
橋梁下部工

- 杭基礎フーチングのレベル2地震時の照査は「基礎の設計」連動で対応
- 橋座の設計 (橋座部の耐力照査)

メイン画面

橋梁下部工

柱PC鋼材(矩形)画面

適用基準

(公社)日本道路協会	道路橋示方書・同解説 共通編 平成14年3月 道路橋示方書・同解説 コンクリート橋編 平成14年3月 道路橋示方書・同解説 下部構造編 平成14年3月 道路橋示方書・同解説
その他	設計要領 第二集 -橋梁・擁壁・カルバート- 平成12年1月 日本 道路公団 プレストレストコンクリート橋脚の耐震設計ガイドライン 平成 11年11月(社)プレストレストコンクリート技術協会

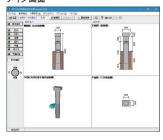
参考文献

(公社)日本道路協会	道路橋の耐震設計に関する資料 平成9年3月
(公社)口平坦路協云	道路橋示方書・同解説 SI単位系移行に関する資料 平成10年7月

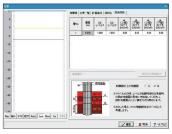
PCウェル式橋脚の設計計算

震度法・保耐法によるPCウェル式橋脚の設計計算プログラム

プログラム価格 ¥836,000 ^(税抜 ¥760,000)


Windows 11 対応 電子納品 3D PDF

「PCウェル工法 設計・施工マニュアル(設計編)」 に基づき、パイルシャフト構造のPCウェル式橋脚について、許容応力度法、地震時保有水平耐力法による柱および基礎の照査を行います。


- 新設設計 (パイルシャフト構造)
- 柱、基礎部:PC構造、PPRC構造から選択、テーパー無し、中空円形 断面のみ
- はり形状:はり式(矩形)、張り出し式
- RC部材:はり下部にRC部材(重量のみに考慮)を設置可能
- 固有周期算定に用いる地盤バネ定数の算出

- ●「震度算出(支承設計)」との連動が可能
- 中詰土砂考慮の有無が指定可能
- 液状化の判定、土質定数の低減係数計算、流動化が生じる場合の流動力計算
- PCウェルのケースを想定し、基礎のみの照査を行う方法に対応

メイン画面

地層入力

適用基準

, 13 1	
(公社)日本道路協会	道路橋示方書・同解説 共通編 平成14年3月 道路橋示方書・同解説 コンクリート橋編 平成14年3月 道路橋示方書・同解説 下部構造編 平成14年3月 道路橋示方書・同解説 耐震設計編 平成14年3月

参考文献

(公社)日本道路協会	道路橋の耐震設計に関する資料 平成9年3月
その他	PCウェル工法 設計・施工マニュアル (設計編) 平成14年3月 PCウェル工法研究会 わかりやすいケーソン基礎の計画と設計」平成10年11月 総合 土木研究所 杭・ケーソン・鋼管矢板および地中連続壁基礎の設計計算例 平成12年2月 (株) 山海堂

ラーメン橋脚の設計・3D配筋 (部分係数法・H29道示対応) Ver.4 (R7道示 「対応予定)

1層門形ラーメン(2~4柱式)橋脚の設計計算、耐震設計・補強設計、図面作成プログラム

H29道示対応 プログラム価格 ¥583,000 ^(税抜¥530,000)

サブスクリプション価格 p.163~164参照 UC-1エンジニアスイート p.18~19参照 ラーメン橋脚の設計計算 (部分係数法・H29道示対応) (作図機能無) ¥473,000

(税抜¥430,000) カスタマイズ版 ¥427,900 (税抜¥389,000) Windows 11 対応
3D配筋対応
電子納品 3D PDF

有償セミナー

ラーメン橋脚の設計計算に対応した「RC下部工の設計・3D配筋」の機能限定バージョン。2柱~4柱式ラーメン橋脚の設計および直接基礎、杭基礎の設計および配筋図・一般図の作成に対応しています。

【対応形状】

- はり形状:両側・左側・右側張り出し、張り出し無し、ハンチ無し
- 柱高変化による梁天端の直角方向勾配設定、コーベルとしての照査
- 柱形状:矩形、矩形面取り、円形、正8角形


【設計計算】

● はり、柱との同時補強計算、任意の死荷重を考慮した計算が可能

【図面作成】

- ラーメン橋脚 (2柱~4柱)の配筋図/一般図の図面作成
- CADデータ交換標準SXF Ver3.1形式のファイル出力に対応
- 3D配筋シミュレーション機能、3DS、IFC、Allplan形式のファイル出力 に対応

メイン画面

部分係数法·H29道示对応

- 荷重組合せ係数γp、荷重係数γqを考慮
- はり、柱、フーチングの永続/変動作用が支配的な状況に対する照査 が可能
- ◉ はり、柱の偶発(レベル2地震動)作用が支配的な状況に対する照査 の検討が可能
- はりのコーベルとしての照査に対応
- 杭とフーチングの接合部の照査
- 負の周面摩擦力に対する照査
- レベル2地震動時の杭基礎フーチングの水平方向押抜きせん断力の照査
- 押込み支持力の周面摩擦力の控除範囲を自動設定
- レベル2地震動照査:橋の重要度区分と破壊形態に応じて、満たすべ き限界状態を判断し、照査
- 「Engineer's Studio®」へのデータエクスポート
- D+TH+EQ組合せ時の雪荷重の地震時慣性力対応

