部分係数法·H29道示対応

● 部分係数の導入:設計状況に応じた荷重組合せ係数及び荷重係数を

- 固有周期算定におけるモデル:死荷重(D)の荷重係数および荷重組
- 地震時慣性力の算定:構造物の重量に対して死荷重(D)、設計水平 震度に対して地震の影響 (EQ)の荷重係数および荷重組合せ係数を 乗じる
- レベル2地震動の設計水平震度は、構造物特性補正係数と下限値の 老庫が削除
- 1基の下部構造とそれが支持している上部構造からなる振動単位で 弾性支承を用いる場合の固有周期算定方法をFRAME解析による固 有周期を算定に対応
- ◉ 「道路橋 支承便覧 平成30年12月」版に準拠したゴム支承の照査機 能に対応

Ver.8 改訂内容

2024年9月30日リリース

1. レベル1地震時の計算において雪荷重を考慮した計算に対応

2. 桁かかり長の計算において斜橋、曲線橋に対応

適用基準

(公社)日本道路協会	道路橋示方書·同解説 共通編平成29年11月 道路橋示方書·同解説 下部構造編 平成29年11月 道路橋示方書·同解説 村震設計編 平成29年11月

参考文献	
(公社)日本道路協会	平成29年道路橋示方書に基づく道路橋の設計計算例 平成29 年6月 道路橋の耐震設計に関する資料 平成9年3月 道路橋示方書・同解説 SI単位系移行に関する参考資料 平成10年7月 道路橋支承便覧 平成16年4月 道路橋支承便覧 平成30年12月 道路橋示方書・同解説 V 耐震設計編に関する参考資料 平成27年3月

震度算出(支承設計)(旧基準) Ver.10

旧基準 プログラム価格 ¥210,980

(税抜¥191.800)

立体骨組解析オプション ¥38,500 (税抜¥35,000)

- ◉ 常時・風時の解析:常時の支承移動量(静的フレーム解析を用いる場 合は、水平反力も算定)、風時の支承移動量および支点反力に対応
- 地盤種別の判定及び基礎バネの算出に対応
- 1基下部構造の場合、下部構造躯体の曲げ変形、基礎の変位、上部構 造慣性力作用位置における変位、下部構造間の固有周期比、設計水平 震度 khを算出
- 複数下部構造の場合は、面内・面外共、骨組データを自動作成 ● 下部構造の震度を算出し、地震時の各下部構造に作用する作用力を
- 躯体の剛性、基礎のばね定数を考慮した水平方向剛性算定をサポート
- 杭基礎の断面積・断面2次モーメントの自動算定機能対応
- 応答スペクトル法による動的解析に対応

【各製品の機能一覧】

項目	H29年道示	H24道示版	カスタマイズ版
適用示方書	H29	H24	H14
固有値解析	0	0	0
支承の設計	0	0	0
立体骨組解析	0	0	0
計算書統合出力	0	-	-
設計調書	0	0	0
下部工連動	0	0	0
ESエクスポート	0	0	-

参考文献

(公社)日本道路協会	道路橋示方書 同解説 IV 下部構造編 平成24年3月 道路橋示方書 同解説 V 耐震設計編 平成24年3月 道路橋示方書 同解説 V 耐震設計編 平成14年3月 道路橋の耐震設計に関する資料 平成9年3月 道路橋示方書・同解説 SI単位系移行に関する参考資料 平成 10年7月 道路橋支承便覧 平成16年4月 道路橋京方書・同解説 V 耐震設計編に関する参考資料 平成
	27年3月
(一財)土木研究センター	建設省 道路橋の免震設計法マニュアル (案)
その他	高減衰ゴム支承共通設計式 平成15年3月 HDR研究会 高減衰ゴム支承共通設計式 平成12年5月 HDR研究会

橋脚の設計・3D配筋 (部分係数法·H29道示対応)

Ver.9 (MPG) R7道示 対応予定

サブスクリプション価格 p.163~164参照 UC-1エンジニアスイート p.18~19参照 プログラム価格 ¥396,000 (税抜¥360,000) カスタマイズ版

¥427,900 (税抜¥389,000)

UC-1サポートAI 計算・CAD統合 3D配筋対応 電子納品 3D PDF 有償セミナー

Windows 11 対応

各種形状・形式に対応した単柱式RC橋脚の耐震設計、図面作成プログラム

橋脚の設計計算から、図面作成までを一貫して行うプログラムです。鉄筋コンクリート橋脚の耐震性の判定を行います。図面作成では、一 般図から配筋図、組立図、加工図、鉄筋表などの図面を一括生成し、DXF、SXF、IFCなどの各ファイル出力に対応しており、Engineer's Studio®データファイル出力にも対応しています。

【形式·形状】

- 橋脚の形式:単柱式の張り出し式橋脚、壁式橋脚(橋軸、直角方向偏心)
- 断面形状:矩形、矩形面取り(R/直線)、小判形、円形の中実断面・ 中空断面(逆テーパー、矩形面取りを除く) 柱の順テーパー(下広がり)、逆テーパー(上広がり)をサポート(矩形 面取り時の順テーパー除く)
- ◉ はり形状:矩形、小判形、張り出し式、コーベルの設計も可能
- フーチング形状:テーパーなしから全方向テーパーまで対応 深礎基礎の場合は段差フーチングも可能
- 基礎形式:直接基礎、杭基礎、ケーソン基礎、鋼管矢板基礎、深礎基礎 (別途、対応する基礎製品が必要)

