結果確認

- 計算開始時を安定した水位状態にす るため、本計算前に「ならし計算」を 行って初期水位を算出
- 氾濫条件:破堤、溢水·越水
- 計算ケースごとに氾濫箇所を変更可能

【浸水氾濫解析】

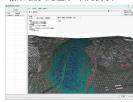
- 河道を氾濫原に配置し、浸水氾濫解 析を実行
- 氾濫原は一定サイズの格子状のメッ シュでモデル化。図面データや 地理院タイル等から読み込むことも 可能
- 氾濫原上に河心線を設定して河道 を配置した後、各河道断面の位置 を調整
- 河道と氾濫原の境界線と河道の氾濫水が流入するメッシュは、プログ ラム内で自動設定した後、必要に応じて修正可能

河道氾濫水流入メッシュ定義画面

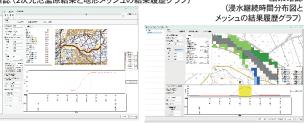
河道系入力画面

【結果確認】

● 河道不定流計算の結果:グラフ形式で表示


梦 专又瞅	
国土交通省 水管理·国土保全局 河川環境課 水防企画室 国土技術政策総合研究所 河川研究部 水害研究室	洪水浸水想定区域図作成マニュアル (第4版)平成27年7月
建設省 土木研究所 河川部 都市河川研究室	土木研究所資料第3400号 氾濫シミュレーション・マニュアル (案)平成8年2月
国土交通省 水管理·国土保全局 河川環境課 水防企画室	中小河川洪水浸水想定区域図作成の手引き(第2版)平成28 年3月
国土交通省 国土技術政策総合研究所 水害研究室	NILIM2.0都市域氾濫解析モデルマニュアル 平成24年3月
(社)日本河川協会	防災調節池等技術基準(案)解説と設計実例 平成19年9月
(社)雨水貯留浸透技術協会	增補改訂 流域貯留施設等技術指針 (案)平成19年3月

● 氾濫解析結果:洪水浸水想定区域図と、時間ごとの2次元、3次元地形 図で確認


結果確認(河道計算)

結果確認(氾濫原3次元表示)

結果確認(2次元氾濫原結果と地形メッシュの結果履歴グラフ)

国土交通省 水管理·国土保全局 河川環境課 水防企画室 下水道部 海岸室	浸水想定区域図データ電子化ガイドライン (第4版)令和5年2月
国土交通省 国土技術政策総合研究所	国総研資料第26号 汚水管きょへの雨天時浸入水に関する調 査報告書 平成14年1月
農林水産省 農村振興局 整備部 設計課 計画調整室	土地改良事業計画設計基準及び運用・解説 計画 『排水』 令和7年4月
土木学会 水理委員会、 水理公式集改訂委員会	水理公式集-昭和60年版-昭和60年4月
土木学会 水工学委員会 水理公式集編集小委員会	水理公式集 [2018年版] 平成31年3月
建設省 土木研究所 河川部 総合治水研究室	土木研究所資料第3105号 2次元不定流モデルによる氾濫解析 平成4年3月

XDSWMM

雨水流出、氾濫、汚濁、津波解析ソフトウェア

プログラム価格 ¥3,531,000 (税抜¥3,210,000)

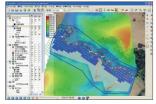
Windows 11 対応

UC-win/Road for xpswmm (オプション) ¥369,600 (税抜¥336,000)

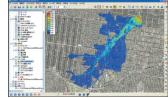
土木学会「水理公式集,平成11年版」や「流出解析モデル利活用マニュアル, 2006年3月, (財) 下水道新技術推進機構」では、要件を満たす氾濫解析に 使用可能な流出解析モデルとしてxpswmmが挙げられ、氾濫シミュレーションや水理構造物の能力評価、施設配置計画、施設最適運転ルールの立案、 浸水対策事業などの多目的解析ツールとして運用されています。

【適用範囲/検討事例】

流出解析、水理解析(管内、開水路、河川)、氾濫解析、汚濁負荷解析、 浸水予想図、ハザードマップ作成、合流式下水道改善、施設設計・運用 計画


【流出解析;水文モード】

- 流域分割後の各部分流域に対し、浸透域・不浸透域、窪地貯留、蒸発散 を考慮した有効降雨に対する表面流出解析
- 降雨解析:一定時間間隔、任意時間間隔などの時系列データ作成、実 績降雨の計画降雨への引伸しなどの降雨波形を設定
- 降雨損失解析:窪地貯留、Horton式、Green-Ampt式による浸透能での 地下への浸透、蒸発散による降雨の損失を考慮して有効降雨量を算出
- 表面流出解析:有効降雨が地表面を流れる経過を算出


【水理解析;水理モード】

- サンブナン方程式に基づくDynamicWave法 (一次元不定流モデル)が
- KinematicWave法(一次元等流解析モデル)、EPA-SWMM法による

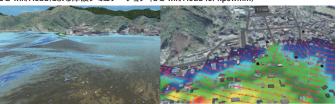
氾濫解析例

1D/2D統合解析

解析も可能

● Dynamic wave法によるモデルでは、逆流、背水、ループをなすネットワ 一ク流れ等あらゆる一次元水理現象を解析可能

【汚濁解析;汚濁モード】


● 地表面堆積流出モデル、堆積物質輸送モデル

[UC-win/Road for xpswmm]

- 津波生成、ビジュアルオプションによる津波位置、範囲、高さの設定が可
- 浅水理論の差分法により、将来発生し得る津波の陸域浸水範囲、浸水 深さを予測
- 構造物への波力評価や漂流物運搬、各メッシュ点の波高・速度を計算、 津波高さ分布図等を作成
- 東北大学津波工学研究室 (今村文彦教授)の研究と連携したモデルを

xpswmm解析支援サービス ≫詳細:p.147

UC-win/Roadによる津波シミュレーション (UC-win/Road for xnswmm)