Ver.4 改訂内容

2022年2月28日リリース

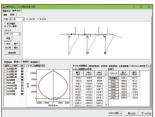
- 1. 杭基礎設計便覧(令和2年9月)に対応
- 2. 照査結果を制限値比で表示する機能追加
- 3. 「震度算出(支承設計)」連動時の計算書統合出力対応

適用基準

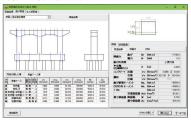
(公社)日本道路協会

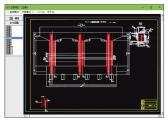
道路橋示方書·同解説 | 共通編 平成29年11月 道路橋示方書・同解説 Ⅲ コンクリート橋編 平成29年11月 道路橋示方書・同解説 Ⅳ 下部構造編 平成29年11月 道路橋示方書·同解説 V 耐震設計編 平成29年11月 杭基礎設計便覧 令和2年9月

参考文献


(公社)日本道路協会

道路橋の耐震設計に関する資料 平成9年3月


永続/変動作用支配状況の 照査結果画面 (H29)


レベル2地震動照査結果画面

許容応力度法結果画面

図面編集

ラーメン橋脚の設計・3D配筋 (旧基準) Ver.3

旧基準 プログラム価格 ¥423,500 (税抜¥385,000)

-メン橋脚の設計計算 (旧基準) (作図機能無 ¥338,800 (税抜¥308,000)

【対応形状】

- フーチング形状:テーパーなし、あり(橋軸方向)、張り出し無し
- 基礎形式:直接基礎、杭基礎(鋼管杭、RC杭、PHC杭、場所打ち杭、 SC杭、鋼管ソイルセメント杭、回転杭、SC杭+PHC杭、マイクロパイル)

【設計計算】

- 常時、暴風時、レベル1地震時の計算、レベル2地震時照査
- 補強工法:曲げ耐力制御式鋼板巻立て(柱)、鉄筋コンクリート巻立て (柱)、鋼板巻立てはり・柱)、鉄筋コンクリート増厚(はり・柱:矩形のみ)
- 杭基礎(増し杭工法)のフーチング補強、許容応力度法、地震時保有 水平耐力法による照査、水平変位の制限を緩和する杭基礎の設計に 対応
- 杭基礎で回転杭工法、レベル1地震時の液状化無視/考慮の一括計算、 負の周面摩擦力の照査、作用力直接指定での杭基礎レベル2地震時 昭杏
- 橋座の設計に対応、上部工反力入力で機能分離型支承に対応
- 面内地震時保有水平耐力では、塑性ヒンジ位置を仮定し、形成と位置 における終局塑性回転角等の計算、損傷のタイプ・安全性の判定
- フーチング許容応力度法、レベル2地震動照査で、柱間中間点せん断 照査引張判定時の柱選択対応
- FRAME連動ファイル出力、UC-win/Road 3Dモデル出力、 Engineer's Studio®、UC-win/FRAME (3D)へのエクスポート
- 震度算出(支承設計)との連動(固有周期および設計水平震度を算出、 免震簡便法、基礎の減衰効果)

【図面作成】

- ラーメン橋脚(2柱~4柱)の配筋図/一般図の図面作成
- 対象形状:梁(張出、張出なし)、柱(矩形、矩形面取、円、小判)、フー チング (矩形、上面テーパ有無)、支承アンカーボルト、補強 (支承、柱、 底版)

適用基準

道路橋示方書・同解説 | 共通編 平成24年3月 道路橋示方書・同解説 Ⅲ コンクリート橋編 平成24年3月 道路橋示方書·同解説 IV 下部構造編 平成24年3月 (公社)日本道路協会 道路橋示方書·同解説 V 耐震設計編 平成24年3月 道路橋示方書·同解説 V 耐震設計編 平成14年3月 杭基礎設計便管 平成19年1月

東·中·西日本高速道路(株) 設計要領 第二集 橋梁保全編 平成24年7月

参考文献		
(公社)日本道路協会	既設道路橋の耐震補強に関する資料 平成9年8月 既設道路橋基礎の補強に関する参考資料 平成12年2月 道路橋示方書・同解説 SI单位系移行に関する参考資料 平成 10年7月 道路橋示方書・同解説 (平成24 年3月)に関する質問・回答集 (I)V 耐震設計編 平成24年11月 耐震設計小委員会	
(独)土木研究所	既設基礎の耐震補強技術の開発に関する共同研究報告書(その3)高耐力マイクロバイル工法 設計・施工マニュアル(6分冊の2)平成14年9月 既設基礎の耐震補強技術の開発に関する共同研究報告書(その3)STマイクロバイル工法 設計・施工マニュアル(6分冊の3)平成14年9月 既設基礎の耐震補強技術の開発に関する共同研究報告書(その3)ねじ込み式マイクロバイル工法 設計・施工マニュアル(6分冊の4)平成14年9月	
その他	アラミド繊維シートによる鉄筋コンクリート橋脚補強工法設計・施工要領(案)平成10年1月(一財)アラミド補強研究会 既設橋梁の耐震補強工法事例集 平成17年4月(財)海洋架橋・ 橋梁調査会 STマイクロパイル工法 設計・施エマニュアル(案)2002年5月 NIJ研究会 設計要領 第2集 橋梁建設編 平成24年7月 東・中・西日本高速 道路(株) 国総研資料第700号 既設橋の耐震補強設計に関する技術資 料 平成24年11月 国土交通省 国土技術政策総合研究所	

橋梁下部工