1997年版				
	(公社)日本道路協会	道路橋示方書·同解説 V 耐震設計編 平成29年11月 道路橋示方書·同解説 V 耐震設計編 平成24年3月 道路橋示方書·同解説 V 耐震設計編 平成14年3月				
(公社)土木学会		平成8年制定 コンクリート標準示方書 設計編				

参考 又	
(公社)日本下水道協会	JSWAS A-1 〈下水道用鉄筋コンクリート管〉 JSWAS A-2 〈下水道推進工法用鉄筋コンクリート管〉 JSWAS A-6 〈下水道小口径管推進工法用鉄筋コンクリート 管〉 JSWAS G-1 〈下水道用ダクタイル鋳鉄管〉 JSWAS G-2 〈下水道推進工法用ダクタイル鋳鉄管〉 JSWAS K-1 〈下水道用強性ブラスチック複合管〉 JSWAS K-2 〈下水道推進工法用硬質塩化ビニル管〉 JSWAS K-6 〈下水道推進工法用硬質塩化ビニル管〉 JSWAS K-14 〈下水道用オリエチレン管〉 JSWAS R-2 〈下水道用陶管〉 JSWAS R-3 〈下水道用進管ン

更生管の計算 Ver.3

管きょ更生工法における設計・施工管理ガイドライン(案)に基づいた 更生自立管、線形解析による更生複合管の計算プログラム

下水道施設の耐震対策 指針と解説 -2025年度版-対応予定 プログラム価格 ¥190,300 (税抜¥173,000) Windows 11 対応

電子納品 3D PDF

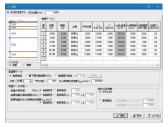
更生自立管の常時・地震時の計算、更生複合管の計算に対応したプログラムです。 液状化の判定にも対応しています。

【自立管の計算】

- 常時:曲げ強度による管厚と、たわみ率による管厚の算定
- 地震時の照査:管体応力、マンホール接続部の屈曲角、抜き出し量の照査
- 常時:曲げ強度による管厚とたわみ率による管厚の算定、外水圧による管
- 地震時の照査:管体応力、マンホール接続部の屈曲角、抜き出し量の照査

【複合管の計算】

- 線形解析による複合管の計算、常時、レベル1、レベル2地震時照査
- 下水道基準による継手の照査(レベル1、レベル2地震時)
- レベル2地震時照査で、構造物のじん性を考慮した補正係数Csの適 用が可能)


適用基準

(公社)日本下水道協会	管きょ更生工法における設計・施工管理 ガイドライン-2017年版-管きょ更生工法における設計・施工管理 ガイドライン (案) 更生管の手引き (案) 下水道推進工法の指針と解説-2010年版-下水道施設の耐震対策指針と解説-2014年版-下水道施設の耐震対策指針と解説-2006年版-下水道施設耐震計算例-管路施設編-前編 2001年版

メイン画面

地盤条件入力

裁孝文献

> 3×100						
(公社)日本下水道協会	JSWAS A-1 〈下水道用鉄筋コンクリート管〉 JSWAS A-2 〈下水道推進工法用鉄筋コンクリート管〉 JSWAS A-6 〈下水道小口径管推進工法用鉄筋コンクリート管〉 JSWAS K-1 〈下水道用硬質塩化ビニル管〉 JSWAS K-2 〈下水道用強化プラスチック複合管〉					