40

橋梁下部工

鋼管矢板基礎連動

【形式·形状】

- 橋脚の形式:単柱式の張り出し式橋脚、壁式橋脚(橋軸、直角方向偏心)
- 断面形状:矩形、矩形面取り(R/直線)、小判形、円形の中実断面・ 中空断面(逆テーパー、矩形面取りを除く) 柱の順テーパー(下広がり)、逆テーパー(上広がり)をサポート(矩形 面取り時の順テーパー除く)
- はり形状:矩形、小判形、張り出し式、コーベルの設計も可能
- フーチング形状:テーパーなしから全方向テーパーまで対応 深礎基礎の場合は段差フーチングも可能
- 基礎形式:直接基礎、杭基礎、ケーソン基礎、鋼管矢板基礎、深礎基礎 (別途、対応する基礎製品が必要)

【照查内容】

- はり鉛直方向の照査、水平方向の照査(形状がコーベルの条件を満 たす場合は、コーベルとしての設計が可能)
- 柱の照査、安定計算(直接基礎)、フーチングの照査、橋座の設計

永続/変動/偶発(衝突)作用が支配的な状況に対する照査

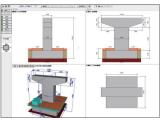
- 限界状態に応じた曲げモーメント、軸力、せん断力に対する照査に対応
- 柱に作用する集中荷重、橋脚天端に作用する集中・分布荷重、風荷重、 流水圧、動水圧、過載荷重を考慮可能
- 水位は荷重ケースごとに最大2ケース指定可能

偶発 (レベル2地震動) 作用が支配的な状況に対する照査

- 限界状態に応じた曲げモーメント、軸力、せん断力に対する照査に対応
- 柱に作用する集中荷重、橋脚天端に作用する集中・分布荷重を考慮可能

その他の特殊条件

- レベル2地震時動水圧に対応
- 地表面に傾斜を設けることが可能

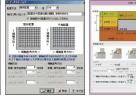

付属設計

● 橋座の設計 (橋座部の耐力照査、支圧応力度の照査)が可能

特殊工法への対応

● REED工法による橋脚の設計計算に対応

メイン画面


初期設定画面

はり主鉄筋入力

スターラップ入力画面 地盤入力

F8-AI UCサポート

- 設計支援を目的としたAI機能を搭載
- 入力操作や計算理論の解説など、サポ ート窓口へお問合せいただくことなく製 品内で解決可能な手段をご提供します
- 多言語、音声入力に対応しており、 外国人技術者でも母国語での入力が

【データ連携】

基礎製品とのリアルタイム連動

- 「基礎の設計・3D配筋」「深礎フレームの設計・3D配筋」との連動が可 能(杭基礎、深礎基礎、ケーソン基礎、鋼管矢板基礎)
- 杭基礎の場合は、2.5次元解析が可能

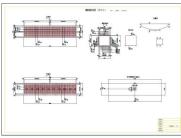
ファイルを介したデータ連携が可能

「震度算出(支承設計)」との連携

「震度算出(支承設計)」とファイルを介した データ連携が可能

「落橋防止システムの設計」との連携

● 落橋防止装置の3Dモデル、死荷重の取り込 み、計算書の統合が可能


非線形動的解析モデルのエクスポート

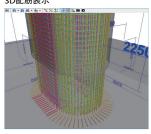
● 非線形動的解析プログラム「Engineer's Studio®」へのデータエクス ポートに対応

【図面作成】

- 支承アンカーボルト穴作 図・自動よけ配筋、支承 補強筋、架違部鉄筋
- CADデータ交換標準 SXF Ver3.1形式の(レ ベル2)出力に対応

図面生成

橋梁下部工


【3D配筋】

- 3D配筋シミュレーション(3D配筋自動生成、表示)
- 3Dアノテーション (3D躯体寸法線、躯体・鉄筋属性の表示)に対応
- ●「3D配筋 CAD」と連動することで、配筋の干渉チェックが可能
- 3Dモデル出力(IFC、ALLPLAN、DWG、DXF、3DS)

3D配筋図画面

3D配筋表示

【設計調書出力】

● テンプレートを用いて、設計条件や計算結果等を反映した設計調書を 出力

適用基準

(公社)日本道路協会	道路橋示方書・同解説 共通編 平成29年11月 道路橋示方書・同解説 コンクリート橋・コンクリート部材編 平成29年11月 道路橋示方書・同解説 下部構造編 平成29年11月 道路橋示方書・同解説 村震設計編 平成29年11月	
東·中·西日本高速道路(株)	設計要領 第二集 橋梁建設編 平成28年8月 CADによる図面作成要領 (案)平成29年9月	
国土交通省	3次元モデル表記標準 (案) 令和2年3月 CIM導入ガイドライン (案) 令和2年3月 3次元モデル成果物作成要領 (案) 令和3年3月 CAD製図基準 平成29年 3月	
土木学会	土木製図基準 平成15年5月	

Ver.9 改訂内容

2025年7月30日リリース

- 1. 直接基礎段差フーチング対応
- 2. 落橋防止作動時の照査対応
- 3. はり計算機能拡張
- 4. F8-AI UCサポート対応

参考文献

(公社)日本道路協会	平成29年道路橋示方書に基づく道路橋の設計計算例 平成30 年6月 道路橋の耐震設計に関する資料 平成9年3月
その他	橋梁下部構造の配筋に関する参考資料(案)平成15年 国土交通省 九州地方整備局 土木構造物設計ガイドライン 平成11年11月(社)全日本建設技術協会 よくわかる直接基礎・深礎基礎の設計 平成13年6月(株)山海堂